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Abstract

Increasing concern over the implications of climate change for biodiversity has led to the

use of species–climate envelope models to project species extinction risk under climate-

change scenarios. However, recent studies have demonstrated significant variability in

model predictions and there remains a pressing need to validate models and to reduce

uncertainties. Model validation is problematic as predictions are made for events that

have not yet occurred. Resubstituition and data partitioning of present-day data sets are,

therefore, commonly used to test the predictive performance of models. However, these

approaches suffer from the problems of spatial and temporal autocorrelation in the

calibration and validation sets. Using observed distribution shifts among 116 British

breeding-bird species over the past � 20 years, we are able to provide a first

independent validation of four envelope modelling techniques under climate change.

Results showed good to fair predictive performance on independent validation,

although rules used to assess model performance are difficult to interpret in a

decision-planning context. We also showed that measures of performance on

nonindependent data provided optimistic estimates of models’ predictive ability on

independent data. Artificial neural networks and generalized additive models provided

generally more accurate predictions of species range shifts than generalized linear

models or classification tree analysis. Data for independent model validation and

replication of this study are rare and we argue that perfect validation may not in fact be

conceptually possible. We also note that usefulness of models is contingent on both the

questions being asked and the techniques used. Implementations of species–climate

envelope models for testing hypotheses and predicting future events may prove wrong,

while being potentially useful if put into appropriate context.
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Introduction

Attempts to predict climate-change impacts on biodi-

versity have often relied on the species–climate

‘envelope’ modelling approach (also known as ecolo-

gical niche models), whereby present day distributions

of species are combined with environmental variables

to project distributions of species under future climates

(for review, see Pearson & Dawson, 2003). In spite of the
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inherent limitations of correlative models (for review,

see Guisan & Zimmermann, 2000), projections arising

from species–climate envelope models have been used

to support estimates of species’ extinction risk under

climate change for a variety of taxa and parts of the

world (e.g. Bakkenes et al., 2002; Erasmus et al., 2002;

Midgley et al., 2002; Peterson et al., 2002; Thomas et al.,

2004a). The impact of these estimates within political

and public debate is potentially high, yet there is great

deal of scope for misrepresenting the science behind

such studies (Ladle et al., 2004). Recent studies have

reported that projections arising from species–climate

models may be highly sensitive to the assumptions,

algorithms and parameterizations of different methods

(e.g. Thuiller, 2004; Thuiller et al.; 2004a, Pearson et al.,

2005). These studies have raised a number of metho-

dological issues that lead to a degree of uncertainty

which has been underestimated, or simply overlooked,

in previous assessments of climate impacts on biodi-

versity. We argue that when results of a particular

analysis contribute to the discussion of the weight of

evidence required to support important societal deci-

sions, the demand that models’ predictive accuracy be

assessed is eminently reasonable.

Nevertheless, validation (also referred to as evalua-

tion) of species–climate envelope models under climate

changes remains poorly explored. The reason is that

events being predicted have either been poorly docu-

mented or have yet not occurred. Consequently,

assessments of accuracy are usually limited to a process

of ‘resubstituition’, in which the data used to calibrate

(or train) models are also used to validate (test) them

(Fig. 1a; for review, see Table 1). A problem with the

resubstituition approach is that models may overfit to

the calibration data, leaving users unable to judge

whether high accuracy on nonindependent data reflect

good predictive accuracy on independent data sets.

Some authors also caution against possible bias in

estimates of model-prediction errors as the models are

optimized to deal with the ‘noise’ in the data and might

consequently lose generality outside the original data

(for discussion, see Olden & Jackson, 2000; Olden et al.,

2002). To address these problems, a growing number of

studies have used data partitioning methods for the

allocation of cases to calibration and validation data

sets. The most familiar technique is one-time data-

splitting, whereby data are split into calibration and

validation samples by random process (Fig. 1b, Table 1).

There are alternative techniques including grouped

cross-validation (also known as k fold partitioning, hold

out, or external method), bootstrapping, and jack-

knifing (also known as leave-one-out) (for discussion,

see Harrell, 2001), but they all share the assumption

that randomly selected samples from original data

constitute independent observations, hence suitable for

model validation. Although these validation strategies

have generally been accepted to provide more robust

measures of predictive success than resubstituition (e.g.

Fielding & Bell, 1997), they may not avoid two of the

most important pitfalls of correlative models. The first

is that of spatial autocorrelation in the distribution of

species and environmental variables (e.g. Hampe,

2004). This is a problem because modelling techniques

assume that modelled events are independent, which is

not true in the case of spatially autocorrelated data. This

problem is not overridden by resampling the original

data randomly, nor is it by carrying additional field

sampling for testing models within the modelled

region, because any of these validation strategies would

use test data that is spatially autocorrelated with data to

calibrate models. The second is that of temporal

correlation in biological and environmental phenom-

ena. This is another form of autocorrelation in the data,

and implies that observations in time series are

100%
Environmental
envelope

Environmental
envelope

Environmental
envelope

Evaluation

Calibration

Projection

Same region

New region

New resolution

New time

Evaluation

Calibration

Projection

Same region

New region

New resolution

New time

Evaluation

Calibration

Projection

100%
New region

New resolution

New time

(a)

(b)

(c)

Fig. 1 Species-climate envelope modelling framework under

three calibration and validation strategies: (a) resubstituition; (b)

data splitting; and (c) independent validation.

VA L I D AT I O N O F I M PA C T M O D E L S 1505

r 2005 Blackwell Publishing Ltd, Global Change Biology, 11, 1504–1513



nonrandom because of lack of independence between

data points that are adjacent in time. Consequently,

projections of observed current distributions closer in

time are likely to be more similar than projections made

further apart. The interplay of spatial and temporal

autocorrelation make it conceptually difficult to discard

the possibility that models’ goodness-of-fit to the data

represent an over-optimistic estimate of their predictive

ability outside the initial spatial and temporal condi-

tions defining the training set (e.g. Beutel et al., 1999).

Thus, the number of degrees of freedom is over-

estimated, causing unrealistically small estimates of

the standard errors of the model outputs. In addition,

as temporal autocorrelation can introduce slow changes

(i.e. low-frequency variability) in the time series, it can

affect the estimate of the degree of estimated changes.

It may be argued that the predictive accuracy of

species–climate envelope models can only be fully

tested by means of validation studies using direct

comparison of model predictions with independent

empirical observations (Fig. 1c). Attempts to perform

such tests are relatively rare. A limited number of

studies have attempted independent validation using

known distributions in different regions (Beerling et al.,

1995; Fielding & Haworth, 1995; Peterson, 2003a), data

at different resolutions (Pearson et al., 2004; Araújo

et al., 2005a), field observations in previously un-

sampled regions where species’ occurrences are pre-

dicted (Raxworthy et al., 2003), fossil records of

mammal distributions under Pleistocene climates

(Martinez-Meyer et al., 2004), and visual comparison

between simulated and observed range changes for

butterflies in the UK over the 20th century (Hill et al.,

1999). However, statistical validation using indepen-

dent data describing range shifts under recent climate

change has not previously been undertaken.

As models projecting species’ distributional shifts

under future climate change are unlikely to be

validated in most circumstances because of data

limitations, it is important to improve understanding

Table 1 Four approaches used to validate species–climate envelope models under climate change

Reference Resubstituition Bootstrap Data-splitting

Independent

validation

Araújo et al. (2004) 1

Bakkenes et al. (2002) 1

Beaumont & Hughes (2002)*

Berry et al. (2002) 1

Burns et al. (2003) 1

Erasmus et al. (2002) 1

Guisan & Theurillat (2000) 1

Huntley (1995) 1

Huntley et al. (1995) 1

Huntley et al. (2004) 1

Iverson & Prasad (1998) 1

Iverson et al. (1999) 1

Martinez-Meyer et al. (2004) 1

Midgley et al. (2002) 1

Midgley et al. (2003) 1

Miles et al. (2004) 1

Pearson et al. (2002) 1

Pearson et al. (2005) 1

Peterson (2003b) 1

Peterson et al. (2002) 1

Peterson et al. (2001) 1

Saetersdal et al. (1998)*

Skov & Svenning (2004) 1

Sykes et al. (1996) 1

Teixeira & Arntzen (2002) 1

Thuiller (2003) 1

Thuiller (2004) 1

Thuiller et al. (2004a) 1

Thuiller et al. (2004b) 1

Few studies (*) have not attempted to validate the predictive accuracy of their models.
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of the underlying characteristics of data and methods

that contribute uncertainty to predictions. Because most

model evaluations assess accuracy to the calibration, or

nonindependent validation data (also referred to as

verification), it is important to investigate the degree to

which these measures correlate with proper validations

on independent data sets. These questions can be

addressed only when independent data adequate for

model validation are available and this is a rare

circumstance for climate-change impact assessments.

We make a first attempt to address these problems

using British-breeding bird distributional records in

two periods between the 1960s and the 1990s. We

assume these are independent events, although we

acknowledge that some degree of nonindependence

may arise given that data were recorded in the same

region and in two periods of time only 20-years apart.

However, they do constitute a rare record of observed

range shifts, and one of the few examples of species

range-shift data that allows direct comparison between

observations in each recording period, without the need

to correct for sampling bias. Furthermore, they also

have the advantage of including species reported to

shift northward in apparent response to recent regional

climate changes (Thomas & Lennon, 1999). The

unprecedented quality of these data allows researchers

to explore issues of bioclimate envelope model valida-

tion that have not yet been addressed in the literature.

In particular, we ask: (1) how well do models perform

on an independent validation dataset? (2) does valida-

tion using nonindependent distribution data provide a

good surrogate for accuracy on independent data? (3)

do particular modelling techniques perform consis-

tently better than others?

Data and methods

Species data

We used distributional records in Britain for 116 native

breeding-bird species recorded during the periods

1968–1972 (t1) and 1988–1991 (t2) (Sharrock, 1976,

Gibbons et al., 1993). Volunteer recorders achieved

100% cover of the British 2831 10 km squares, with the

total number of nonduplicate 10 km squares receiving

records for the second period being within 1% of the

217 615 10 km squares records received for 1968–1972.

This has allowed researchers to make comparisons

between occupancy of squares in each recording

period, without the need to correct for sampling bias

(e.g. Thomas & Lennon, 1999; Thomas et al., 2004b). Our

analyses of bird distributions did not include marine,

waterfowl, and aquatic shorebirds. Species with less

than 20 records in the first recording period were also

excluded from analysis to avoid problems related to

modelling data with excessively small sample sizes

(e.g. Stockwell & Peterson, 2002). The minimum

number of records for a species in this period was 25,

the median number was 1560, and the maximum was

2405.

Climate data

A set of aggregated climate parameters were derived

from an updated version of the CRU (Climate Research

Unit at the University of East Anglia, UK) monthly

climate data (New et al., 2000). The updated data set

provides monthly values for the years 1901–2000 at

100 � 100 spatial resolution (Mitchell et al., 2004).

Average monthly temperature, precipitation and cloud

cover of 1416 grid cells covering the area of the UK

(71300 E–11400 W and 501N–611N) were used to calculate

mean values of six different climate parameters in two

different time slices (1967–1972, 1987–1991). Variables

include mean annual temperature within time slices

( 1C), mean temperature of the coldest month ( 1C),

mean temperature of the warmest month ( 1C), mean

annual summed precipitation (mm), and mean sum of

precipitation between July–September (mm), and grow-

ing season, defined as the temperature sum of all

consecutive days with mean temperature greater than

5 1C. The six variables were selected on the basis that

they are known to impose constraints upon species

distributions as a result of widely shared physiological

limitations (Crick, 2004).

Species–climate modelling

Breeding bird species distribution records in Britain

were modelled using SPLUS-based BIOMOD (Thuiller,

2003). Modelling procedures included (1) generalized

linear models (GLM) with linear, quadratic and poly-

nomial terms (second and third order). A stepwise

procedure using the AIC criterion was used to select the

most significant variables (Akaike, 1974); (2) general-

ized additive models (GAM) with cubic-smooth

splines. The degree of smoothness was bounded to

four for each variable. As for GLM, a stepwise

procedure was used to select the most parsimonious

model; (3) classification tree analysis (CTA) using a 10-

fold cross-validation to select the best trade-off between

the number of leaves of the tree and the explained

deviance; and (4) feed-forward artificial neural net-

works (ANN) with seven hidden units in a single layer

and with weight decay equal to 0.03. Because of the

heuristic nature of ANN models were run 10 times and

the mean prediction was used. This procedure of

averaging predictions over the collection of networks
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is often preferred to using the solution giving the

lowest error (Ripley, 1996).

Two runs were made with each modelling technique.

In the first run, models were calibrated on a 70%

random sample of the original time t1 data and

predictive accuracy was evaluated on the remaining

30% of the data (Fig. 1b). The size of the calibration set

was determined by application of a commonly used

heuristic for identifying the ratio of training and cross-

validation sets in presence and absence models:

[1 1 (p�1)1/2]�1, where p is the number of predictor

(here climate) variables (Fielding & Bell, 1997). In the

second run, models were calibrated using 100% of the

original time t1 data and evaluated on the original time

t2 data (Fig. 1c). In each run, we tested agreement

between observed and projected distributions by

calculating Cohen’s k statistic of similarity (k) and the

area under curve (AUC) of the receiver operating

characteristic (ROC) approach (Fielding & Bell, 1997).

We used the k approach after maximising the statistic

over a range of thresholds above which model outputs

are considered to represent species’ presence. We

calculated AUC using the nonparametric method based

on the derivation of the Wilcoxon statistic (Fielding &

Bell, 1997). Values of AUC range from � 0.5 for models

with no predictive ability, to 1.0 for models giving

perfect predictions. k values range from 0.0 (no

predictive ability) to 1.0 (perfect predictive ability).

There are a number of rules-of-thumb available to help

interpreting measures of agreement between observed

and projected events. For example, when using the k
statistic approach, Landis & Koch (1977) suggest the

following ranges of agreement: excellent K40.75; good

0.404Ko0.75; and poor Ko0.40. When using the ROC

procedure, Swets (1988) recommends interpreting

range values as: excellent AUC40.90; good 0.804
AUCo0.90; fair 0.704AUCo0.80; poor 0.604AUCo
0.70; fail 0.504AUCo0.60.

Results

How well do models perform on an independent validation
dataset?

Our results demonstrate that models’ predictive accu-

racy on independent validation were good around

median values with AUC assessment (i.e. 0.80oAU-

Co0.90 except for CTA and GLM), but only fair near

the lower quartile distribution of accuracy values (i.e.

0.70oAUCo0.80, Table 2). With k assessment, models

also provided good agreement around median values

(i.e. 0.40oko0.75 except for GLM), while lower

quartile distribution values of accuracy were classified

as poor (i.e. ko0.40). In both cases, upper quartile

accuracy values were below ‘excellent’ threshold values

(i.e. AUCo0.90 and ko0.75).

Does validation on nonindependent distribution data
provide a good surrogate for accuracy on independent
data?

As most assessments of model accuracy use noninde-

pendent data, it is useful to estimate the degree to

which predictive accuracy measured with nonindepen-

dent t1 distribution data provides a good surrogate for

accuracy on t2 independent data. Our results show that

model accuracy evaluated on nonindependent 30%

subset of t1 data was always higher than accuracy on

Table 2 Predictive accuracy of different modelling techniques (ANN, CTA, GAM and GLM), calibrated with 70% data from time t1

and verified against remaining 30% data of time t1 (Fig. 1b), or calibrated with 100% of time t1 data and validated against 100% time

t2 (Fig. 1c)

Calibration 70% t1 Validation 30% t1 Db Calibration 100% t1 Validation 100% t2 Dc

British breeding birds

k
ANN 0.59 (0.48, 0.70) 0.59 (0.43, 0.69) 0 0.60 (0.47, 0.69) 0.46 (0.26, 0.56) �0.14

CTA 0.57 (0.47, 0.67) 0.53 (0.38, 0.62) �0.04 0.57 (0.45, 0.66) 0.40 (0.25, 0.53) �0.17

GAM 0.53 (0.41, 0.66) 0.58 (0.40, 0.67) 0.05 0.53 (0.42, 0.66) 0.43 (0.29, 0.54) �0.10

GLM 0.53 (0.42, 0.66) 0.57 (0.41, 0.67) 0.04 0.54 (0.42, 0.66) 0.37 (0.22, 0.50) �0.17

AUC

ANN 0.92 (0.87, 0.94) 0.90 (0.85, 0.93) �0.02 0.92 (0.87, 0.94) 0.84 (0.78, 0.88) �0.08

CTA 0.88 (0.82, 0.91) 0.86 (0.78, 0.89) �0.02 0.87 (0.81, 0.91) 0.77 (0.70, 0.83) �0.10

GAM 0.91 (0.85, 0.94) 0.90 (0.85, 0.93) �0.01 0.91 (0.85, 0.94) 0.82 (0.75, 0.89) �0.09

GLM 0.91 (0.85, 0.93) 0.90 (0.85, 0.93) �0.01 0.91 (0.86, 0.93) 0.78 (0.68, 0.85) �0.13

Values correspond to median (lower quartile, upper quartile) accuracy measures (k and ROC) obtained for selected British breeding

birds (n 5 116); D values correspond to the difference between median accuracy measured on the 30% randomly chosen t1 data or

100% time t2 validation sets and median accuracy measured on calibration sets.
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independent t2 data (Table 2), supporting concerns that

models’ predictive accuracy measured on nonindepen-

dent data are likely to provide a generally over-

optimistic assessment of model performance on inde-

pendent data. Drops in accuracy from calibration to

validation sets (i.e. accuracy in validation minus

accuracy on calibration sets) were always lower for

models validated with nonindependent t1 validation

data (Fig. 1b) than for models validated with indepen-

dent t2 validation data (Fig. 1c, Table 2). For example

when models were validated on a 30% random sample

of the original t1 data, the maximum median drop of

accuracy was �0.04 (CTA k) with the best result being

an increase in accuracy of 0.05 (GAM k). When models

were validated with an independent data set for t2, then

the maximum median drop of accuracy was �0.17

(CTA and GLM k) whereas the best result was a drop of

�0.08 (ANN AUC).

Generally, the two methods yielding the highest

accuracies on independent time t2 data (ANN and

GAM with both k and AUC) also had the lowest

decreases in predictive accuracy from calibration in time

t1 to validation in time t2 (Table 2). Because results in

Table 2 are described by only three descriptors of the

frequency distribution of accuracy values (median,

lower quartile and upper quartile), we explored predict-

ability of accuracies using the whole set of results for

each individual species (Figs 2 and 3). As expected,

greater correlations are observed between model accura-

cies on the calibration and nonindependent t1 validation

sets (Fig. 2) than for accuracies on calibration and

independent t2 validation (Fig. 3). GLM and GAM had

the highest correlation between accuracies in calibration

and nonindependent validation sets (Fig. 2), whereas

model accuracies on calibration and independent vali-

dation were more stable with GAM and ANN (Fig. 3).
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Models were calibrated on a 70% random sample of the original

distribution data in time t1. Each dot represents the model
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Do some modelling techniques perform consistently better
than others?

ANN provided projections yielding generally higher

accuracies on calibration and validation sets than any

other methods (Table 2). GAM performed second best

with good results in validation data sets, but not always

as good in calibration sets. GLM achieved similar

accuracy as GAM in calibration data but lost predictive

accuracy when modelled distributions were tested

against validation sets. CTA seem to overfit in some

cases (especially with k method), as models yielded

large accuracies on calibration sets but showed some of

the largest median drops in predictive accuracy in

validation sets (Table 2).

Discussion

This study reports a first attempt to extensively

investigate accuracy of species–climate envelope mod-

els, using observed range shifts of 116 British breeding-

bird species under recent climate change. Accuracy was

assessed using simple rules-of-thumb for interpreting

measures of agreement between observed and pro-

jected events (Landis & Koch, 1977; Swets, 1988).

Results showed good to fair predictive performance

on an independent dataset, which is encouraging for

applications of the models. However, the arbitrary rules

used to assess model performance are difficult to

interpret as they are difficult to translate into clear

guidelines as to what are acceptable levels of model

uncertainty from a user’s perspective. Furthermore,

they do not allow for a distinction between models’

ability to predict absences and presences. It may be

argued that the ability to predict absences may not be of

exceptional significance, especially for species with a

limited number of presences (J. Elith, personal commu-

nication). These rules do, however, provide a relative

basis to make comparisons and assess changes in

models performance. For example, it was shown that

models validated with nonindependent t1 distribution

data provide overoptimistic assessments of predictive

accuracy when compared with their ability to predict

independent t2 data. We anticipate that models’

predictive ability might further decrease as the time-

period considered for projections increases. This is

because the effect of inflated performance arising from

modelling spatially and temporally autocorrelated data

should decrease as observed and modelled events

become increasingly independent from each other. We

also found that the models with highest accuracies on

nonindependent data tended to have smaller reduc-

tions in accuracy when confronted with independent

data. This result supports cautious use of measure-

ments of accuracy on nonindependent data as a

surrogate for accuracy on independent data (but see

Elith & Burgman, 2002; Araújo et al., 2005a). Finally, we

showed that, with our data, ANN and GAM provided

generally more accurate projections of species range

shifts under climate change than GLM and CTA. This

pattern of performance across modelling techniques is

consistent with previous assessments of performance of

species–climate envelope models with nonindependent

data (for reviews see Olden & Jackson, 2002; Segurado

& Araújo, 2004), and suggests that modelling techni-

ques capable of summarising complex nonlinear

relationships are more likely to provide useful projec-

tions of species responses to climate change. CTA is one

such technique, although a tendency for overfitting was

recorded in our study. This is unsurprising as CTA is

bound to overfit in three directions: searching for best

predictors, for best splits, and searching multiple times

(Harrell, 2001). The high performance of complex

nonlinear techniques suggests that relatively unex-

plored methodologies such as multivariate adaptive

regression splines , adaptive logistic regression (boost-

ing) and generalized multiplicative models (for review

see Hastie et al., 2001) might deserve future testing.

Many studies have used good model fits on

nonindependent validation data to support results

pertaining to the potential impacts of future climate

change on biodiversity (see references in Table 1).

However, we have demonstrated here that confidence

in predictive ability on independent data for a different

time-period is reduced, leading to less optimistic

estimates of predictive ability. There are many reasons,

additionally to the effects of autocorrelation in the data,

why good model fits on present-day distribution data

(i.e. nonindependent validation data) do not necessarily

translate into good predictions of future ranges. Such

factors may include the presence of spurious correla-

tions between response (i.e. species) and predictor (i.e.

climate) variables, which may translate into poor

predictions on independent validation data (e.g. Guisan

& Zimmermann, 2000). Problems may also arise when

projections of future distributions extrapolate beyond

fitted values among predictors (e.g. Thuiller et al.,

2004b). More fundamentally, models assume immediate

responses of species to climate change (e.g. Araújo &

Pearson, 2005), when restricted dispersal ability,

changes to existing networks of biotic interactions,

and possible rapid evolutionary adaptations may

prevent such responses from occurring (for reviews

see Loehle & LeBlanc, 1996; Pearson & Dawson, 2003).

Furthermore, there can be no assurance that models

that show good predictive ability for past range shifts

will give reliable predictions of future shifts, as climate

change over the next century is projected to be
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potentially more rapid and of greater magnitude than

has been experienced during the last 1 000 years

(Houghton et al., 2001).

There are clearly limits to the ability of any model to

predict the future distribution of species under climate

change, and model validation thus becomes a concep-

tually difficult problem. This is a familiar problem

throughout science, as epitomized by Oreskes et al.

(1994) in the following example: ‘If it rains tomorrow, I

will stay home and revise this paper. The next day it

rains, but you find that I am not home. ( . . . ) You

conclude that my original statement was false. But in

fact it was my intention to stay home and work on my

paper. The formulation was a true statement of my

intent. Later, you find that I left the house because my

mother died, and you realise that my original formula-

tion was not false, but incomplete. It did not allow for

the possibility of extenuating circumstances’ (p. 641).

Here the attempt to validate the preposition was

unsuccessful because all influencing factors were not

– or could not be – incorporated. Taking a more

familiar example, consider predictions of the potential

impacts of climate change on the distribution of Red-

backed shrike (Lanius colurio) in Britain. Araújo et al.

(2005b) used results from species–climate envelope

models to predict that the Red-backed shrike should

have expanded its range northwards over the second

half of the 20th century. This general projection was

coincident for many of the breeding birds studied, as

expected (Thomas & Lennon, 1999). However, the Red-

backed shrike has not undergone such an expansion,

with its distribution in fact having contracted evenly

across its range (Araújo et al., 2002). It is probable that

nonclimatic factors, that are not incorporated within

species–climate envelope models, such as habitat

change, interactions with other species, or events

occurring within the species’ wintering grounds in the

southernmost parts of Africa, may have been the major

driver of distributional shift for this species. Validation

of the model prediction for this species was, therefore,

unsuccessful, although the chief aim of species–climate-

envelope modelling – to characterize a species’ suitable

climate space (or potential range) – remains untested as

we have only realized, rather than potential, ranges

against which to validate. These examples illustrate a

problem that is common to all models attempting to

predict (independent) future events based on calibra-

tion of existing ones. As modelled systems are not

closed (Oreskes et al., 1994), it becomes impossible to

account for all potential factors driving changes in the

state of modelled events. Errors are thus an inherent

property of models.

We conclude by noting that successful validation

does not necessarily imply that a model is valid for a

particular application (e.g. Oreskes, 1998). Indeed,

agreement between modelled and observed events

may occasionally occur by chance as errors in one

component of the model may be offset by errors in

another component. Hence, even when projections

from models are entirely consistent with observed

independent data, they cannot be formally said to

‘prove’ the model but to fail to disprove it. Conversely,

unsuccessful validation does not always mean that a

model is wrong. A model may utilize parameters that

are relevant to the underlying processes affecting

species distributions but its predictive performance be

overridden by governing processes operating at differ-

ent spatial or temporal scales (Rastetter, 1996). How-

ever, as stressed by George Box, ‘models are never true,

but fortunately it is only necessary that they be useful.

For this it is usually needful only that they are not

grossly wrong’ (Box, 1979, p. 2). The critical questions

for species–climate envelope models are thus (1) how

can the realism of model assumptions, algorithms and

parameters be improved? and (2) which questions

make particular model applications useful? While the

first question has been the subject of several empirical

studies (including this one) and reviews, the second

remains largely unexplored (but see Hodges, 1991).

Philosophers have argued that models provide useful

tools for formulating hypotheses and exploring ‘what

if’ questions, thereby illuminating which aspects of a

problem are most in need of further investigation and

where more empirical data are needed. However, they

caution against the use of such models for hypotheses

testing and prediction, arguing that the value of models

for policy-making and planning is mainly heuristic (e.g.

Shrader-Frechette & McCoy, 1993; Oreskes et al., 1994;

Oreskes, 1998; Van Horne, 2002). This perspective

contrasts with particular applications that used spe-

cies–climate envelope models for testing hypotheses of

species–climate relationships (e.g. Huntley et al., 2004),

or for making predictions of extinction risk under

future climate-change scenarios (e.g. Thomas et al.,

2004a). Although our results seem to support sugges-

tions that envelope models can be useful for providing

a first approximation as to likely general impacts in

climate-driven range changes, it may be conceptually

inadequate to use these projections as face value for

making predictions of future events. It is therefore vital

that the models are applied critically and that valida-

tion against nonindependent data does not lead to

unrealistically optimistic estimates of predictive ability.
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