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ABSTRACT

 

Aim

 

One of the limitations to using species’ distribution atlases in conservation
planning is their coarse resolution relative to the needs of local planners. In this
study, a simple approach to downscale original species atlas distributions to a finer
resolution is outlined. If such a procedure yielded accurate downscaled predictions,
then it could be an aid to using available distribution atlases in real-world local
conservation decisions.

 

Location

 

Europe.

 

Methods

 

An iterative procedure based on generalized additive modelling is used
to downscale original European 50 

 

×

 

 50 km distributions of 2189 plant and terres-
trial vertebrate species to 

 

c.

 

 10 

 

×

 

 10 km grid resolution. Models are trained on 70%
of the original data and evaluated on the remaining 30%, using the receiver operating
characteristic (ROC) procedure. Fitted models are then interpolated to a finer
resolution. A British dataset comprising distributions of 81 passerine-bird species in a
10 

 

×

 

 10 km grid is used as a test bed to assess the accuracy of the downscaled predic-
tions. European-wide, downscaled predictions are further evaluated in terms of their
ability to reproduce: (1) spatial patterns of coincidence in species richness scores
among different groups; and (2) spatial patterns of coincidence in richness, rarity
and complementarity hotspots.

 

Results

 

There was a generally good agreement between downscaled and obser-
ved fine-resolution distributions for passerine species in Britain (median Jaccard
similarity = 70%; lower quartile = 36%; upper quartile = 88%). In contrast, the cor-
relation between downscaled and observed passerine species richness was relatively
low (

 

rho

 

 = 0.31) indicating a pattern of error propagation through the process of
overlaying downscaled distributions for many species. It was also found that meas-
ures of model accuracy in fitting original data (ROC) were a poor predictor of
models’ ability to interpolate distributions at fine resolutions (

 

rho

 

 = 

 

−

 

0.10). Although
European hotspots were not fully coincident between observed and modelled
coarse-resolution data, or between modelled coarse resolution and modelled down-
scaled data, there was evidence that downscaled distributions were able to maintain
original cross-taxon coincidence of species-richness scores, at least for terrestrial
vertebrate groups. Downscaled distributions were also able to uncover important
environmental gradients otherwise blurred by coarse-resolution data.

 

Main conclusions

 

Despite uncertainties, downscaling procedures may prove
useful to identify reserves that are more meaningfully related to local patterns of
environmental variation. Potential errors arising from the presence of false posi-
tives may be reduced if downscaled-distribution records projected to occur outside
the range of original coarse-resolution data are excluded. However, the usefulness of
this procedure may be limited to data-rich regions. If downscaling procedures are
applied to data-poor regions, then there is a need to undertake further research
to understand the structure of error in models. In particular, it would be important

 

1

 

Macroecology and Conservation Unit, 

University of Évora, Estrada dos Leões, 

7000–730 Évora, Portugal. 

 

2

 

Centre d’Ecologie Fonctionnelle et Evolutive, 

CNRS, 1919 Route de Mende, 34293 

Montpellier Cedex 5, France, 

 

3

 

Biogeography and 

Conservation Laboratory, The Natural History 

Museum, Cromwell Road, SW7 5BD London, 

UK, and 

 

4

 

Département de Géographie, 

Université Catholique de Louvain, Place Louis 

Pasteur, 3, B-1348 Louvain-la-Neuve, Belgium 



 

M. B. Araújo 

 

et al

 

.

 

18

 

Global Ecology and Biogeography

 

, 

 

14

 

, 17–30, © 2005 Blackwell Publishing Ltd

 

to investigate which species are poorly modelled, where and why. Without such an
assessment it is difficult to support unsupervised use of downscaled data in most
real-world situations.
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INTRODUCTION

 

Distribution atlases provide a convenient representation of

species distributions in near-equal-area grid cells on maps.

Such representations have been widely used to study species-

distribution patterns of abundance, rarity, richness, turnover

and assemblage composition at varying spatial scales (e.g. Turner

 

et al

 

., 1988; Williams 

 

et al

 

., 1999; Koleff & Gaston, 2002; van

Rensburg 

 

et al

 

., 2002; Araújo, 2003). Atlas data have also been used

to investigate and test the performance of different conservation-

planning methodologies, such as reserve selection (e.g. Rebelo &

Siegfried, 1992; Araújo & Williams, 2000; Williams 

 

et al

 

., 2000a;

Araújo 

 

et al

 

., 2001; Araújo, 2004). However, there is a concern

that the scale of most atlases is too coarse for real-world conser-

vation planning applications (e.g. Stoms, 1992, 1994; Hopkinson

 

et al

 

., 2000; Hulme, 2003; Rouget, 2003). In response to this

problem there have been attempts to downscale species distribu-

tions to finer resolutions by combining remotely sensed data and

expert opinion to assign species to habitats or land-cover classes

thought to be suitable for species (Boitani 

 

et al

 

., 1999). One of

the problems with this approach is that there may be insufficient

expert knowledge of species–habitat relationships for many

species and areas (e.g. Freitag 

 

et al

 

., 1998). In such cases the use-

fulness of expert-driven approaches may be limited to few

well-known, often charismatic, species.

An alternative is to use empirical modelling techniques that

explore the correlation between a response variable (e.g. species’

occurrence records) and sets of environmental predictor vari-

ables (e.g. climate and land cover) to downscale distributions of

species to another spatial resolution (e.g. Nix, 1986; Pearson

 

et al

 

., 2002, 2004; Barbosa 

 

et al

 

., 2003; Stockwell & Peterson,

2003). Here we provide an example of such a procedure using

one of the most powerful techniques available for modelling spe-

cies distributions, generalized additive modelling (e.g. Bio 

 

et al

 

.,

1998; Franklin, 1998; Pearce & Ferrier, 2000; Elith & Burgman,

2002; Thuiller 

 

et al

 

., 2003; Segurado & Araújo, 2004), to down-

scale original European plant, bird, mammal, reptile and

amphibian species distribution atlas data from a 50 

 

×

 

 50-km grid

to a finer 10

 

′

 

 grid resolution (i.e. 

 

c.

 

 10 

 

×

 

 10-km grid). An attempt

to evaluate European-downscaled distributions is undertaken by

comparing downscaled predictions with observed fine-resolution

distributions for passerine-bird species in Britain. The con-

sequences of this downscaling at the European scale are further

discussed by taking into account its effects on: (1) spatial patterns

of coincidence in species richness; (2) distribution of richness,

rarity and complementarity hotspots.

 

DATA AND METHODS

Species data

 

Coarse-resolution species data included 868,960 records of

occurrence for different groups of European terrestrial verte-

brates and higher plants. These comprised 187 mammal (Mitchell-

Jones 

 

et al

 

., 1999), 445 breeding bird (Hagemeijer & Blair, 1997),

149 amphibian and reptile (Gasc 

 

et al

 

., 1997), and 2362

plant species ( Jalas & Suominen, 1972–96). Data varied with

regard to taxonomic coverage. Terrestrial vertebrates comprise

all known species, whereas plants comprise 

 

c.

 

 20% of the Euro-

pean flora (Humphries 

 

et al

 

., 1999). The grid used was based on

the Atlas Florae Europaeae (Lahti & Lampinen, 1999), with cell

boundaries typically following the 50-km lines of the Universal

Transverse Mercator (UTM) grid, except near the border of the

six-degree UTM zones and at coasts. Breeding bird, mammal,

and herptile atlases used slightly different grid systems, including

different rules to represent data on islands and coasts. Hence,

they had to be converted to the AFE grid system by identifying

unique (though sometimes approximate) correspondence between

cells in these grids. The mapped area (2434 grid cells) included

western, northern and southern Europe, but excluded most of

the eastern European countries (except for the Baltic States)

where recording effort was both less uniform and less intensive

(for more details on data conversion see Williams 

 

et al

 

., 2000b).

Fine-resolution distributions included 132,826 records of

occurrence for 81 passerine-bird species in Britain. These were

used as a test bed for evaluation of downscaled models. The data

were mapped on a 10 

 

×

 

 10-km grid and digitized from published

atlases (Sharrock, 1976; Gibbons 

 

et al

 

., 1993). In order to reduce

the effect of absences arising from natural interannual variability

(Gates & Donald, 2000; Donald & Greenwood, 2001; Araújo

 

et al

 

., 2002a) we considered grid cells as occupied if individuals

were recorded in either one of the two recorded periods (i.e.

1968–72 and 1988–91).

 

Climate and land-cover data

 

Climate and land-cover data included 20 variables interpolated

for Europe in the context of the EC funded ATEAM project

(http://www.pik-potsdam.de/ateam). All data were developed at

a spatial resolution of 10

 

′

 

 for European grid cells based on the

ATEAM geographical window and then aggregated to the Atlas

Flora Europaeae 50 

 

×

 

 50-km grid. Climate data were averaged for

the period of 1961–90 and included mean annual temperature,

http://www.pik-potsdam.de/ateam
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mean temperature of the coldest month per year, mean annual

precipitation sum, mean winter precipitation sum, mean sum-

mer precipitation sum, mean annual growing degree days, mean

ratio of annual actual over annual potential evapotranspiration.

Selected climate variables include some of the most important

determinants of physiological processes limiting distributions of

species, especially amongst plants (e.g. Bartlein 

 

et al

 

., 1986;

Woodward & Williams, 1987; Prentice 

 

et al

 

., 1992; Sykes, 1997).

The land-cover data were derived by aggregation of the PEL-

COM land-cover database. PELCOM is a 1-km pan-European

land-cover database developed mainly from remotely sensed

data. The classification methodology is based on a regional and

integrated approach of the NOAA-AVHRR satellite data and

ancillary information such as topographic features (Mücher,

2000). Although finer spatial resolution databases exist such as

CORINE (CEC, 1993), PELCOM was selected because of its

complete spatial coverage of the European window, and because

of the homogeneity of the methodology used for the land-cover

classification. PELCOM is also the most up-to-date of pan-

European land-cover databases. The percentages of each land-cover

class were calculated for each individual 10

 

′

 

 grid cell from the

1-km PELCOM cells. The data comprised four classes of land

cover: forest, agriculture, urban and others. Forests were further

subdivided into three classes: deciduous, coniferous and mixed

forest. Agriculture was divided into two classes: the percentage of

arable land and the percentage of grassland. The ‘other’ land

cover class comprised: seminatural areas (divided into areas of

shrubland, and barren land), inland waters, wetlands, perma-

nent ice and snow and the sea.

 

Downscaling process (all data)

 

Coarse-resolution European species data were randomly divided

into a calibration (70%) and an evaluation (30%) data set.

Species with less than 10 records in the calibration data were

excluded from analysis so as to reduce errors associated with

excessively small sample sizes (Stockwell & Peterson, 2002).

Generalized Additive Models (GAM) (Hastie & Tibshirani, 1990)

were then used to reproject the original 50 

 

×

 

 50-km grid distri-

butions to a 10

 

′

 

 resolution (

 

c.

 

 10 

 

×

 

 10-km grid). The modelling

process was implemented in an iterative fashion, as described in

Table 1. In this process, stepwise GAM models were run on the

calibration data set using climate variables, while residuals were

regressed with land cover. Selected land-cover variables for every

species were then added to the set of selected climatic variables to

produce alternative models including land cover. This was neces-

sary because stepwise models including all variables at once

would only rarely select land-cover variables (see also Thuiller

 

et al

 

., 2004a). The predictive accuracy of models using climate,

or the combination of climate and land-cover variables, was

assessed using the evaluation data set. Model accuracy was esti-

mated with the area under the curve (AUC) index, based on the

receiver operating characteristic (ROC) (Fielding & Bell, 1997).

This index varies from 0.5 (random assignments) to 1 (accurate

predictions) and represents the probability that the model

correctly predicts the observed presences and absences. For each

species, the model with greatest AUC was retained and used to

downscale distributions to finer resolution. All analyses were

performed with S-PLUS (Anon, 1999).

 

Assessing downscaled models (British passerine bird 
species)

 

The ability of models to downscale original European-species

distributions to a finer resolution was examined by assessing the

mismatch between downscaled and observed distributions of 81

passerine-bird species in Britain. A simple measure of similarity

(Jaccard coefficient) was used: 

 

S

 

 = 

 

C

 

/

 

A

 

 + 

 

B 

 

−

 

 C

 

, where 

 

S

 

 is the

similarity between two distributions, 

 

C

 

 is the number of down-

scaled and observed species’ distribution records that overlap, 

 

A

 

 is

the number of downscaled distribution records and 

 

B

 

 is the

number of observed distribution records. The similarity values

range from 1 (complete overlap) to 0 (no overlap).

 

Assessing consequences of downscaling for 
conservation planning (all data)

 

The consequences of downscaling were further investigated by

examining models’ ability to reproduce, at fine scale, the original

observed patterns of richness, rarity and complementarity at the

coarser scale. In particular, two kinds of comparisons were made:

(1) Spearman rank correlations of species richness scores within

and between groups; (2) analysis of the coincidence between

hotspots for richness, rarity and complementarity before and

after models are run.

Hotspots of richness were calculated as the 

 

n

 

 top-ranking cells

with highest sum values of species presence, while hotspots of

rarity were calculated as the 

 

n

 

 top-ranking cells with highest sum

of species rarity values. Rarity values were measured as the sum

of each species’ inverse number of grid-cell records = 

 

Σ

 

(1/

 

c

 

i

 

), 

 

i

 

:

0, 1 

 

≤

 

 

 

i

 

 

 

≤

 

 

 

n

 

, where 

 

c

 

i

 

 is the number of grid cells occupied by spe-

cies 

 

I 

 

(e.g. Williams 

 

et al

 

., 1996; Araújo, 1999). Hotspots of

complementarity (for usage of terms see also Dobson 

 

et al

 

., 1997;

Araújo & Williams, 2001; Araújo 

 

et al

 

., 2002b), also known as

maximum-coverage solutions (e.g. Church 

 

et al

 

., 1996), were

calculated as combination of cells that maximized species repre-

sentation for a given number of grid cells. To calculate these we

used a heuristic technique adapted from the near-minimum-set

Table 1 Iterative downscaling process; see text for more details

Step Rule or procedure

1 Run stepwise GAM using climate variables only

2 Run stepwise GAM on the residuals of step 1 using land cover 

as predictor variables

3 Run GAM using selected climatic and land cover variables in 

steps 1 and 2

4 Compare predictive accuracies in models of steps 1 and 3 with 

ROC

5 For each species retain the model with better accuracy

6 Use retained models to reproject distributions at 10′ resolution
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algorithm of Margules 

 

et al

 

. (1988). The algorithm starts by (1)

selecting all areas with taxa that are equally or more restricted

than the representation goal. For example, for a goal of repre-

senting each species at least once, it begins by selecting all areas

that have species recorded in only one grid cell. Then (2) the

algorithm follows a simple set of rules, applied iteratively to

select areas richest in the rarest taxa. First it selects grid cells with

the greatest complementary richness in just the rarest taxa

(ignoring other taxa). If there are ties, (3) it proceeds by selecting

areas among ties that are richest in the next-rarest taxa. If there

are still ties, it then selects those areas among ties with the lowest

grid-cell number (this is an arbitrary rule used in place of ran-

dom choice among ties in order to ensure repeatability in tests).

Finally these steps are repeated as necessary until the representa-

tion goal is achieved. A test is performed to reject any grid cell

that in hindsight is redundant to the selected goal. A modified

version of this algorithm was used to provide an approximation

to a maximum coverage problem. For this purpose, we repeated

steps one to three until the required number of areas was attained

or exceeded. A final re-ordering of areas by complementary

richness was made to provide an approximate solution to the

maximum-coverage problem (Williams 

 

et al

 

., 2000b). To ensure

comparability between hotspots selected with downscaled and

non-downscaled distributions a similar area was selected for both

cases. These included 100 hotspots for non-downscaled distri-

butions and 2500 hotspots for downscaled ones (i.e. 100 hotspots

 

×

 

 

 

c.

 

 50 km 

 

×

 

 

 

c.

 

 50 km = 2500 hotspots 

 

× 

 

c.

 

 10 km 

 

×

 

 

 

c.

 

 10 km).

Because there are usually a great number of equally efficient

complementarity hotspot solutions we selected 10 solutions for

each taxonomic group by breaking ties randomly (rather than by

the lowest grid-cell number) within each run. Hotspots were

identified with WORLDMAP software (Williams, 1999).

 

RESULTS

Model accuracy on interpolated coarse-resolution 
data (all data)

 

Generalized Additive Models trained on the 70% randomly

selected calibration data set had a generally high accuracy, with

AUC values above 0.9 (Swets, 1988) on the evaluation data set.

Herptiles showed the highest AUC values (Mean = 0.95,

SD = 0.05), immediately followed by plants and birds (Mean =

0.93, SD = 0.04 and 0.05, respectively) and then mammals

(Mean = 0.91, SD = 0.05). The inclusion of land-cover variables

increased the predictive accuracy of models in 26% of cases.

Downscaled distributions recovered fine-resolution environ-

mental gradients (e.g. altitudinal and land cover) that were not

visible in the original coarse 50 

 

×

 

 50-km grid (Fig. 1).

 

Model accuracy on downscaled data (British 
passerine-bird species)

 

There was a generally good agreement (median Jaccard

similarity = 70%; lower quartile = 36%; upper quartile = 88%)

between downscaled passerine-bird species distributions and

observed fine-resolution distributions in Britain. The four

examples provided in Fig. 2 illustrate different types of model

performance. The downscaled distribution of Yellowhammer

(

 

Emberiza citrinella

 

) was very coincident to its observed distribu-

tion (

 

S

 

j

 

 = 0.90), with very few false positives (absent but pre-

dicted to be present) and false negatives (present but predicted to

be absent) in the western and northern edges of its Scottish dis-

tribution. Likewise, the downscaled distribution of Raven (

 

Corvus

corax

 

) displayed a good agreement with its observed distribution

(

 

S

 

j

 

 = 0.70). This level of agreement was coincident to the median

level of agreement among the 81 passerine-bird species mod-

elled. False positives and false negatives were recorded mainly in

the eastern edges of its observed distribution. Downscaled and

observed distributions for Black Redstart (

 

Phoenichurus ochru-

ros

 

) and Wood Lark (

 

Lullula arborea

 

) showed levels of agreement

below the lower quartile frequency distribution of similarity

values (

 

S

 

j

 

 = 0.11 and 0.04). However, a closer inspection of Fig. 2

reveals the existence of slightly different types of errors that are

concealed by using a measure of similarity that does not distin-

guish the contribution of false positives and false negatives. For

example, in the first case (Black Redstart 

 

Phoenicurus ochruros

 

),

downscaled distributions produced a great number of false

positives but very few false negatives. In other words, the models

predicted reasonably well the distribution of the environmental

envelope occupied by the species in Britain but failed to account

for additional factors shaping the distribution of absences in the

real world. In the second case (Wood Lark 

 

Lullula arborea

 

), down-

scaled distributions produced great numbers of both false positives

and false negatives and very few modelled records overlapped

with the observed records (i.e. few true positives). This is an

extreme case of a model’s inability to represent species’ environ-

mental envelopes in a particular region. Fortunately this level of

failure was atypical and well below the lower quartile simi-

larity values between modelled and observed distributions at the

finer scale. However, by laying each species-distribution map on the

top of each other we were able to compare patterns of downscaled

and observed species richness. It was found that Spearman correlation

coefficient (

 

rho

 

) between downscaled and observed species rich-

ness, at a fine resolution, was only 0.31. This is an indication that

model error, although being low on average, propagates through

the process of overlaying modelled distributions for many species.

We also assessed the degree to which accuracy of distribution

models at coarse resolution (using AUC index with the ROC

procedure) would predict accuracy of models at a fine resolution

(using Jaccard similarity). We found there was no positive corre-

lation (

 

rho

 

 = 

 

−

 

0.10) between Jaccard similarities (measuring

how well models predict real distributions) and AUC values

(measuring how well models fit the data). This observation pro-

vides an indication that assessments of model performance at

one scale, such as those provided with the AUC index, may not

yield suitable estimates of model performance at another scale.

 

Conservation implications of downscaling (all data)

 

By excluding species with fewer than 10 records in the calibration

data, we eliminated 28% (954 species) of species in the data: 36%
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Figure 1 Species-richness scores among 
downscaled and non-downscaled 
distributions for plants; breeding birds; 
mammals; and herptiles. Species with fewer 
than 10 records in the calibration data sets 
for models are not plotted on the maps. 
We used a six class scale, where increasing 
intensities of grey represent increasing 
richness scores.
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of plants (844 species), 12% of birds (55 species), 21% of

mammals (40 species) and 10% of reptiles and amphibians (15

species). Exclusion of the rarest species in the original data did

not affect overall patterns of richness within groups. That is,

Spearman rank correlations between richness scores of data

including all species and data excluding the rarest species was

1 for birds, mammals and herptiles and was 0.99 for plants.

Species richness correlations between groups were also not

greatly affected by exclusion of the rarest species, with cross-

taxon correlations between plants (the group with the greatest

proportion of excluded species) and the other groups being

the weakest (Table 2a,b). Cross-taxon species richness corre-

lations between downscaled group distributions shared the

same broad patterns of coincidence in the original data,

except for plants where a markedly different pattern emerged

(Table 2b–c).

The consequences of excluding the rarest species from analysis

were more important for reserve selection. Only richness

hotspots were not greatly affected by this exclusion, with

hotspots selected with all data coinciding between 88 and 100%

with hotspots selected with exclusion of the rarest species

(Table 3). A markedly lower level of coincidence was recorded for

rarity hotspots and complementarity hotspots, where the degree

of overlap ranged from 35 to 79% and 23–47%, respectively

(Table 3).

Although the total area reserved was comparable between

downscaled and non-downscaled hotspots the latter solutions

were able to span a wider range of areas in Europe (Figs 3–5).

Figure 2 Observed (maps on the left) and extrapolated (maps on the right) distributions for four passerine bird species in Great Britain: 
Emberiza citrinella, Corvus corax, Phoenicurus ochruros, and Lullula arborea. Values (S) indicate the degree of coincidence ( Jaccard similarity 
coefficient) between observed and extrapolated distributions.
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This is a logical consequence of using smaller but greater number

of grid cells as units of selection, since poor-biodiversity areas

within large grid cells are traded off by more targeted areas in

smaller grid cells. Nevertheless, non-downscaled and downs-

caled distributions selected hotspots with a similar distribution

in Europe. This was particularly evident for most of the hotspots

selected with non-downscaled species data, which tended to be

included by downscaled hotspots. In other words, if coarse-

resolution hotspots were treated as a reference to validate

fine-resolution hotspots, then results could be interpreted as

showing that downscaled hotspots show a low false-negative

(present but predicted to be absent) error rate. However, there were

also some displacements in the location of downscaled hotspots

in comparison to hotspots selected with coarse-resolution

species data. This pattern, observed for hotspots selected with

all three methods, indicates the existence of a variable false

positive (absent but predicted to be present) error rate. Examples

include selected complementarity hotspots for mammals that

targeted sites in south-western Finland with non-downscaled

distributions and in the eastern fringes of Norway with downscaled

distribution data. Similarly, richness hotspots among non-

downscaled bird distributions included areas in Bulgaria and

Romania, while downscaled hotspots of richness excluded any

area near these low latitudes. However, with our data it is difficult

to interpret these displacements and understand whether they

arise from errors in the models or they are a real consequence of

planning reserves with finer resolution.

Another difference between non-downscaled and downscaled

hotspots is their position relative to the major European gradi-

ents of altitude. For example, richness hotspots for mammals

and plants had a tendency to concentrate on central European

mountains like the Pyrenees, Alps, and Carpathians for both

downscaled and non-downscaled solutions. However, non-

downscaled solutions appeared to favour selection of richness

hotspots on mountaintops (a probable artefact caused by the

large grid-cell size), while downscaled solutions seemed to favour

selection of mid-elevation sections of these mountains as

predicted from empirical evidence that richness usually peaks

at mid-elevations rather than mountain tops (Rahbek, 1995;

Grytnes & Vetaas, 2002).

DISCUSSION

We outlined a simple iterative procedure to downscale coarse-

resolution distributions of large numbers of species to a finer

resolution. The procedure is general as it does not imply a

preference for any particular modelling technique. We used

GAM but a variety of alternative techniques could have been

used (e.g. Generalized Linear Models, Barbosa et al., 2003; GARP,

Stockwell & Peterson, 2003; Artificial Neural Networks, Pearson

et al., 2002, 2004). Indeed, two assumptions are common to all

approaches used to downscale species’ distributions to a finer

resolution. The first is that governing processes affecting species’

distributions at a coarse-resolution are also important to model

distributions at a finer resolution. The second is that the correla-

tion between a response variable (e.g. species distribution) and

predictor variables (e.g. climate and land cover) provide a direct

means to infer processes governing distributions of species.

Naturally, these assumptions bear important caveats (Guisan &

Zimmermann, 2000; Pearson & Dawson, 2003) and departures

from model assumptions are likely to vary for different species

and regions. However, independently of the particular assump-

tions and parameterizations of each technique, it is important to

recognize that any model involves some losses and gains of infor-

mation. In the case of downscaling species distributions to a finer

resolution the first loss refers to the almost unavoidable exclusion

of restricted-range species from analyses (but see Kunin, 1998;

He & Gaston, 2000; Kunin et al., 2000). This is required because

the empirical techniques used to interpolate distribution data are

unable to handle species with only a few records with confidence

(e.g. Stockwell & Peterson, 2002). In this study it was apparent

that the exclusion of restricted-range species would have impor-

tant implications for conservation planning. Indeed, the degree

Table 2 Spearman rank correlation coefficients of species richness 
scores among groups of plants and terrestrial vertebrates in Europe 
with (a) original data including all species; (b) with modelled data 
excluding species with fewer than 10 records in the calibration set; 
(c) downscaled data excluding species with fewer than 10 records in 
the calibration set

Plants Birds Mammals Herptiles

(a)

Plants 1

Birds 0.46 1

Mammals 0.75 0.63 1

Herptiles 0.49 0.08 0.41 1

(b)

Plants 1

Birds 0.49 1

Mammals 0.76 0.63 1

Herptiles 0.42 0.09 0.41 1

(c)

Plants 1

Birds 0.06 1

Mammals 0.64 0.61 1

Herptiles 0.78 −0.09 0.44 1

Table 3 Coincidence between hotspots selected with all species and 
with modelled species alone. For richness and rarity hotspots 
numbers are percentages of coincident hotspots. For complementarity 
hotspots numbers are mean percentages of coincident hotspots, after 
10 simulations, while numbers within brackets are standard 
deviations to the mean

Richness 

hotspots

Rarity 

hotspots

Complementarity

hotspots

Plants 88 79 47 (1.7)

Breeding birds 100 53 23 (2.3)

Mammals 100 35 29 (4.3)

Herptiles 96 49 29 (4.1)
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Figure 3 Distribution of downscaled 
(10′ grid) and non-downscaled (50 × 50-km 
grid) rarity hotspots in Europe 
(see Methods).
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Figure 4 Distribution of downscaled 
(10′ grid) and non-downscaled (50 × 50-km 
grid) richness hotspots in Europe 
(see Methods).



M. B. Araújo et al.

26 Global Ecology and Biogeography, 14, 17–30, © 2005 Blackwell Publishing Ltd

Figure 5 Distribution of downscaled 
(10′ grid) and non-downscaled (50 × 50-km 
grid) hotspots of complementarity in Europe 
(see Methods).
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of coincidence obtained when complementary hotspots were

selected with all species or only the most abundant ones was very

low, varying between 23% for breeding birds (SD = 2.3) and 47%

for plants (SD = 1.7). A greater degree of coincidence between

richness or rarity hotspots was recorded, although this is no great

comfort as it is complementarity that is the most important

pattern and it is this that requires prediction in conservation

planning (e.g. Faith & Walker, 1996a,b; Williams et al., 2000b;

Araújo et al., 2001, 2003, 2004).

The second loss of information is related to uncertainty of

model predictions. It is generally accepted that original species’

atlas distributions provide reliable estimates of presence (false

positives are potentially low), although the same cannot be said

about absences (false negatives are potentially high) (Araújo &

Williams, 2000; Brotons et al., 2004). Model predictions add a

new degree of uncertainty given that the number of false

positives increases to a variable but unknown extent, while

the number of false negatives, although expected to diminish,

remains unknown. This problem is particularly severe when

models are utilized to interpolate observed distributions to a

different resolution (the case of this paper), region (e.g. Peterson

& Vieglais, 2001), or time (e.g. Thuiller et al., 2004b), because

model evaluation techniques are usually limited to the original

circumstances upon which the models were built (e.g. Beutel

et al., 1999). Where models are used to interpolate distributions

in a different resolution there is a possibility that the number of

false negatives may increase for some species rather than decrease

(e.g. the example of Wood Lark Lullula arborea in Fig. 2).

Although in this study’s particular assessment of passerine-bird

species distributions such cases were a minority (i.e. below the

lower quartile of the frequency distribution), it is still premature

to generalize about the magnitude and frequency distribution of

such errors. Even if there has been some progress in understand-

ing the ecological and geographical factors underlying error in

distribution models (Brotons et al., 2004; Segurado & Araújo,

2004), there is little evidence that the behaviour of error remains

constant across varying spatial resolutions. Hence, it would be

particularly important to investigate the circumstances affecting

model accuracy when interpolating distributions in a finer

resolution. It is possible that systematic errors might be associated

with particular kinds of geographical or environmental distribu-

tions of species (e.g. Segurado & Araújo, 2004), or that errors

show a tendency to concentrate in particular sections of environ-

mental space (Thuiller et al., 2004b).

A major problem detected in this study was that assessments

of model accuracy trained at the coarse resolution did not pro-

vide a good estimate of models’ accuracy at the fine resolution,

with AUC assessments of model accuracy for passerine distribu-

tions in Britain being not positively correlated with accuracy

assessments based on direct comparison between observed and

interpolated data (rho = −0.10). The problem may be more gen-

eral and extend to situations where interpolations are made to

different regions or times (for discussion see Oreskes et al.,

1994). An additional and often underestimated problem is that

error of model predictions may accumulate through the process

of overlaying modelled distributions for many species (Flather

et al., 1997). This pattern of error propagation was recorded

in our particular evaluation of downscaled distributions of

passerine-bird species in Britain. Here it was found that down-

scaled distributions had a generally good agreement with observed

distributions (Jaccard similarity = 70%), but that the coincidence

in species-richness scores between downscaled and observed

distributions was only of 0.31 (rho). Although we could not

perform such a detailed test for the remaining taxa and regions,

we found, from visual inspection of the maps (see Fig. 1), that

downscaled species-richness maps in Europe were generally able

to recover original spatial patterns of richness at a coarse resolu-

tion. They were also able to identify fine gradients that were

otherwise lost from the original coarse-resolution data. This is

the case, for example, for the expected mid-elevation gradients of

richness (e.g. Rahbek, 1995; Grytnes & Vetaas, 2002) that were

clearly identified in the downscaled maps of richness and

were lost in the original coarse-resolution maps of richness in

Europe. Between-group downscaled patterns of terrestrial ver-

tebrate species richness were also broadly coincident between

downscaled models and original coarse-resolution data (except

for plants), which further suggests that downscaling did not

change the original structure in the data for these groups. Taken

together these results provide grounds for optimism as to the

usefulness of the overall downscaling procedure. If the approach

is not able to predict accurately the distribution of all species at

a finer scale, it can at least help in locating conservation areas that

are more meaningfully related to environmental features of

the land.

Despite the many uncertainties associated with modelling

distributions at varying spatial scales (see also Thuiller et al., 2003)

the original problem remains wide open. There are now distribution

atlases available for most parts of the world and their resolution

is often too coarse for most conservation-planning applications.

Furthermore, it is unlikely that the amount of resources available

for undertaking extensive biological inventories will increase to

the estimated c. $ 4.2 billion required to survey at least c. 20% of

the land area (James et al., 2001). Hence, the empirical down-

scaling of original coarse-resolution data is likely to remain one

attractive procedure (e.g. Nix, 1986; Boitani et al., 1999; Barbosa

et al., 2003; Stockwell & Peterson, 2003; Pearson et al., 2004).

Naturally, the usefulness of models to fill the gaps in our knowl-

edge is open to debate (e.g. Slobodkin, 1988; Flather et al., 1997).

Given the losses and gains of information arising from down-

scaling procedures, the usefulness of the process is likely to be

contingent on the goals and the ability to test results effectively. A

critical issue for conservation planning is whether errors arising

from accepting false positives (i.e. model predictions where

species do not occur) are more severe than errors arising from

ignorance of the local heterogeneity of species distributions

within coarser-resolution grid cells. There are no established

rules to find the appropriate trade-off between such opposing

sources of error and the decision as to whether to use downscaled

or original coarse-resolution data must depend on the goals of

modelling and on a case by case assessment of risk. If false positives

are a major problem, then a solution might be to exclude

downscaled-distribution records that fall outside the geographical
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range of the initial coarse-resolution data. This would minimize

the risk of making wrong decisions with interpolated data.

Naturally this solution is likely to be more useful in data-rich

regions (e.g. Europe) where original coarse-resolution data cover

the full extent of the distribution of species. In data-poor regions,

where coarse resolution data may consist of unrealistic range-

filling maps (which conceal species environmental relationships

required to model distributions) or an incomplete coarse-resolution

coverage of species distributions, excluding records that fall out-

side the range of the original coarse-resolution data may limit the

usefulness of the downscaled predictions.
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