

BIOMOD : Tutorial

Biomod Team :

Wilfried Thuiller, Damien Georges, Robin Engler, Bruno Lafourcade

February 13, 2012

Contents

1 Before Starting... 3
1.1 Installation and dependencies 3
1.2 General adivise 4
1.3 Biomod Contents 5
1.3.1 Biomod Functions 5
1.3.2 Biomod dataset 7
1.3.3 Ploting the data 8
2 Initialisation of Biomod 12
3 Settings in Models() 14
3.1 Calibration and evaluation procedure 14
3.2 Pseudo-absences 18
3.3 Weights 21
4 Running the models 22
4.1 Application of Models() 22
4.2 Going futher 24
5 Analysing the outputs 25
5.1 Objects in the workspace 25
5.1.1 Evaluation of the predictive performance 26
5.1.2 Evaluation of the importance of each variable 30
5.1.3 PA data generated 35
5.2 Objects stored on the hard drive : The Models 37
5.2.1 Response Curves 47
5.3 Objects stored on the hard drive : The Predictions 49
5.3.1 Transforming the predictions on the original dataset 57
5.3.2 Identifying the best model 59
6 Uncertainty analysis 64
6.1 Models' projection 64
6.2 Ensemble Forecasting 67
7 Distributions Changes 73
7.1 Species Range Change 73
7.2 Species Turnover 81
7.3 Probability Density Function 84
7.3.1 An example with repetitions 88

1 Before Starting...

In order to facilitate the learning of BIOMOD, a tutorial is provided here with artificial data. It is recommended that the user follows each step and run the models on these artificial datasets, or at least in parallel with runs on its own data. The completion of the tutorial should bring sufficient answers as for the usage of BIOMOD on other datasets.

1.1 Installation and dependencies

To run BIOMOD, please use the latest version of R. A certain number of libraries are also required (rpart, MASS, gbm, gam, nnet, mda, randomForest, Hmisc, plyr) and are also to be downloaded from Rcran before attempting to run BIOMOD.
Note that BIOMOD now enables to build projections directly on rasters. This recent innovation requires several more packages, even if you will not be using rasters with your own work. These are : foreign, sp, rgdal, raster, maptools, some of which are on Rcran and others on the R-forge website.

```
# get list of packages already instaled on my computer
myPackages <- .packages(all = TRUE)
biomodDependencies <- c('rpart','MASS', 'gbm', 'gam', 'nnet', 'mda',
                                    'randomForest', 'Hmisc', 'plyr', 'foreign',
                            'sp', 'rgdal', 'raster', 'maptools')
# compare my packages whith those required by BIOMOD
missingPackages <- biomodDependencies[!(biomodDependencies
                                    %in% myPackages)]
# uncomment install.packages() and choose a miror to install
# missing components
if(length(missingPackages) > 0){
    cat(toString(missingPackages), ' packages have to be installed\n')
    #install.packages(missingPackages, dependencies=T)
} else{ cat('All dependences are installed\n')}
```

$\overline{\text { All dependences are installed }} R$ code

BIOMOD is a developping R package that is to be downloaded from the project web page (https://r-forge.r-project.org/R/?group_id=302) and install manualy or typing in R :

```
# is biomod already installed
if(!('BIOMOD' %in% myPackages)){
    install.packages("BIOMOD", repos="http://R-Forge.R-project.org")
} else { cat('BIOMOD is already installed')}
```

\qquad
BIOMOD is already installed

It is advised to check relatively frequently for updates.

```
# update biomod if necessary
update.packages("BIOMOD", repos="http://R-Forge.R-project.org")
```


1.2 General adivise

The recommended procedure is to first create a working directory, for example called BIOMOD. Then, create a new folder where to store the datasets, run the models and save the outputs and results. In our examples, we will create and use the directory called Biomod runs. It is from this folder that the files will be read and written. You need to put a copy of your datasets in order to be able to open them once the working directory in R is set to this workspace.

If you want to pause and continue work on this tutoriel (or your own project) later. Just save your session. You will get back all your working space just loading the created file.

```
# save all the working space
save.image("BiomodTutorial.RData")
# free the working space
rm(list=ls())
# and get it back
load("BiomodTutorial.RData")
```

Do keep in mind that some information is kept in the file that has just been generated but that a lot of our work is also stored in the directories that have been created by BIOMOD. Both will be needed for carrying on the next steps.

1.3 Biomod Contents

1.3.1 Biomod Functions

The first thing to do is to load the BIOMOD package. It will load all the functions required to run BIOMOD as well as the examples files to be used in this practical.
\qquad
\# load BIOMOD package
library(BIOMOD)
R code
Loaded gbm 1.6-3.1
To access all BIOMOD functions :
\# listing of BIOMOD functions
help code
hackage $=$ 'BIOMOD')

As for any function, you can access help files :
?response.plot
R code \qquad
response.plot \{BIOMOD\}
R Documentation
Analysis of the response curves of a model within Biomod
Description
Adaptation of the Evalution Strip proposed by Elith et al.(2005). This function enables to plot the response curves of a model independently of the Igorithm used for building the model. It therefore permits a direct comparisons of models built using different statistical approaches on the same data. Usage
response.plot(model, Data, show.variables=seq(1:ncol(Data)), save.file="no", name="response_curve", Imagesize=480)
Arguments
model the model for which you want the response curves to be plotted. Compatible with GAM, GBM, GLM, ANN, CTA, RF, FDA and
Data MARS. have the same names as the ones used to calibrate the model.
show.variables give in the column numbers of 'Data' for selecting the variables that are wanted for plotting
save. file can be set to "pdf", "jpeg" or "tiff" to save the plot. Pdf options can be changed by setting the default values of pdf.options().
name the name of the file produced if save.file is different to "no" (extensions are already included)
Imagesize the size of the image in pixels if save.file is different to "no". Affects "jpeg" and "tiff" outputs only. Default if 480 pixels which is the R default.

Details
For building such response curves, $\mathrm{n}-1$ variables are set to their median value and only the one of interest is varying accross its whole range. The variations observed and the curve thus obtained shows the sensibility of the model to that specific variable. This method does therefore not account for interactions between variables.
Author (s)
Wilfried Thuiller, Bruno Lafourcade
References
Elith, J., Ferrier, S., Huettmann, FALSE. \& Leathwick, J. R. 2005 The evaluation strip: A new and robust method for plotting predicted responses from species distribution models. Ecological Modelling 186, 280-289.
See Also
Models

You can also open the Biomod pdfs directly from R :

```
#to open the old but detailed R code
#to open the old but detailed version
Biomod.Manual()
#to open one of the latest versions : several pdf files
Biomod.Manual("Biomod_Presentation_Manual")
```

BIOMOD is composed of a series of functions that enables to do our species modelling :

- Running BIOMOD
- Initial.State
- Models
- Projection
- Ensemble.Forecasting
- Further BIOMOD steps
- CurrentPred
- PredictionBestModel
- ProjectionBestModel
- Biomod.Turnover
- Biomod.RangeSize
- Migration

- Plotting functions

- level.plot
- multiple.plot
- response.plot

- Other functions

- ProbDensFunc : calculates density probabilities
- pseudo.abs : generating pseudo-absences
- BiomodManual : opens the pdf manual and practicals from R

We will mainly focus here on the Models function as it contains all the options for calibrating and evaluating the models and look at how it can lead to significant variablity in prediction making. This function runs the models and evaluation technics presented in the Presentation Manual of BIOMOD (see Biomod.Manual('Presentation')).

1.3.2 Biomod dataset

We need to import the species and the environmental data for our modelling. In our example the same file holds the two datasets.

```
# Loading the example datasets
# For practical reasons, species and environment datasets
# are stored together
data(Sp.Env)
head(Sp.Env)
```

	Idw	X	Y	Var1	Var2	$\begin{gathered} R \text { code } \\ \text { Var3 } \end{gathered}$	Var4 Var5 Var6			
1	73 -	-9.288	38.62	0.6683	4296	770.1	39.33	295.1	16.74	
2	74 -	-9.292	39.52	0.7596	4174	928.1	57.32	348.7	16.41	
3	$75-$	-9.290	39.07	0.7424	4173	870.3	50.05	330.0	16.41	
4	76 -8	-8.715	37.72	0.5543	4264	620.0	24.99	239.1	16.66	
5	77 -8	-8.717	37.27	0.5489	4169	622.3	25.16	241.0	16.40	
6	78 -8	-8.148	37.72	0.5363	4206	591.8	25.74	222.9	16.49	
	Var7	7 Sp281	1 Sp290	Sp277	Sp164	Sp163	Sp177	7 Sp185	Sp191	
1	10.87	70	01	0	0	1		00	01	1
2	10.51	10	01	0	0	1		00	01	1
3	10.50	0	00	0	0	1		$0 \quad 0$	01	1
4	10.93	3	00	0	0	0		$0 \quad 0$	0	0
5	11.28	0	00	0	0	0		$0 \quad 0$	0	0
6	10.13	3	00	0	0	0		00	0	0

- Idw: An Id to keep track of the row numbers
- X and Y: longitude and latitude of our sites (for plots, not needed for the modelling in itself)
- Var1 to Var7 : Environmental variables (bioclimatic in that case)
- Sp281 to Sp191: Presence/absence of 8 species

To avoid, confusion, we will split the dataset into 3 part :

- the points coordinates (LatLong)
- the bioclimatic data (Expl.Var)
- the species occurences(Resp.Var)

```
code
```

\qquad

```
#Visualisation of our data (show first six rows)
LatLong <- Sp.Env[,2:3] # coordinates of points
Expl.Var <- Sp.Env[,4:10] # bioclimatic variables
Resp.Var <- Sp.Env[,11:17] # species occurences
```

BIOMOD does not read the coordinates and does not recognise any geographical information when proceeding the modelling. The user should ensure that all datasets are kept in the same order, i.e. each species information (presence or absence) is correctly associated to the explanatory variables. Any mismatch will not be recognised by BIOMOD and the influence on the different outputs and results will be unnoticeable but real.

To load your own data from a text file, use the read.table() function:

```
#Loading from a text file
#My.Data <- read.table("my_data.txt", h=T, sep="\t")
```


1.3.3 Ploting the data

The level.plot function requires two inputs : the vector of values that you want to plot and the coordinates of your data points. It works with any type of data.


```
R code
level.plot(Resp.Var[,4], LatLong[,1:2], title=colnames(Resp.Var)[4])
```


Let's take a general view of our data with the multiple.plot function :

R code		
multiple.plot(Expl.Var,	LatLong[,1:2],	cex=0.7)
multiple.plot(Resp.Var,	LatLong[,1:2],	cex=0.7)

You can modify the color gradient by setting the color.gradient argument to either red (the default), blue or grey.

2 Initialisation of Biomod

First, we need to set up the dataset in a correct format for BIOMOD by means of the Initial.State function. The syntax in the function is the following:

- Response : The response variables to model.
- Explanatory: The explanatory or independent variables.

Additional arguments (see the Presentation pdf for explanation) :

- IndependentResponse : Truly independent response variables.
- IndependentExplanatory : Truly independent explanatory variables.

These are used to evaluate the predictive accuracy of the models.
We will work on $S p$.Env dataset, see 1.3.2 to load it correctly or adapt the folowing code lines to fit whith your own data.

So our call looks like :

Initial.State(Response = Resp.Var[,1:2], Explanatory = Expl.Var)

But we will inform anyway the 2 optional arguments with the same information. The point is to have an example of predictions on our full database as we are going to use pseudo-absences for the purpose of the example (hence BIOMOD will only produce predictions on partial data).

So instead we have :

```
                                    R code
Initial.State(Response = Resp.Var[,1:2],
    Explanatory = Expl.Var,
    IndependentResponse = Resp.Var[,1:2],
    IndependentExplanatory = Expl.Var)
1s()
```

[1] "biomodDependencies" "Biomod.material"	
[3] "DataBIOMOD"	"DataEvalBIOMOD"
[5] "Expl.Var"	"LatLong"
[7] "missingPackages"	"myPackages"
[9] "Resp.Var"	"Sp.Env"

It creates 'DataBIOMOD' our reference database, and DataEvalBIOMOD if you have given independent information. The latter will be used during the testing of the models. Make sure to always keep these datasets unchanged and never delete them.
\qquad

	Var1	$\operatorname{Var} 2$	$\operatorname{Var} 3$	$\operatorname{Var} 4$	$\operatorname{Var} 5$	R	$\operatorname{Var} 6$	$\operatorname{Var} 7$	Sp281	Sp290
	0.6683	4296	770.1	39.33	295.1	16.74	10.87	0	1	
2	0.7596	4174	928.1	57.32	348.7	16.41	10.51	0	1	
3	0.7424	4173	870.3	50.05	330.0	16.41	10.50	0	0	
4	0.5543	4264	620.0	24.99	239.1	16.66	10.93	0	0	
5	0.5489	4169	622.3	25.16	241.0	16.40	11.28	0	0	
6	0.5363	4206	591.8	25.74	222.9	16.49	10.13	0	0	

DataBIOMOD contains the environmental variables in the first columns, followed by the species occurrences. DataEvalBIOMOD has the same structure but it contains the data for testing the models.

An object called Biomod.material is also produced which contains information that has been extracted from the datasets like the number of variables, the number of species, etc.. Most of the functions will refer to this object to obtain some necessary values, so make sure to keep it unchanged.

3 Settings in Models()

The Models() function will run the different models available in BIOMOD and described in the Presentation manual. There are two main issues to consider : which models to select and what calibration/evaluation procedure to choose. Let's first have a look at the options to be set in the Models() function (arguments are presented with their default values):

Models(
Setting the models to TRUE or FALSE (to run them or not) and their associated options (please refer to the Presentation Manual)
GLM=FALSE, TypeGLM="simple", Test="AIC",
GBM=FALSE, No.trees $=5000$,
GAM=FALSE, Spline=3,
CTA $=$ FALSE, CV.tree $=50$,
ANN $=$ FALSE, CV.ann $=5$,
$\mathrm{SRE}=\mathrm{FALSE}$, quant $=0.025$,
$F D A=F A L S E$,
MARS = FALSE,
$\mathrm{RF}=\mathrm{FALSE}$,

The calibration procedure options
NbRunEval=1, DataSplit=100,
$\mathrm{NbRepPA}=0$, strategy="sre", coor=NULL, distance=0, nb.absences=NULL, Yweights=NULL,

The evaluation procedure options
VarImport $=0$,
Roc $=$ FALSE, Optimized.Threshold.Roc=FALSE, Kappa=FALSE, TSS=FALSE, KeepPredIndependent=FALSE
)

Note that the various models' specific options will directly influence the inner calibration procedure of the models, whereas the calibration options below (NbRunEval, DataSplit) determine the general trend of the calibration which will be applied to all the models in the same way.

3.1 Calibration and evaluation procedure

A key issue in modelling is the calibration procedure of the models with the constant effort to obtain a reliable estimation of their performance.

Ideally, one should always evaluate the predictive performance of a model using independent data, i.e. data from which the model didn't obtain any information to build itself. this would enable to reliably test its predictive accuracy on a new dataset and certify its efficiency. Unfortunately, this kind of information is rarely accessible in species distribution modelling. An alternative to assess the predictive performance of the models is to split the original data in calibration (training) and evaluation (testing) datasets : one part is used to feed the model, the other, kept aside and therefore new to the model, is used to check the models' efficiency to predict the right value. As a consequence, this method consists of a trade-off between the amount of data used for the construction of the model and the accuracy of the evaluation measure.

This splitting procedure, widely used in the modelling world, nevertheless brings a major issue : the subsequent randomness of the data selection used for calibration and its impact on the modelling quality.

To obtain a reliable way of evaluating the models while not influencing the prediction making by the random splitting of the data, BIOMOD proposes to built a series of models. The above calibration/evaluation procedure is repeated a certain number of times to perform a reliable evaluation as an attempt to free ourselves from the random effect (the mean result is extracted). Then a final model is built without splitting the data, i.e. 100 $\%$ of the data available is used, thus using all the information available and not having any random effect in the prediction making.

This method is also a good way of assessing for uncertainty. While many modellers are satisfied with running only their models once, we propose to build a large number of models to measure the sensitivity of the models to the initial conditions (the input data given). Each model built is kept and can be used to later render projections.

The combination of the two arguments below will determine in which way the models will be built and tested.

- NbRunEval: number of random data splitting procedure for creating calibration and evaluation datasets ; a model will be built from each one of them. If set to zero, only the final 100% model is built.
- DataSplit: the ratio used for splitting the original database in calibration and evaluation subsets (value to give is the \% awarded for calibration). A $70 / 30 \%$ partitining is recommended as commonly used (Arajo, et al. 2005b, Guisan and Thuiller 2005).
pros : It gives a more robust estimate of the predictive performance of each selected model and it also provides an assessment of the sensitivity of the model to the initial conditions, i.e. to the species distribution data.
cons: it lengthens the modelling time needed to build the models (it can be an exceeding amount of time if not done carefully).
main interest : adds variability in the predictions when several runs are made due to the random effect of selecting the data, i.e. each model is not build using the same information, representing the sensibility of the models on the input data.

Example with the fda and species Sp281

Here is an example of the effect of randomness in the prediction making.

```
#to call our dataset
# library(BIOMOD)
# data(Sp.Env)
store <- matrix(nr=nrow(Resp.Var), nc=0)
for(i in 1:10){
    rand <- sample(nrow(Resp.Var), 100)
    model <- fda("Sp281 ~Var1 + Var2 + Var3 + Var4 + Var5 + Var6 + Var7",
    data=cbind(Expl.Var[rand,],Resp.Var[rand,]), method=mars)
    store <- cbind(store, predict(model, Sp.Env[,4:10], type="post")[,2])
    }
```

```
for(i in 1:10){
    x11()
    par(mar=c(1,1,1,1))
    level.plot(store[,i], LatLong)
    }
```

```
par(mfrow=c(2,5))
par(mar=c(1, 1, 1, 1))
for(i in 1:10) level.plot(store[,i], LatLong, show.scale=F, cex=0.85)
```


This is the same model (FDA) and the same datasets used, only the initial calibration data is changing. The impact on the geographical patterns can clearly be seen.

3.2 Pseudo-absences

All the models in BIOMOD need information about presences and absences for being able to determine the suitable conditions for a given species. Some datasets, however, do not contain absences but only presences and the construction of virtual absences is therefore needed. This is, for example, the case of bird datasets where determining an absence can be rather tricky. The assumed absences are called pseudo-absences for there is no field verification of this generated information.
These pseudo-absences are created by considering any point where the species was not recorded and where the environmental conditions are known to cause potential absence. Feeding the models with exceeding numbers of absences can significantly disturb the ability of models to discriminate meaningful relationships between climate and species distributions. Moreover, running
models on such heavy databases is incredibly time consuming.
In addition, some of the chosen absences might unfortunately represent true presences (this is particularly likely in the case of incomplete samples) and therefore the pseudo-absence data gives false information for the estimation of the species-climate relationship. Hence, we propose various strategies that seek to remove the spurious effects of using poorly selected pseudo-absences before running the models.

Example of the 4 available strategies in the region of the French Alps for Larix decidua miller. The presences are in red and the pseudo-absences selected by each strategy are in grey.

A few examples of what datasets would be created in our case :

SpNoName.squares.1.partial

SpNoName.squares.2.partial

In Models(), you can choose to run pseudo-absences selections with the argument $N b R e p P A$.

This argument is to be correlated with the usage of repetitions for the calibration : once the pool of potential pseudo-absences has been definied by the strategy selected, a user-definied number (Nb.absences argument) is randomly selected from this pool. We therefore have a random effect in the calibration process coming from the creation of pseudo-absences for our data. The NbRepPA argument will define a number of repetitions for randomly withdrawing absences to constitute the calibration datasets. Do consider that the total number of repetitions will be a multiplication of the two repetion arguments

3.3 Weights

The Yweights arguments enables the user to set extra information for the response variables (a matrix with N columns for the N species). This is similar to an index of detectability for each site, which allows users to give stronger weights to more reliable presences or absences. It can be scaled up and put as a weight in the modeling process. For more information, see how weights is working in R .

4 Running the models

4.1 Application of Models()

We can now run the different models on our species. It takes only a few moments for each model to run. All the selected models (= TRUE) will run for each species. Here we will have 9(models selected)*4(3 repetitions + final model)*2(PA repetitions) which makes 72 models per species, it will thus take several minutes.

Please, be aware that the NbRunEval and NbRepPA arguments can considerably enlarge your calculation time by multiplying the number of runs to be made for each species. Do not enter excessively high values for these two arguments unless you have sufficient patience and/or reasonable calculation power.

```
Models(GLM = T, TypeGLM = "poly", Test = "AIC",
    GBM = T, No.trees = 2000,
    GAM = T,Spline = 3, CTA = T, CV.tree = 50,
    ANN = T, CV.ann = 2,
    SRE = T, quant=0.025,
    FDA = T,
    MARS = T,
    RF=T,
    NbRunEval = 3, DataSplit = 80, Yweights=NULL,
    Roc = T, Optimized.Threshold.Roc = T, Kappa = T, TSS=T,
    KeepPredIndependent = T, VarImport=5,
    NbRepPA=2, strategy="circles", coor=LatLong,
    distance=2, nb.absences=1000)
```

For the purpose of the example (even though the data does not ask for it) we used 2 pseudo-absences (PA) runs. Note that there has only been one PA run for Sp290 because too little absences were available compared to the ones wanted. The nb.absences argument was set to 1000, but:

[^0]```
#the number of presences for Sp290
sum(Sp.Env[,"Sp290"])
\(\qquad\)
\(\qquad\)
\#Hence, the number of absences \(R\) code \(\overline{\text { available for calibration }}\)
length(Biomod.PA.data\$Sp290) - sum(Sp.Env[,"Sp290"])
\(\overline{[1]} 423 \quad R\) code \(\longrightarrow\)

Too little absences are available. In this case, a single pseudo-absences run is made using all the absences available.

In the latter version of BIOMOD, the results are stored outside R's workspace to counter the memory storage limitations of the software. While running BIOMOD, you will realise that additional folders will be created. A series of objects have been produced in the workspace and also on the hardrive of your computer. Your working folder should now look like this.

\subsection*{4.2 Going futher}

For those which are interesting in how each model is computed in BIOMOD, you can have a look on the last BIOMOD sumer school 'Methods' practical (\(W\). Thuiller). An archived file containing script 'Methods.r' and data required may have been send you with this tutorial.

\section*{5 Analysing the outputs}

\subsection*{5.1 Objects in the workspace}

There are now various objects stored in the workspace. First, we can have a look at what is present in our R session and check what has been produced by the Models() function.
\begin{tabular}{|c|c|}
\hline 1s() & code \\
\hline & \(R\) code \\
\hline [1] "BestModelByRoc" & "BestModelByTSS" \\
\hline [3] "biomodDependencies" & "Biomod.material" \\
\hline [5] "Biomod.PA.data" & "Biomod.PA.sample" \\
\hline [7] "DataBIOMOD" & "DataEvalBIOMOD" \\
\hline [9] "data.used" & "Evaluation.results.Kappa" \\
\hline [11] "Evaluation.results.Roc" & "Evaluation.results.TSS" \\
\hline [13] "Expl.Var" & "Expl. Var2" \\
\hline [15] "Expl.Var3" & "Future1" \\
\hline [17] "GBM.list" & "GBM.perf" \\
\hline [19] "i" & "isnullYweights" \\
\hline [21] "LatLong" & "missingPackages" \\
\hline [23] "model" & "myPackages" \\
\hline [25] "obj" & "our.lines" \\
\hline [27] "Pred" & "Pred2" \\
\hline [29] "Pred3" & "PredBestModelByKappa" \\
\hline [31] "Pred_Sp281" & "Pred_Sp290" \\
\hline [33] "Pred_Sp290_BinKappa" & "Pred_Sp290_FiltKappa" \\
\hline [35] "Pred_Sp290_indpdt" & "rand" \\
\hline [37] "Resp.Var" & "Sp290_GLM_PA1" \\
\hline [39] "Sp290_RF_PA1" & "Sp.Env" \\
\hline [41] "store" & "VarImportance" \\
\hline
\end{tabular}

So, we have the outputs generated by Initial.State and the original datasets :
- Sp.Env
- LatLong
- Expl.Var
- Resp.Var
- DataBIOMOD
- Biomod.material

We also have the objects produced by the Models() function in the workspace (additional objects are stored on the hard disk). These are :
- Evaluation.results.Roc
- Evaluation.results.Kappa
- Evaluation.results.TSS
- VarImportance.

And we get the following if NbRepPA is higher than 0 :
- Biomod.PA.data
- Biomod.PA.sample
- SpNoName.circles. 2 (or something close)

\subsection*{5.1.1 Evaluation of the predictive performance}

There are three available techniques for making an assessment of a model's performance. A summary table of the type "Evaluation.results.method" are produced containing the predictive performance of each model which is convenient for making comparisons across methods and taxa.

> \#Here we only display the info for the first species modelled
> Evaluation.results.Kappa[1:8]
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\$Sp281_PA1} \\
\hline & Cross.validation & indepdt.data & total.score & Cutoff \\
\hline ANN & 0.879 & 0.625 & 0.9075 & 438.0 \\
\hline CTA & 0.883 & 0.614 & 0.9579 & 630.0 \\
\hline GAM & 0.855 & 0.674 & 0.8829 & 629.4 \\
\hline GBM & 0.901 & 0.646 & 0.9148 & 592.8 \\
\hline GLM & 0.894 & 0.65 & 0.8490 & 699.3 \\
\hline MARS & 0.926 & 0.676 & 0.9200 & 429.6 \\
\hline FDA & 0.880 & 0.642 & 0.9170 & 105.8 \\
\hline RF & 0.930 & 0.763 & 1.0000 & 340.0 \\
\hline SRE & 0.658 & 0.394 & 0.6675 & 10.0 \\
\hline \multicolumn{5}{|c|}{Sensitivity Specificity} \\
\hline ANN & 96.17 & 96.2 & & \\
\hline CTA & 98.98 & 98.0 & & \\
\hline GAM & 94.13 & 95.6 & & \\
\hline
\end{tabular}
\begin{tabular}{lrr}
GBM & 97.19 & 96.2 \\
GLM & 89.03 & 95.8 \\
MARS & 94.13 & 97.8 \\
FDA & 94.90 & 97.3 \\
RF & 100.00 & 100.0 \\
SRE & 83.42 & 86.8
\end{tabular}
\$Sp281_PA1_rep1
Cross.validation indepdt.data total.score Cutoff
\begin{tabular}{lrlrr}
ANN & 0.841 & none & 0.8929 & 171.3 \\
CTA & 0.858 & none & 0.8748 & 718.5 \\
GAM & 0.839 & none & 0.8561 & 619.4 \\
GBM & 0.896 & none & 0.9156 & 654.3 \\
GLM & 0.841 & none & 0.8408 & 769.2 \\
MARS & 0.956 & none & 0.9281 & 599.4 \\
FDA & 0.853 & none & 0.8852 & 109.8 \\
RF & 0.930 & none & 0.9858 & 410.0 \\
SRE & 0.669 & none & 0.6415 & 10.0
\end{tabular}

SRE \(\begin{gathered}0.669 \\ \text { Sensitivity Specificity }\end{gathered}\)
\begin{tabular}{lll}
ANN & 99.23 & 94.0 \\
CTA & 98.72 & 93.1 \\
GAM & 93.37 & 94.3 \\
GBM & 95.41 & 97.0 \\
GLM & 85.71 & 96.8 \\
MARS & 92.86 & 98.8 \\
FDA & 92.60 & 96.4 \\
RF & 99.49 & 99.4 \\
SRE & 83.93 & 84.7
\end{tabular}
\$Sp281_PA1_rep2
Cross.validation indepdt.data total.score Cutoff
\begin{tabular}{lrlrr}
ANN & 0.930 & none & 0.9265 & 431.6 \\
CTA & 0.911 & none & 0.9403 & 630.0 \\
GAM & 0.855 & none & 0.8848 & 609.4 \\
GBM & 0.895 & none & 0.9152 & 639.2 \\
GLM & 0.929 & none & 0.9278 & 659.3 \\
MARS & 0.900 & none & 0.9230 & 239.8 \\
FDA & 0.876 & none & 0.9124 & 228.6 \\
RF & 0.921 & none & 0.9841 & 330.0 \\
SRE & 0.633 & none & 0.6936 & 10.0
\end{tabular}
\begin{tabular}{lrr}
& Sensitivity & Specificity \\
ANN & 96.94 & 97.0 \\
CTA & 97.45 & 97.6 \\
GAM & 94.39 & 95.6 \\
GBM & 94.64 & 97.3 \\
GLM & 96.17 & 97.4 \\
MARS & 96.68 & 96.9 \\
FDA & 92.60 & 98.0 \\
RF & 99.23 & 99.4
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline SRE & 81.63 & 89.5 & & \\
\hline \multicolumn{5}{|l|}{\$Sp281_PA1_rep3} \\
\hline & Cross.validation & indepdt.data & total.score & Cutoff \\
\hline ANN & 0.866 & none & 0.8951 & 395.2 \\
\hline CTA & 0.879 & none & 0.9290 & 340.0 \\
\hline GAM & 0.870 & none & 0.8946 & 569.4 \\
\hline GBM & 0.913 & none & 0.9124 & 612.9 \\
\hline GLM & 0.913 & none & 0.9328 & 669.3 \\
\hline MARS & 0.921 & none & 0.9243 & 629.4 \\
\hline FDA & 0.911 & none & 0.9248 & 302.9 \\
\hline RF & 0.938 & none & 0.9876 & 420.0 \\
\hline SRE & 0.672 & none & 0.6752 & 10.0 \\
\hline \multicolumn{5}{|c|}{Sensitivity Specificity} \\
\hline ANN & 94.90 & 96.0 & & \\
\hline CTA & 98.98 & 96.3 & & \\
\hline GAM & 96.68 & 95.2 & & \\
\hline GBM & 95.92 & 96.6 & & \\
\hline GLM & 95.92 & 97.8 & & \\
\hline MARS & 92.09 & 98.9 & & \\
\hline FDA & 93.37 & 98.4 & & \\
\hline RF & 99.49 & 99.5 & & \\
\hline SRE & 84.44 & 86.8 & & \\
\hline \multicolumn{5}{|l|}{\$Sp281_PA2} \\
\hline & Cross.validation & indepdt.data & total.score & Cutoff \\
\hline ANN & 0.868 & 0.639 & 0.9493 & 293.20 \\
\hline CTA & 0.868 & 0.622 & 0.9309 & 210.00 \\
\hline GAM & 0.848 & 0.678 & 0.8859 & 749.25 \\
\hline GBM & 0.903 & 0.641 & 0.9235 & 577.40 \\
\hline GLM & 0.763 & 0.652 & 0.8437 & 749.25 \\
\hline MARS & 0.921 & 0.686 & 0.9345 & 359.64 \\
\hline FDA & 0.916 & 0.653 & 0.9118 & 72.12 \\
\hline RF & 0.941 & 0.767 & 1.0000 & 390.00 \\
\hline SRE & 0.669 & 0.394 & 0.6546 & 10.00 \\
\hline \multicolumn{5}{|c|}{Sensitivity Specificity} \\
\hline ANN & 98.72 & 97.6 & & \\
\hline CTA & 99.49 & 96.2 & & \\
\hline GAM & 88.78 & 98.1 & & \\
\hline GBM & 97.96 & 96.4 & & \\
\hline GLM & 86.99 & 96.4 & & \\
\hline MARS & 95.66 & 98.0 & & \\
\hline FDA & 94.64 & 97.1 & & \\
\hline RF & 100.00 & 100.0 & & \\
\hline SRE & 83.42 & 85.9 & & \\
\hline \multicolumn{5}{|l|}{\$Sp281_PA2_rep1} \\
\hline & Cross.validation & indepdt.data & total.score & Cutoff \\
\hline ANN & 0.854 & none & 0.9063 & 402.0 \\
\hline
\end{tabular}
\begin{tabular}{lrlrr}
CTA & 0.860 & none & 0.9096 & 630.0 \\
GAM & 0.829 & none & 0.8566 & 558.9 \\
GBM & 0.885 & none & 0.9089 & 604.1 \\
GLM & 0.758 & none & 0.7735 & 625.0 \\
MARS & 0.918 & none & 0.9258 & 659.3 \\
FDA & 0.909 & none & 0.9226 & 389.7 \\
RF & 0.937 & none & 0.9876 & 450.0 \\
SRE & 0.714 & none & 0.6821 & 10.0
\end{tabular}
\begin{tabular}{lll}
ANN & 96.94 & 95.8 \\
CTA & 96.94 & 96.0 \\
GAM & 95.92 & 93.2 \\
GBM & 95.66 & 96.5 \\
GLM & 90.05 & 90.6 \\
MARS & 91.58 & 99.2 \\
FDA & 92.35 & 98.7 \\
RF & 98.98 & 99.7 \\
SRE & 82.65 & 88.2
\end{tabular}
\$Sp281_PA2_rep2
Cross.validation indepdt.data total.score Cutoff
\begin{tabular}{lrlrr}
ANN & 0.865 & none & 0.8919 & 591.9 \\
CTA & 0.851 & none & 0.9228 & 660.0 \\
GAM & 0.807 & none & 0.8390 & 608.8 \\
GBM & 0.886 & none & 0.9061 & 657.3 \\
GLM & 0.724 & none & 0.7552 & 688.6 \\
MARS & 0.881 & none & 0.9268 & 399.6 \\
FDA & 0.884 & none & 0.9232 & 179.9 \\
RF & 0.913 & none & 0.9805 & 380.0 \\
SRE & 0.646 & none & 0.6505 & 10.0
\end{tabular}
\begin{tabular}{lrr}
& Sensitivity & Specificity \\
ANN & 97.70 & 94.6 \\
CTA & 96.43 & 97.0 \\
GAM & 92.35 & 93.7 \\
GBM & 93.62 & 97.2 \\
GLM & 85.71 & 91.5 \\
MARS & 93.88 & 98.3 \\
FDA & 93.62 & 98.2 \\
RF & 99.23 & 99.2 \\
SRE & 84.18 & 85.2
\end{tabular}
\$Sp281_PA2_rep3
Cross.validation indepdt.data total.score Cutoff
\begin{tabular}{lllll}
ANN & 0.884 & none & 0.9259 & 404.0 \\
CTA & 0.893 & none & 0.8865 & 726.8 \\
GAM & 0.908 & none & 0.8517 & 598.8 \\
GBM & 0.938 & none & 0.9148 & 603.8 \\
GLM & 0.807 & none & 0.7467 & 706.4 \\
MARS & 0.965 & none & 0.9242 & 329.7
\end{tabular}
\begin{tabular}{lrlrr}
FDA & 0.956 & none & 0.9219 & 118.2 \\
\(R F\) & 0.973 & none & 0.9947 & 490.0 \\
SRE & 0.646 & none & 0.6145 & 10.0
\end{tabular}
\begin{tabular}{lrr}
& Sensitivity & Specificity \\
ANN & 95.66 & 97.5 \\
CTA & 96.94 & 94.6 \\
GAM & 93.88 & 93.8 \\
GBM & 97.19 & 96.2 \\
GLM & 84.18 & 91.7 \\
MARS & 95.66 & 97.4 \\
FDA & 94.39 & 97.8 \\
RF & 99.49 & 99.9 \\
SRE & 84.18 & 82.6
\end{tabular}

You can explore and see that the PA2 runs for Sp290 are empty matrices. That's because there has only been 1 PA run for that species.

\subsection*{5.1.2 Evaluation of the importance of each variable}

It is always difficult to compare predictions from different models as they do not rely on the same algorithms, techniques and assumptions about the expected relationship between the reponse and the variables, i.e. the species distributions and the environment. With a permutation procedure, BIOMOD proposes another way to examine the importance of the variables in the models. We extract a measure of relative importance of each variable that is independent of the model. Note that the importance of the variables is only calculated for the final model.

Procedure: once the models are trained (i.e. calibrated), a standard prediction is made. Then, one of the variables is randomized and a new prediction is made. The correlation score between that new prediction and the standard prediction is calculated and is considered to give an estimation of the variable importance in the model :
```

R code
model <- glm(Sp281 ~ Var1 + Var2 + Var3 + Var4 + Var5 + Var6 + Var7, data=Sp.Env)
Pred <- predict(model, Expl.Var, type="response")

```
```

Expl.Var2 <- Expl.Var
Expl.Var2[,'Var1'] <- sample(Expl.Var[,'Var1'])
Pred2 <- predict(model, Expl.Var2, type="response")
par(mfrow=c(1,2))
level.plot(Pred, LatLong, show.scale=F, cex=0.8)
level.plot(Pred2, LatLong, show.scale=F, cex=0.8)

```

\(\qquad\)
\(R\) code
[1] 0.911

A good correlation score between the two predictions, i.e. they only slightly differ, shows that the randomized variable has little influence on the prediction making and is considered not important for the model in its prediction.
Expl.Var3 <- Expl.Var
Expl.Var3[, 'Var7'] <- sample(Expl.Var[, 'Var7'])
Pred3 <- predict(model, Expl.Var3, type="response")
plot(Pred, Pred3)
cor(Pred, Pred3)
[1] -0.268 \(\qquad\)

In contrary, a low correlation means a significant difference in the prediction making, showing an importance of that variable for the model.

NOTE : in the VarImportance output, the values given correspond to 1 minus the correlation score. High values will therefore reveal a high importance of the variable whereas a value close to 0 will reveal no importance.

Score of variable \(1(\operatorname{Pred} 2): 1-\operatorname{cor}(\operatorname{Pred}, \operatorname{Pred} 2)=0.09\) meaning low influence
Score of variable \(2(\) Pred3) : \(1-\operatorname{cor}(\) Pred, Pred3) \(=1.27\) meaning high influence

This step is repeated \(n\) times for each variable independently and the means are kept for each variable.

NOTE : The obtained correlation can be negative. We consider these cases to represent an even bigger influence of the permutated variable on
the prediction than with a correlation of 0 . The variable importance estimation will therefore still be given as 1 minus the correlation score and, as a consequence, turn into values higher than 1 . These cases are not so rare.

Running the Models function will produce an object called "VarImportance" (only if VarImp was put higher than 0 in the function call). The results are stored individually per species and per model. Let's look at the results we have :
VarImportance \(R\) code \(\square\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\$Sp281} \\
\hline & Var1 & Var2 & Var3 & Var4 & Var5 & Var6 & Var7 \\
\hline ANN & 0.279 & 0.695 & 0.443 & 0.478 & 0.336 & 0.724 & 0.972 \\
\hline CTA & 0.247 & 0.143 & 0.160 & 0.069 & 0.168 & 0.020 & 0.663 \\
\hline GAM & 0.387 & 1.172 & 0.618 & 0.143 & 0.225 & 0.415 & 1.247 \\
\hline GBM & 0.142 & 0.032 & 0.075 & 0.035 & 0.006 & 0.003 & 0.600 \\
\hline GLM & 0.456 & 0.067 & 0.739 & 0.223 & 0.202 & 0.000 & 0.289 \\
\hline MARS & 0.573 & 0.179 & 0.062 & 0.169 & 0.096 & 0.000 & 0.649 \\
\hline FDA & 0.364 & 1.261 & 0.606 & 0.258 & 0.200 & NA & 1.134 \\
\hline RF & 0.154 & 0.056 & 0.094 & 0.075 & 0.035 & 0.048 & 0.423 \\
\hline SRE & 0.073 & 0.039 & 0.003 & 0.030 & 0.062 & 0.016 & 0.086 \\
\hline \multicolumn{8}{|l|}{\$Sp290} \\
\hline & Var1 & Var2 & Var3 & Var4 & Var5 & Var6 & Var7 \\
\hline ANN & 0.000 & 0.484 & 0.453 & 0.364 & 0.372 & 0.000 & 0.447 \\
\hline CTA & 0.517 & 0.210 & 0.000 & 0.000 & 0.000 & 0.453 & 0.019 \\
\hline GAM & 0.437 & 0.803 & 0.000 & 0.083 & 0.011 & 0.285 & 0.474 \\
\hline GBM & 0.180 & 0.153 & 0.001 & 0.070 & 0.000 & 0.236 & 0.004 \\
\hline GLM & 0.462 & 0.649 & 0.133 & 0.000 & 0.077 & 0.167 & 0.374 \\
\hline MARS & 0.372 & 0.062 & 0.000 & 0.256 & 0.000 & 0.596 & 0.235 \\
\hline FDA & 0.380 & 0.000 & 0.000 & 0.078 & 0.000 & 0.730 & 0.050 \\
\hline RF & 0.163 & 0.149 & 0.015 & 0.107 & 0.002 & 0.208 & 0.048 \\
\hline SRE & 0.018 & 0.010 & 0.024 & 0.013 & 0.020 & 0.002 & 0.042 \\
\hline
\end{tabular}

Values should be considered independently for each model. For instance, the SRE shows a generally low value for all the variable when the ANN is generally high. The goal is nevertheless to identify which variable is of the most importance. A good example with the GLM for Sp281, only 2 variables seem to have a significance in the predictions.

Note also that this technic only accounts for the direct effects of the variables and doesn't enable to identify combined effect of variables or anything
as such. It should mainly be considered as an informational tool, not an absolute reliable measure of the variables' contributions to the models.

\subsection*{5.1.3 PA data generated}

Biomod.PA.data contains the amount of data available after the inner run of the pseudo-absence function. Biomod.PA.sample contains the rows to take from DataBIOMOD to get the data that has been used for the calibration of each species for each PA run.

For example, let's see what data has been used for the calibration of the run PA1:

\section*{R code}
our.lines <- Biomod.PA.sample \(\$\) Sp \(281 \$\) PA1
par (mfrow=c (1,2))
level.plot(DataBIOMOD[, "Sp281"], LatLong, title='original data', show.scale=F, cex=0.6)
level.plot(DataBIOMOD[our.lines, "Sp281"], LatLong[our.lines,], title='PA1', show.scale \(=F\), cex=0.6)
original data

PA1

\subsection*{5.2 Objects stored on the hard drive : The Models}

Each algorithm (excepted SRE) generates an object storing the different parameterisation, the importance of each variable for the model and other statistics. This output is essential as it allows generating predictions. These objects, the models themselves, are now stored out of the R workspace directly on the computers' hard disk. They are named after the algorithm used and the species' names, i.e. Sp164_FDA for example. There is also extensions of the names concerning the repetitions and the pseudo-absences runs, so that one of our models will be Sp164_FDA_PA1_rep2.

Back loading the models and having them directly usable is very straightforward : simply use the load() function to have the model restored in the R workspace, with the same name plus the directory root. This is also the case with the other outputs stored outside of R (predictions and projections). The syntax is not always handy but easy to pick up :
\begin{tabular}{|c|c|}
\hline ```
#Example of the GLM
load("models/Sp290_GLM_PA1")
ls()
``` & \\
\hline & \(R\) code \\
\hline [1] "BestModelByRoc" & "BestModelByTSS" \\
\hline [3] "biomodDependencies" & "Biomod.material" \\
\hline [5] "Biomod.PA.data" & "Biomod.PA.sample" \\
\hline [7] "DataBIOMOD" & "DataEvalBIOMOD" \\
\hline [9] "data.used" & "Evaluation.results.Kappa" \\
\hline [11] "Evaluation.results.Roc" & "Evaluation.results.TSS" \\
\hline [13] "Expl.Var" & "Expl. Var2" \\
\hline [15] "Expl.Var3" & "Future1" \\
\hline [17] "GBM.list" & "GBM.perf" \\
\hline [19] "i" & "isnullYweights" \\
\hline [21] "LatLong" & "missingPackages" \\
\hline [23] "model" & "myPackages" \\
\hline [25] "obj" & "our.lines" \\
\hline [27] "Pred" & "Pred2" \\
\hline [29] "Pred3" & "PredBestModelByKappa" \\
\hline [31] "Pred_Sp281" & "Pred_Sp290" \\
\hline [33] "Pred_Sp290_BinKappa" & "Pred_Sp290_FiltKappa" \\
\hline [35] "Pred_Sp290_indpdt" & "rand" \\
\hline [37] "Resp.Var" & "Sp290_GLM_PA1" \\
\hline [39] "Sp290_RF_PA1" & "Sp.Env" \\
\hline [41] "store" & "VarImportance" \\
\hline
\end{tabular}

\footnotetext{
Sp290_GLM_PA1
}
```

R code
Call: glm(formula = Sp290 ~ poly(Var6, 3) + poly(Var7, 3) + poly(Var2,
3) + I(Var1^3) + poly(Var5, 3) + poly(Var3, 2), family = binomial,
data = DataBIOMOD[calib.lines,], weights = RunWeights[calib.lines])
Coefficients:
(Intercept) poly(Var6, 3)1 poly(Var6, 3)2
-27.5 -138.7 -62.9
poly(Var6, 3)3 poly(Var7, 3)1 poly(Var7, 3)2
-64.1 141.8 -269.4
poly(Var7, 3)3 poly(Var2, 3)1 poly(Var2, 3)2
106.6 615.0 -70.7
poly(Var2, 3)3 I(Var1^3) poly(Var5, 3)1
-108.7 43.8 -96.8
poly(Var5, 3)2 poly(Var5, 3)3 poly(Var3, 2)1
66.7 32.1 114.8
poly(Var3, 2)2
-54.1
Degrees of Freedom: 1772 Total (i.e. Null); 1757 Residual
Null Deviance: 3740
Residual Deviance: 254 AIC: 280

```
\(\qquad\)
Call:
glm(formula \(=\) Sp290 ~ poly (Var6, 3) + poly(Var7, 3) + poly(Var2,
    \(3)+I\left(\operatorname{Var} 1^{\wedge} 3\right)+\operatorname{poly}(\operatorname{Var} 5,3)+\operatorname{poly}(\operatorname{Var} 3,2)\), family = binomial,
    data \(=\) DataBIOMOD[calib.lines, ], weights = RunWeights[calib.lines])
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-3.673 & 0.000 & 0.000 & 0.006 & 3.572
\end{tabular}

Coefficients:
Estimate Std. Error \(z\) value \(\operatorname{Pr}(>|z|)\)
\begin{tabular}{lrrrl} 
(Intercept) & -27.52 & 4.03 & -6.83 & \(8.8 e-12 * * *\) \\
poly(Var6, 3)1 & -138.68 & 396.79 & -0.35 & 0.72671 \\
poly(Var6, 3)2 & -62.87 & 165.30 & -0.38 & 0.70369 \\
poly(Var6, 3)3 & -64.07 & 39.28 & -1.63 & 0.10289 \\
poly(Var7, 3)1 & 141.83 & 134.39 & 1.06 & 0.29128 \\
poly(Var7, 3)2 & -269.40 & 47.81 & -5.63 & \(1.8 e-08 * * *\) \\
poly(Var7, 3)3 & 106.58 & 40.03 & 2.66 & \(0.00776{ }^{* *}\) \\
poly(Var2, 3)1 & 615.01 & 315.46 & 1.95 & 0.05123. \\
poly(Var2, 3)2 & -70.70 & 91.46 & -0.77 & 0.43951 \\
poly(Var2, 3)3 & -108.67 & 32.09 & -3.39 & \(0.00071 * * *\)
\end{tabular}
```

I(Var1^3) 43.80 6.19 7.07 1.5e-12 ***
poly(Var5, 3)1 -96.78 28.28 -3.42 0.00062 ***
poly(Var5, 3)2 66.66 25.21 2.64 0.00819 **
poly(Var5, 3)3 32.14 14.23 2.26 0.02387*
poly(Var3, 2)1 114.81 28.53 4.02 5.7e-05 ***
poly(Var3, 2)2 -54.14 20.52 -2.64 0.00834 **
Signif. codes: 0

```

A series of commands enables you to navigate in the object and to extract usefull information from it. Here are a few example that can be used for all algorithms.
\begin{tabular}{ll}
\hline \#simply type its name & \(R\) code \\
Sp290_GLM_PA1
\end{tabular}
```

Call: glm(formula = Sp290 ~ poly(Var6, 3) + poly(Var7, 3) + poly(Var2,
3) + I(Var1^3) + poly(Var5, 3) + poly(Var3, 2), family = binomial,
data = DataBIOMOD[calib.lines,], weights = RunWeights[calib.lines])
Coefficients:
(Intercept) poly(Var6, 3)1 poly(Var6, 3)2
-27.5 -138.7 -62.9
poly(Var6, 3)3 poly(Var7, 3)1 poly(Var7, 3)2
-64.1 141.8 -269.4
poly(Var7, 3)3 poly(Var2, 3)1 poly(Var2, 3)2
106.6 615.0 -70.7
poly(Var2, 3)3 I(Var1^3) poly(Var5, 3)1
-108.7 43.8 -96.8
poly(Var5, 3)2 poly(Var5, 3)3 poly(Var3, 2)1
66.7 32.1 114.8
poly(Var3, 2)2
-54.1
Degrees of Freedom: 1772 Total (i.e. Null); 1757 Residual
Null Deviance: }374
Residual Deviance: 254 AIC: 280

```
\(\overline{\text { names (Sp290_GLM_PA1) }} R\) code
\begin{tabular}{ll} 
[5] "R" & "rank" \\
[7] "qr" & "family" \\
[9] "linear.predictors" "deviance" \\
[11] "aic" & "null.deviance" \\
[13] "iter" & "weights" \\
[15] "prior.weights" & "df.residual" \\
[17] "df.null" & "y" \\
[19] "converged" & "boundary" \\
[21] "model" & "call" \\
[23] "formula" & "terms" \\
[25] "data" & "offset" \\
[27] "control" & "method" \\
[29] "contrasts" & "xlevels" \\
[31] "anova" &
\end{tabular}
\begin{tabular}{l}
\(\overline{\operatorname{str}\left(S p 290 \_G L M \_P A 1\right)}\) \\
\hline
\end{tabular}
```

List of 31
\$ coefficients : Named num [1:16] -27.5 -138.7 -62.9 -64.1 141.8 ...
..- attr(*, "names")= chr [1:16] "(Intercept)" "poly(Var6, 3)1" "poly(Var6, 3)2" "poly(Vaj
\$ residuals : Named num [1:1773] 588.77 1.11 1 1 -1 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ fitted.values : Named num [1:1773] 1.70e-03 9.01e-01 1.00 1.00 2.52e-07 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ effects : Named num [1:1773] 4.661 -0.229 3.839 -0.824 -1.76 ...
..- attr(*, "names")= chr [1:1773] "(Intercept)" "poly(Var6, 3)1" "poly(Var6, 3)2" "poly(
\$ R : num [1:16, 1:16] -6.02 0 0 0 0 ...
..- attr(*, "dimnames")=List of 2
.. ..\$: chr [1:16] "(Intercept)" "poly(Var6, 3)1" "poly(Var6, 3)2" "poly(Var6, 3)3" ...
.. ..\$: chr [1:16] "(Intercept)" "poly(Var6, 3)1" "poly(Var6, 3)2" "poly(Var6, 3)3" ...
\$ rank : int 16
\$ qr :List of 5
..\$ qr : num [1:1773, 1:16] -6.019213 0.04959 0.001657 0.000331 0.000149 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: chr [1:1773] "1" "2" "16" "17" ...
..\$: chr [1:16] "(Intercept)" "poly(Var6, 3)1" "poly(Var6, 3)2" "poly(Var6, 3)3"
..\$ rank : int 16
..\$ qraux: num [1:16] 1.01 1.1 1 1 1 ...
..\$ pivot: int [1:16] 1 2 3 4 5 6 7 8 9 10 ...
..\$ tol : num 1e-11
..- attr(*, "class")= chr "qr"
\$ family :List of 12
..\$ family : chr "binomial"
..\$ link : chr "logit"
..\$ linkfun :function (mu)

```
```

..\$ linkinv :function (eta)
..\$ variance :function (mu)
..\$ dev.resids:function (y, mu, wt)
..\$ aic :function (y, n, mu, wt, dev)
..\$ mu.eta :function (eta)
..\$ initialize: expression({ if (NCOL(y) == 1) { if (is.factor(y))
..\$ validmu :function (mu)
..\$ valideta :function (eta)
..\$ simulate :function (object, nsim)
..- attr(*, "class")= chr "family"
\$ linear.predictors: Named num [1:1773] -6.38 2.21 9.22 12.44 -15.19 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ deviance : num 254
\$ aic : num 280
\$ null.deviance : num 3743
\$ iter : int 11
\$ weights : Named num [1:1773] 1.70e-03 8.91e-02 9.95e-05 3.96e-06 8.05e-07 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ prior.weights : Named num [1:1773] 1 1 1 1 3.19 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ df.residual : int 1757
\$ df.null : int 1772
\$ y : Named num [1:1773] 1 1 1 1 0 0 0 0 0 0 ...
..- attr(*, "names")= chr [1:1773] "1" "2" "16" "17" ...
\$ converged : logi TRUE
\$ boundary : logi FALSE
\$ model :'data.frame': 1773 obs. of 8 variables:
..\$ Sp290 : int [1:1773] 1 1 1 1 0 0 0 0 0 0 ...
..\$ poly(Var6, 3): poly [1:1773, 1:3] 0.0465 0.0448 0.0417 0.0344 0.0471 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: NULL
..\$: chr [1:3] "1" "2" "3"
.. ..- attr(*, "degree")= int [1:3] 1 2 3
.. ..- attr(*, "coefs")=List of 2
..\$ alpha: num [1:3] 7.9 5.95 8.03
..\$ norm2: num [1:5] 1 1773 36104 1347227 37019654
.. ..- attr(*, "class")= chr [1:2] "poly" "matrix"
..\$ poly(Var7, 3): poly [1:1773, 1:3] 0.0481 0.0468 0.0436 0.0368 0.0464 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: NULL
..\$: chr [1:3] "1" "2" "3"
.. ..- attr(*, "degree")= int [1:3] 1 2 3
.. ..- attr(*, "coefs")=List of 2
..\$ alpha: num [1:3] -2.5 -5.66 -3.89
..\$ norm2: num [1:5] 1.00 1.77e+03 7.73e+04 5.41e+06 2.96e+08
.. ..- attr(*, "class")= chr [1:2] "poly" "matrix"
..\$ poly(Var2, 3): poly [1:1773, 1:3] 0.0629 0.0598 0.0544 0.0414 0.064 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: NULL

```
```

..\$: chr [1:3] "1" "2" "3"
.. ..- attr(*, "degree")= int [1:3] 1 2 3
.. ..- attr(*, "coefs")=List of 2
..\$ alpha: num [1:3] 1847 2513 2468
..\$ norm2: num [1:5] 1.00 1.77e+03 1.52e+09 2.56e+15 3.26e+21
.. ..- attr(*, "class")= chr [1:2] "poly" "matrix"
..\$ I(Var1^3) :Class 'AsIs' num [1:1773] 0.298 0.438 0.533 0.552 0.123 ...
..\$ poly(Var5, 3): poly [1:1773, 1:3] 0.02708 0.03962 0.04306 0.04945 0.00827 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: NULL
..\$: chr [1:3] "1" "2" "3"
.. ..- attr(*, "degree")= int [1:3] 1 2 3
.. ..- attr(*, "coefs")=List of 2
..\$ alpha: num [1:3] 179 362 450
..\$ norm2: num [1:5] 1.00 1.77e+03 1.83e+07 5.61e+11 2.02e+16
.. ..- attr(*, "class")= chr [1:2] "poly" "matrix"
..\$ poly(Var3, 2): poly [1:1773, 1:2] -0.00208 0.00958 0.01441 0.02074 -0.01698 ...
.. ..- attr(*, "dimnames")=List of 2
..\$: NULL
..\$: chr [1:2] "1" "2"
.. ..- attr(*, "degree")= int [1:2] 1 2
.. ..- attr(*, "coefs")=List of 2
..\$ alpha: num [1:2] 798 1470
..\$ norm2: num [1:4] 1.00 1.77e+03 1.84e+08 7.29e+13
.. ..- attr(*, "class")= chr [1:2] "poly" "matrix"
..\$ (weights) : num [1:1773] 1 1 1 1 3.19 ...
..- attr(*, "terms")=Classes 'terms', 'formula' length 3 Sp290 ~ poly(Var6, 3) + poly(Var
..- attr(*, "variables")= language list(Sp290, poly(Var6, 3), poly(Var7, 3), poly(Va
..- attr(*, "factors")= int [1:7, 1:6] 0 1 0 0 0 0 0 0 0 1 ...
..- attr(*, "dimnames")=List of 2
..\$: chr [1:7] "Sp290" "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3)" ...
..\$: chr [1:6] "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3)" "I(Var1^3)" .
..- attr(*, "term.labels")= chr [1:6] "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3.
..- attr(*, "order")= int [1:6] 1 1 1 1 1 1
..- attr(*, "intercept")= int 1
..- attr(*, "response")= int 1
..- attr(*, ".Environment")=<environment: 0x451cf18>
..- attr(*, "predvars")= language list(Sp290, poly(Var6, 3, coefs = structure(list(i
..- attr(*, "dataClasses")= Named chr [1:8] "numeric" "nmatrix.3" "nmatrix.3" "nmatj
..- attr(*, "names")= chr [1:8] "Sp290" "poly(Var6, 3)" "poly(Var7, 3)" "poly(Vaj
\$ call : language glm(formula = Sp290 ~ poly(Var6, 3) + poly(Var7, 3) + poly(Vi
\$ formula :Class 'formula' length 3 Sp290 ~ poly(Var6, 3) + poly(Var7, 3) + poly(
.. ..- attr(*, ".Environment")=<environment: 0x451cf18>
\$ terms :Classes 'terms', 'formula' length 3 Sp290 ~ poly(Var6, 3) + poly(Var7,
.. ..- attr(*, "variables")= language list(Sp290, poly(Var6, 3), poly(Var7, 3), poly(Var2.
.. ..- attr(*, "factors")= int [1:7, 1:6] 0 1 0 0 0 0 0 0 0 1 ...
..- attr(*, "dimnames")=List of 2
..\$: chr [1:7] "Sp290" "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3)" ...
..\$: chr [1:6] "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3)" "I(Var1^3)" ...

```
```

.. ..- attr(*, "term.labels")= chr [1:6] "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2, 3)"
.. ..- attr(*, "order")= int [1:6] 1 1 1 1 1 1 1 1
.. ..- attr(*, "intercept")= int 1
.. ..- attr(*, "response")= int 1
.. ..- attr(*, ".Environment")=<environment: 0x451cf18>
.. ..- attr(*, "predvars")= language list(Sp290, poly(Var6, 3, coefs = structure(list(alpl
.. ..- attr(*, "dataClasses")= Named chr [1:8] "numeric" "nmatrix.3" "nmatrix.3" "nmatrix
..- attr(*, "names")= chr [1:8] "Sp290" "poly(Var6, 3)" "poly(Var7, 3)" "poly(Var2,
\$ data :'data.frame': 1773 obs. of 9 variables:
..\$ Var1 : num [1:1773] 0.668 0.76 0.811 0.82 0.497 ...
..\$ Var2 : num [1:1773] 4296 4174 3964 3458 4340 ...
..\$ Var3 : num [1:1773] 770 928 994 1079 568 ...
..\$ Var4 : num [1:1773] 39.3 57.3 66.9 71.4 24.3 ...
..\$ Var5 : num [1:1773] 295 349 363 391 215 ...
..\$ Var6 : num [1:1773] 16.7 16.4 15.8 14.4 16.9 ...
..\$ Var7 : num [1:1773] 10.87 10.51 9.62 7.72 10.39 ...
..\$ Sp281: int [1:1773] 0 0 0 0 0 0 0 0 0 0 ...
..\$ Sp290: int [1:1773] 1 1 1 1 0 0 0 0 0 0 ...
\$ offset : NULL
\$ control :List of 3
..\$ epsilon: num 1e-08
..\$ maxit : num 25
..\$ trace : logi FALSE
\$ method : chr "glm.fit"
\$ contrasts : NULL
\$ xlevels : Named list()
\$ anova :Classes

```
\#summary
summary(Sp290_GLM_PA1)
Call:
glm (formula \(=\) Sp290 ~ poly (Var6, 3) \(+\operatorname{poly}(\operatorname{Var} 7,3)+\operatorname{poly}(V a r 2\),
    \(3)+I(\operatorname{Var} 1 \wedge 3)+\operatorname{poly}(\operatorname{Var} 5,3)+\operatorname{poly}(\operatorname{Var} 3,2)\), family \(=\) binomial,
    data \(=\) DataBIOMOD[calib.lines, ], weights = RunWeights[calib.lines])
Deviance Residuals:
Min 1Q Median 3Q Max
\begin{tabular}{lllll}
-3.673 & 0.000 & 0.000 & 0.006 & 3.572
\end{tabular}

Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate Std. Error z value \(\operatorname{Pr}(>|z|)\) \\
(Intercept) & -27.52 & 4.03 & -6.83 & \(8.8 e-12 * * *\) \\
poly(Var6, 3)1 & -138.68 & 396.79 & -0.35 & 0.72671 \\
poly(Var6, 3)2 & -62.87 & 165.30 & -0.38 & 0.70369
\end{tabular}
```

poly(Var6, 3)3 -64.07 39.28 -1.63 0.10289
poly(Var7, 3)1 141.83 134.39 1.06 0.29128
poly(Var7, 3)2 -269.40 47.81 -5.63 1.8e-08 ***
poly(Var7, 3)3 106.58 40.03 2.66 0.00776 **
poly(Var2, 3)1 615.01 315.46 1.95 0.05123.
poly(Var2, 3)2 -70.70 91.46 -0.77 0.43951
poly(Var2, 3)3 -108.67 32.09 -3.39 0.00071 ***
I(Var1^3) 43.80 6.19 7.07 1.5e-12 ***
poly(Var5, 3)1 -96.78 28.28 -3.42 0.00062 ***
poly(Var5, 3)2 66.66 25.21 2.64 0.00819 **
poly(Var5, 3)3 32.14 14.23 2.26 0.02387 *
poly(Var3, 2)1 114.81 28.53 4.02 5.7e-05 ***
poly(Var3, 2)2 -54.14 20.52 -2.64 0.00834 **
Signif. codes: 0

```

It shows the information stored, like the different variables retained in the final model.
The outputs also give the different coefficient values, the degrees of freedom, the residual deviance and the AIC of the final model. Of course, each model's outputs will not give the same information, as it depends on its specificity.

The next call obtains the anova results and the details of the stepwise procedure type. Note that the independent variables are ranked by their AIC importance.

\begin{tabular}{rrrrrr}
\(5+p o l y(\operatorname{Var} 4,3)\) & 3 & 23.8282 & 1762 & 323.9 & 337.4 \\
\(6+p o l y(\operatorname{Var} 2,3)\) & 3 & 22.9058 & 1759 & 301.0 & 321.1 \\
\(7++I(\operatorname{Var} 1-3)\) & 1 & 31.0334 & 1758 & 269.9 & 293.4 \\
\(8+p o l y(\operatorname{Var} 5,3)\) & 3 & 9.5482 & 1755 & 260.4 & 290.2 \\
\(9+p o l y(\operatorname{Var} 3,2)\) & 2 & 7.6884 & 1753 & 252.7 & 286.8 \\
\(10-p o l y(\operatorname{Var} 4,3)\) & 3 & 0.6872 & 1756 & 253.4 & 281.4 \\
\(11+\operatorname{Var} 1\) & 1 & 1.0252 & 1757 & 254.4 & 280.3
\end{tabular}

The function plot of R will give the basic and usual outputs for GLM. They are useful but not entirely relevant in the case of the logistic regression.
\(\qquad\)
\(\operatorname{par}(m f r o w=c(2,2))\) plot(Sp290_GLM_PA1)


The \(g b m\) library also provides an experimental diagnostic tool that plots the fitted values versus the actual average values. Uses gam to estimate \(E(y \mid p)\). Well-calibrated predictions imply that \(E(y \mid p)=p\). The plot also includes a pointwise 95 band.

This method can be applied to all models to visualise the relative goodness of fit of the model. The function requires the observed presence-absence of the selected species and the predictions. Hence, you will need top load the predictions for this.
```

library(gbm)
load("pred/Pred_Sp290")
\#let's store the data that was used for calibration of the
\#first PA run for Sp290 to simplify the code
data.used <- DataBIOMOD[Biomod.PA.sample$Sp290$PA1,"Sp290"]
calibrate.plot(data.used, Pred_Sp290[, "GLM", 1, 1]/1000)

```


\subsection*{5.2.1 Response Curves}

BIOMOD allows plotting the response curves of every model in the good scale. The response.plot function must be used to this matter. This function requires a model and a related set of variables to plot the response curves.

Here are two examples of the GLM and RF for the first species modelled. You need to load the model, type its name in the first argument, then give the variables for which you want to see the curves. Note the you can choose to only show some of the variables with the show.variables argument.
```

\#this one has already been loaded in a prior call
response.plot(Sp290_GLM_PA1, Expl.Var)

```

Response curves glm




Var5



```

load("models/Sp290_RF_PA1")
response.plot(Sp290_RF_PA1, Expl.Var)

```


The response curves are generated following this calculation : N-1 variables are held constant at their mean value whilst the variable of interest contains 100 points varying across the maximum and the minimum of its range. Variation in predictions, made to these 100 cells, only reflects the effects of the one selected variable. Thus, a plot of these predictions allows visualisation of the modelled response to the variable of interest, contingent on the other variables being held constant. This is done subsequently for all the selected variables.

In our examples, the variable Var4 doesn't seem to have a great influence for the GLM (very few variations in the prediction staying close to 1 ) when it shows a non negligeable influence in the predictions of the RF.

These results are interesting when put together with the VarImportance results. They show that Var5 which shows variability from one model to another doesn't has a high importance for most of the models. In contrast, the variable Var6 which is consistent accross GLM and RF has a big influence on the models. This variable is surely connected with the presence/absence of species 290 and the response plots shows this relationship.

\subsection*{5.3 Objects stored on the hard drive : The Predictions}

The predictions made by each model on the original dataset are stored inside the pred folder. They are stored independently for each species in an object following a 'Pred.Speciesname' logic and contains the probability of occurrence (habitat suitability index) for each run (if several runs) of the selected models. The same objects are produced for the independent data (if any) and the same logic is respected for the projections.

NOTE: for calculation and memory storage purposes, this index is on a scale between 0 and 1000. To obtain a true probability of occurrence, rescaled between 0 and 1 , simply divide each value by a thousand.
\(\qquad\)
load("pred/Pred_Sp290")

The trick is that these objects are no longer matrices but arrays (multiple dimensions) with 4 dimensions. The dimensions can be visualised as follows :

The first two build up a matrix where each column is the prediction of one of the models. The number of rows corresponds to the amount of data used for building those models.
\(\qquad\)
\begin{tabular}{llllll}
\hline\([1]\) & 1773 & 9 & 4 & 1 & \(R\) code \\
\hline
\end{tabular}

Pred_Sp290[1:20, , 1, 1] \(\qquad\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & \(F D A\) & & \(S\) RE \\
\hline 1 & 61 & 39 & 142 & 412 & 1 & 96 & 35 & 745 & 0 \\
\hline 2 & 61 & 987 & 777 & 751 & 901 & 974 & 983 & 929 & 0 \\
\hline 3 & 61 & 987 & 978 & 766 & 999 & 997 & 984 & 988 & 0 \\
\hline 4 & 986 & 987 & 984 & 766 & 999 & 996 & 984 & 996 & 0 \\
\hline 5 & 61 & 39 & 1 & 75 & 0 & 3 & 33 & 0 & 0 \\
\hline 6 & 61 & 39 & 6 & 75 & 0 & 3 & 33 & 0 & 0 \\
\hline 7 & 61 & 39 & 1 & 75 & 0 & 7 & 33 & 0 & 0 \\
\hline 8 & 61 & 39 & 9 & 75 & 0 & 3 & 33 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
9 & 61 & 39 & 1 & 75 & 0 & 9 & 33 & 0 & 0 \\
10 & 61 & 39 & 1 & 75 & 0 & 7 & 33 & 0 & 0 \\
11 & 61 & 39 & 19 & 75 & 0 & 4 & 33 & 0 & 0 \\
12 & 61 & 39 & 1 & 75 & 0 & 9 & 33 & 0 & 0 \\
13 & 61 & 39 & 12 & 76 & 0 & 3 & 33 & 0 & 0 \\
14 & 61 & 39 & 90 & 79 & 86 & 4 & 33 & 18 & 0 \\
15 & 985 & 987 & 995 & 766 & 999 & 998 & 984 & 996 & 0 \\
16 & 986 & 987 & 997 & 767 & 999 & 999 & 984 & 997 & 0 \\
17 & 989 & 987 & 999 & 906 & 999 & 999 & 984 & 996 & 0 \\
18 & 988 & 987 & 999 & 842 & 999 & 999 & 984 & 994 & 0 \\
19 & 989 & 987 & 997 & 911 & 999 & 998 & 984 & 1000 & 0 \\
20 & 989 & 987 & 998 & 887 & 999 & 999 & 984 & 1000 & 0 \\
\hline
\end{tabular}

Now, the third dimensions consists of a collection of 2-D matrices, one behind another, corresponding to the prediction produced by each repetition. The minimum for this dimension is 1 . Considering that BIOMOD always produces a final model calibrated with \(100 \%\) of the data given, the length of this third dimension is the value of the NbRunEval argument +1 . For example, with NbRunEval=10, you have 11 layers.

\section*{Dim 3 : the} number of


\section*{Dim 1 : the \\ number of sites}

Note that the firts layer is always the final model, then come the repetitions.
\#the final model
Pred_Sp290[1:15, , 1, 1]
\(\qquad\)

R code
\begin{tabular}{lrrrrrrrrr}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA & \(R F\) & \(R R E\) \\
1 & 61 & 39 & 142 & 412 & 1 & 96 & 35 & 745 & 0 \\
2 & 61 & 987 & 777 & 751 & 901 & 974 & 983 & 929 & 0 \\
3 & 61 & 987 & 978 & 766 & 999 & 997 & 984 & 988 & 0 \\
4 & 986 & 987 & 984 & 766 & 999 & 996 & 984 & 996 & 0 \\
5 & 61 & 39 & 1 & 75 & 0 & 3 & 33 & 0 & 0 \\
6 & 61 & 39 & 6 & 75 & 0 & 3 & 33 & 0 & 0 \\
7 & 61 & 39 & 1 & 75 & 0 & 7 & 33 & 0 & 0
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
8 & 61 & 39 & 9 & 75 & 0 & 3 & 33 & 0 & 0 \\
9 & 61 & 39 & 1 & 75 & 0 & 9 & 33 & 0 & 0 \\
10 & 61 & 39 & 1 & 75 & 0 & 7 & 33 & 0 & 0 \\
11 & 61 & 39 & 19 & 75 & 0 & 4 & 33 & 0 & 0 \\
12 & 61 & 39 & 1 & 75 & 0 & 9 & 33 & 0 & 0 \\
13 & 61 & 39 & 12 & 76 & 0 & 3 & 33 & 0 & 0 \\
14 & 61 & 39 & 90 & 79 & 86 & 4 & 33 & 18 & 0 \\
15 & 985 & 987 & 995 & 766 & 999 & 998 & 984 & 996 & 0 \\
\hline
\end{tabular}
\begin{tabular}{l} 
\#the first repetition model \\
Pred_Sp code \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
\hline \multicolumn{7}{c}{ ANN } & CTA & GAM & GBM \\
\hline & GLM & MARS & FDA & RF & SRE \\
1 & 31 & 319 & 103 & 376 & 6 & 312 & 33 & 708 & 0 \\
2 & 31 & 319 & 598 & 616 & 886 & 990 & 985 & 821 & 0 \\
3 & 64 & 319 & 950 & 652 & 999 & 998 & 985 & 934 & 0 \\
4 & 580 & 319 & 971 & 653 & 999 & 999 & 985 & 926 & 0 \\
5 & 31 & 28 & 0 & 74 & 0 & 2 & 31 & 0 & 0 \\
6 & 31 & 28 & 3 & 74 & 0 & 2 & 31 & 1 & 0 \\
7 & 31 & 28 & 0 & 74 & 0 & 2 & 31 & 2 & 0 \\
8 & 31 & 28 & 5 & 74 & 0 & 2 & 31 & 0 & 0 \\
9 & 31 & 28 & 0 & 74 & 0 & 2 & 31 & 1 & 0 \\
10 & 31 & 28 & 0 & 74 & 0 & 2 & 31 & 1 & 0 \\
11 & 31 & 28 & 14 & 74 & 0 & 2 & 31 & 0 & 0 \\
12 & 31 & 28 & 0 & 74 & 0 & 2 & 31 & 0 & 0 \\
13 & 31 & 28 & 6 & 75 & 0 & 2 & 31 & 0 & 0 \\
14 & 31 & 28 & 91 & 82 & 90 & 3 & 31 & 14 & 0 \\
15 & 402 & 319 & 989 & 655 & 999 & 999 & 985 & 952 & 0
\end{tabular}
\#the second repetition model
Pred_Sp290[1:15, , 3, 1]

\section*{\(R\) code}
\(\qquad\)
\begin{tabular}{llllllllllll} 
\\
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA & \(R\) & code \\
1 & 81 & 36 & 187 & 370 & 0 & 175 & 36 & 410 & 0 \\
2 & 925 & 987 & 855 & 757 & 618 & 992 & 983 & 889 & 0 \\
3 & 991 & 987 & 988 & 801 & 999 & 998 & 984 & 974 & 0 \\
4 & 992 & 987 & 991 & 802 & 999 & 998 & 984 & 984 & 0 \\
5 & 45 & 36 & 0 & 74 & 0 & 2 & 32 & 0 & 0 \\
6 & 47 & 36 & 1 & 74 & 0 & 4 & 32 & 2 & 0 \\
7 & 45 & 36 & 0 & 74 & 0 & 2 & 32 & 0 & 0 \\
8 & 47 & 36 & 3 & 74 & 0 & 4 & 32 & 1 & 0
\end{tabular}
\begin{tabular}{lrrrrrrrrr}
9 & 46 & 36 & 0 & 74 & 0 & 2 & 32 & 0 & 0 \\
10 & 46 & 36 & 0 & 74 & 0 & 2 & 32 & 1 & 0 \\
11 & 50 & 36 & 12 & 74 & 0 & 6 & 32 & 0 & 0 \\
12 & 47 & 36 & 0 & 74 & 0 & 2 & 32 & 0 & 0 \\
13 & 46 & 36 & 3 & 74 & 0 & 5 & 32 & 0 & 0 \\
14 & 53 & 36 & 96 & 84 & 178 & 13 & 32 & 29 & 0 \\
15 & 997 & 987 & 998 & 802 & 999 & 999 & 984 & 993 & 0
\end{tabular}


The fourth dimension represents the number of pseudo-absences repetitions that have been made. In the case where \(\mathrm{NbRepPA}=0\), the dimension is simply 1 (not 0 ).


PA1


PA2


PA3

You will never visualise it this way with \(R\) though. It is just an abstract view of how it is sorted. Some usefull functions for not getting lost are \(\operatorname{dim}()\) and dimnames(). The first one gives you the number of layers for each dimension, the second will give you their names respectively.

\begin{tabular}{llllll}
\hline [[1]] & \(R\) code & \\
[1] "ANN" "CTA" "GAM" "GBM" "GLM" "MARS" "FDA" "RF" \\
[9] "SRE" & & & & \\
[[2]] & & & & \\
[1] "total.data" "rep1" & "rep2" & "rep3" & \\
[[3]] & & & \\
[1] "PA1" "PA2" & & & \\
\hline
\end{tabular}

For instance, we examine the probability of occurrence of the first species, modelled with CTA. Here we just display 20 rows (or sites) in the middle.
\(R\) code
\#if you don't inform the 3rd and 4th dimension (you still need commas), you will have all \#at once in a matrix.
load("pred/Pred_Sp281")
Pred_Sp281[281:300, "CTA", , ]
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{, , PA1} \\
\hline \multicolumn{5}{|r|}{total.data rep1 rep2 rep3} \\
\hline 281 & 1000 & 958 & 1000 & 997 \\
\hline 282 & 993 & 958 & 994 & 997 \\
\hline 283 & 993 & 958 & 994 & 997 \\
\hline 284 & 993 & 958 & 994 & 997 \\
\hline 285 & 946 & 836 & 12 & 933 \\
\hline 286 & 1000 & 958 & 1000 & 997 \\
\hline 287 & 1000 & 836 & 1000 & 919 \\
\hline 288 & 792 & 836 & 792 & 919 \\
\hline 289 & 993 & 958 & 994 & 997 \\
\hline 290 & 993 & 958 & 994 & 997 \\
\hline 291 & 993 & 958 & 994 & 997 \\
\hline 292 & 993 & 958 & 994 & 629 \\
\hline 293 & 993 & 958 & 994 & 629 \\
\hline 294 & 0 & 958 & 910 & 997 \\
\hline 295 & 0 & 958 & 0 & 997 \\
\hline 296 & 0 & 958 & 0 & 0 \\
\hline 297 & 0 & 958 & 0 & 629 \\
\hline 298 & 0 & 958 & 0 & 629 \\
\hline 299 & 993 & 958 & 994 & 0 \\
\hline 300 & 0 & 958 & 0 & 0 \\
\hline
\end{tabular}
\begin{tabular}{crrrr} 
& total. data & rep1 & rep2 & rep3 \\
1 & 967 & 979 & 990 & 969 \\
2 & 998 & 979 & 990 & 969 \\
3 & 922 & 1000 & 968 & 827 \\
4 & 967 & 976 & 968 & 946 \\
5 & 1000 & 976 & 968 & 946 \\
6 & 1000 & 976 & 968 & 946 \\
7 & 800 & 979 & 990 & 969 \\
8 & 998 & 979 & 990 & 969 \\
9 & 998 & 979 & 990 & 969 \\
0 & 800 & 979 & 990 & 969 \\
1 & 998 & 979 & 656 & 86 \\
2 & 800 & 772 & 990 & 969 \\
3 & 800 & 772 & 990 & 969 \\
4 & 203 & 0 & 990 & 969 \\
5 & 203 & 0 & 990 & 969 \\
6 & 967 & 976 & 656 & 86 \\
7 & 967 & 976 & 656 & 86 \\
8 & 203 & 979 & 990 & 969 \\
9 & 203 & 0 & 656 & 809 \\
0 & 800 & 979 & 990 & 969
\end{tabular}

Note that because there is a random selection of the data for calibration, you will end up with slightly different values on these example runs.

Because we have chosen to run the models with pseudo-absence data, plotting the partial predictions is not very convinient. We will plot instead the values of the fake independent data (which is just the full original dataset) for the GLM.
```

load("pred/Pred_Sp290_indpdt")
level.plot(Pred_Sp290_indpdt[,"GLM",1,1], LatLong, title='sp290_GLM_indpdt', cex=0.8)

```


Note that the independent predictions are only made on the final \(100 \%\) model and not on the repetitions. To check it :

Pred_Sp290_indpdt[1:10, , , ]
\(R\) code \(\qquad\)
, , total.data

ANN CTA GAM GBM GLM MARS FDA RF SRE
\begin{tabular}{lrrrrrrrrr}
1 & 61 & 39 & 142 & 412 & 1 & 96 & 35 & 745 & 0 \\
2 & 61 & 987 & 777 & 751 & 901 & 974 & 983 & 929 & 0 \\
3 & 61 & 987 & 669 & 698 & 674 & 946 & 973 & 782 & 0 \\
4 & 61 & 39 & 2 & 75 & 0 & 2 & 33 & 6 & 0 \\
5 & 61 & 39 & 1 & 75 & 0 & 2 & 33 & 6 & 0 \\
6 & 61 & 39 & 2 & 75 & 0 & 2 & 33 & 0 & 0 \\
7 & 61 & 39 & 1 & 75 & 0 & 2 & 33 & 0 & 0 \\
8 & 61 & 39 & 18 & 79 & 0 & 5 & 33 & 12 & 0 \\
9 & 61 & 39 & 7 & 75 & 0 & 3 & 33 & 4 & 0 \\
10 & 61 & 39 & 25 & 79 & 0 & 3 & 33 & 10 & 0
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA & RF & SRE \\
\hline 1 & NA \\
\hline 2 & NA \\
\hline 3 & NA \\
\hline 4 & NA \\
\hline 5 & NA \\
\hline 6 & NA & \(N A\) \\
\hline 7 & NA & \(N A\) \\
\hline 8 & NA & \(N A\) \\
\hline 9 & NA \\
\hline 10 & NA & NA & NA & NA & \(N A\) & NA & NA & NA & \(N A\) \\
\hline
\end{tabular}
```

, , rep2

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA RF & SRE \\
\hline 1 & NA NA & NA \\
\hline 2 & NA NA & NA \\
\hline 3 & NA NA & NA \\
\hline 4 & NA NA & NA \\
\hline 5 & NA NA & NA \\
\hline 6 & NA NA & NA \\
\hline 7 & NA NA & NA \\
\hline 8 & NA NA & NA \\
\hline 9 & NA & NA & NA & \(N A\) & NA & NA & NA NA & NA \\
\hline 10 & NA NA & \(N A\) \\
\hline
\end{tabular}
```

, , rep3

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA RF & SRE \\
\hline 1 & NA NA & NA \\
\hline 2 & NA NA & NA \\
\hline 3 & NA NA & NA \\
\hline 4 & NA NA & NA \\
\hline 5 & NA NA & NA \\
\hline 6 & NA NA & NA \\
\hline 7 & NA NA & \(N A\) \\
\hline 8 & NA NA & NA \\
\hline 9 & NA NA & NA \\
\hline 10 & NA & NA & NA & NA & \(N A\) & NA & NA NA & NA \\
\hline
\end{tabular}

\subsection*{5.3.1 Transforming the predictions on the original dataset}

It might be useful to extract the presence/absence predictions. To do so, use the CurrentPred() function by switching BinRoc, BinKappa and/or BinTSS to TRUE and each probability of occurence will be transformed into pres-
ence and absence using the cutoff maximising the models accuracy according to Roc, Kappa or TSS. You can also selecting the FiltRoc, FiltKappa and/or FiltTSS options. That will result in creating a new table where probabilities lower than correspunding optimised cutoff are set to 0 and those upper keep theire value.

R code
CurrentPred (GLM=T, GBM=T, GAM \(=T, \quad C T A=T, \quad A N N=T, \quad S R E=T\), \(F D A=T, M A R S=F, R F=T\), BinRoc=T, BinKappa=T, BinTSS=T, FiltKappa=T)

New objects are created for each species containing the predictions in binary and or filtered format using the thresholds produced by the evaluation technics : Pred_Sp290_BinRoc, Pred_Sp290_BinKappa, Pred_Sp290_BinTSS, Pred_Sp290_FiltKappa, and so on.
\begin{tabular}{l} 
\\
\hline load("pred/Pred_Sp290") \\
load("pred/Pred_Sp290_BinKappa") \\
load("pred/Pred_Sp290_FiltKappa") \\
Pred_Sp290[260:270,,1,1]
\end{tabular}
\begin{tabular}{rllllllllll}
\hline ANN & CTA & GAM & GBM & GLM & MARS & FDA & \(R\) & code & \(R F\) & \\
& SRE \\
260 & 979 & 987 & 998 & 931 & 999 & 998 & 984 & 1000 & 0 \\
261 & 989 & 987 & 987 & 929 & 991 & 997 & 984 & 1000 & 1000 \\
262 & 979 & 987 & 935 & 932 & 953 & 998 & 984 & 1000 & 0 \\
263 & 989 & 987 & 944 & 930 & 954 & 998 & 984 & 1000 & 1000 \\
264 & 989 & 987 & 961 & 930 & 954 & 998 & 984 & 1000 & 1000 \\
265 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
266 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 993 & 1000 \\
267 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
268 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
269 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 996 & 1000 \\
270 & 989 & 987 & 998 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
\hline
\end{tabular}

Pred_Sp290_BinKappa[260:270, , 1, 1 , \({ }^{R}\) cod

\begin{tabular}{llllllllll}
262 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 0 \\
263 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
264 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
265 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
266 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
267 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
268 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
269 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1 \\
270 & 1 & 1 & 1 & 1 & 1 & \(N A\) & 1 & 1 & 1
\end{tabular}

Pred_Sp290_FiltKappa[260:270,, \(, 1,1]\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA & RF & SRE \\
\hline 260 & 979 & 987 & 998 & 931 & 999 & NA & 984 & 1000 & 0 \\
\hline 261 & 989 & 987 & 987 & 929 & 991 & NA & 984 & 1000 & 1000 \\
\hline 262 & 979 & 987 & 935 & 932 & 953 & NA & 984 & 1000 & 0 \\
\hline 263 & 989 & 987 & 944 & 930 & 954 & NA & 984 & 1000 & 1000 \\
\hline 264 & 989 & 987 & 961 & 930 & 954 & NA & 984 & 1000 & 1000 \\
\hline 265 & 989 & 987 & 999 & 930 & 999 & NA & 984 & 1000 & 1000 \\
\hline 266 & 989 & 987 & 999 & 930 & 999 & NA & 984 & 993 & 1000 \\
\hline 267 & 989 & 987 & 999 & 930 & 999 & NA & 984 & 1000 & 1000 \\
\hline 268 & 989 & 987 & 999 & 930 & 999 & NA & 984 & 1000 & 1000 \\
\hline 269 & 989 & 987 & 999 & 930 & 999 & NA & 984 & 996 & 1000 \\
\hline 270 & 989 & 987 & 998 & 930 & 999 & NA & 984 & 1000 & 1000 \\
\hline
\end{tabular}

\subsection*{5.3.2 Identifying the best model}

In our example, we could compare all the models we run for the different species using the three different evaluation methods available. The function PredictionBestModel also transforms the probabilities into the presence/absence and filtered formats.
\begin{tabular}{c}
\(R \quad\) code \\
\hline PredictionBestModel \((G L M=T, G B M=T, \quad G A M=T, \quad C T A=T, \quad\) ANN \(=T, \quad F D A=T\), \\
\(M A R S=F, \quad R F=T, \quad S R E=T\), method='all', \\
Bin.trans \(=T\), Filt.trans \(=T)\) \\
\hline
\end{tabular}

Multimodel comparison according to the TSS statistic:
load("pred/BestModelByTSS") \(R\) code
BestModelByTSS
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\$Sp281} \\
\hline & \multicolumn{4}{|l|}{Best.Model Cross.validation indepdt.data} \\
\hline PA1 & RF & & 0.947 & 0.876 \\
\hline PA1_rep1 & \(R F\) & & 0.944 & none \\
\hline PA1_rep2 & ANN & & 0.952 & none \\
\hline PA1_rep3 & \(R F\) & & 0.955 & none \\
\hline PA2 & \(R F\) & & 0.952 & 0.871 \\
\hline PA2_rep1 & RF & & 0.940 & none \\
\hline PA2_rep2 & \(R F\) & & 0.945 & none \\
\hline PA2_rep3 & RF & & 0.972 & none \\
\hline & total.score & Cutoff & Sensitivity & Specificity \\
\hline PA1 & 1.0000 & 340.0 & 100.00 & 100.0 \\
\hline PA1_rep1 & 0.9889 & 410.0 & 99.49 & 99.4 \\
\hline PA1_rep2 & 0.9394 & 431.6 & 96.94 & 97.0 \\
\hline PA1_rep3 & 0.9899 & 420.0 & 99.49 & 99.5 \\
\hline PA2 & 1.0000 & 390.0 & 100.00 & 100.0 \\
\hline PA2_rep1 & 0.9868 & 450.0 & 98.98 & 99.7 \\
\hline PA2_rep2 & 0.9843 & 380.0 & 99.23 & 99.2 \\
\hline PA2_rep3 & 0.9939 & 490.0 & 99.49 & 99.9 \\
\hline \multicolumn{5}{|l|}{\$Sp290} \\
\hline & \multicolumn{4}{|l|}{Best.Model Cross.validation indepdt.data} \\
\hline PA1 & RF & & 0.978 & 0.784 \\
\hline PA1_rep1 & GAM & & 0.981 & none \\
\hline PA1_rep2 & RF & & 0.978 & none \\
\hline \multirow[t]{2}{*}{PA1_rep3} & RF & & 0.981 & none \\
\hline & \multicolumn{4}{|l|}{total.score Cutoff Sensitivity Specificity} \\
\hline PA1 & 1.0000 & 350.0 & 100.00 & 100.00 \\
\hline PA1_rep1 & 0.9666 & 409.6 & 98.07 & 98.58 \\
\hline PA1_rep2 & 0.9933 & 710.0 & 99.33 & 100.00 \\
\hline PA1_rep3 & 0.9962 & 390.0 & 99.85 & 99.76 \\
\hline
\end{tabular}

The RF comes out first almost each time, let's switch it off : Multimodel comparison according to the TSS statistic:

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\$Sp281} \\
\hline & \multicolumn{4}{|l|}{Best.Model Cross.validation indepdt.data} \\
\hline PA1 & GBM & & 0.922 & 0.776 \\
\hline PA1_rep1 & GBM & & 0.919 & none \\
\hline PA1_rep2 & ANN & & 0.952 & none \\
\hline PA1_rep3 & GLM & & 0.934 & none \\
\hline PA2 & GBM & & 0.918 & 0.778 \\
\hline PA2_rep1 & GBM & & 0.889 & none \\
\hline PA2_rep2 & ANN & & 0.912 & none \\
\hline PA2_rep3 & FDA & & 0.962 & none \\
\hline & total.score & Cutoff & Sensitivity & Specificity \\
\hline PA1 & 0.9388 & 474.04 & 98.98 & 94.9 \\
\hline PA1_rep1 & 0.9316 & 568.86 & 97.96 & 95.2 \\
\hline PA1_rep2 & 0.9394 & 431.64 & 96.94 & 97.0 \\
\hline PA1_rep3 & 0.9446 & 499.50 & 97.96 & 96.5 \\
\hline PA2 & 0.9436 & 577.40 & 97.96 & 96.4 \\
\hline PA2_rep1 & 0.9279 & 527.54 & 97.19 & 95.6 \\
\hline PA2_rep2 & 0.9306 & 495.00 & 97.96 & 95.1 \\
\hline PA2_rep3 & 0.9222 & 70.32 & 95.92 & 96.3 \\
\hline \multicolumn{5}{|l|}{\$Sp290} \\
\hline & \multicolumn{4}{|l|}{Best.Model Cross.validation indepdt.data} \\
\hline PA1 & ANN & & 0.971 & 0.658 \\
\hline PA1_rep1 & ANN & & 0.981 & none \\
\hline PA1_rep2 & GBM & & 0.970 & none \\
\hline \multirow[t]{2}{*}{PA1_rep3} & GLM & & 0.974 & none \\
\hline & \multicolumn{4}{|l|}{total.score Cutoff Sensitivity Specificity} \\
\hline PA1 & 0.9385 & 358.0 & 97.63 & 96.22 \\
\hline PA1_rep1 & 0.9666 & 409.6 & 98.07 & 98.58 \\
\hline PA1_rep2 & 0.9732 & 457.4 & 98.74 & 98.58 \\
\hline PA1_rep3 & 0.9645 & 459.5 & 97.63 & 98.82 \\
\hline
\end{tabular}

Multimodel comparison according to the ROC:
load("pred/BestModelByRoc") \(R\) code
BestModelByRoc
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{\$Sp281} & & & \\
\hline & Best.Model & Cross.validation & indepdt.data \\
\hline PA1 & GBM & 0.99 & 0.941 \\
\hline PA1_rep1 & GBM & 0.988 & none \\
\hline PA1_rep2 & GBM & 0.991 & none \\
\hline PA1_rep3 & GBM & 0.992 & none \\
\hline PA2 & GBM & 0.992 & 0.941 \\
\hline PA2_rep1 & GBM & 0.988 & none \\
\hline PA2_rep2 & GBM & 0.991 & none \\
\hline
\end{tabular}
\begin{tabular}{lrrrr} 
PA2_rep3 & \multicolumn{1}{c}{ FDA } & \multicolumn{1}{c}{0.998} & \multicolumn{1}{c}{ none } \\
& total.score & Cutoff & Sensitivity & Specificity
\end{tabular}
\$Sp290
Best.Model Cross.validation indepdt.data
\begin{tabular}{lrrr} 
PA1 & GBM & 0.998 & 0.914 \\
PA1_rep1 & GBM & 0.998 & none \\
PA1_rep2 & GBM & & 0.997 \\
PA1_rep3 & GBM & & O.998
\end{tabular}

Multimodel predictions according to the Kappa statistic
\begin{tabular}{l}
\(\qquad R\) code \\
\hline load("pred/PredBestModelByKappa") \\
PredBestModelByKappa[740:750,, 1]
\end{tabular}
\begin{tabular}{lrrrrrrr}
\hline & PA1 & PA1_rep1 & PA1_rep2 & PA1_rep3 & PA2 & PA2_rep1 & PA2_rep2 \\
740 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
741 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
742 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
743 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
744 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
745 & 71 & 71 & 1 & 2 & 34 & 23 & 72 \\
746 & 71 & 71 & 1 & 2 & 34 & 23 & 71 \\
747 & 71 & 71 & 1 & 0 & 34 & 23 & 75 \\
748 & 71 & 71 & 0 & 0 & 34 & 23 & 72 \\
749 & 71 & 72 & 1 & 0 & 35 & 23 & 94 \\
750 & 71 & 72 & 0 & 0 & 34 & 23 & 72 \\
740 & PA2_rep3 & & & & & & \\
741 & 32 & 32 & & & & & \\
742 & 32 & & & & & & \\
742
\end{tabular}
\begin{tabular}{ll}
743 & 32 \\
744 & 32 \\
745 & 33 \\
746 & 32 \\
747 & 33 \\
748 & 32 \\
749 & 32 \\
750 & 32 \\
\hline
\end{tabular}

\section*{6 Uncertainty analysis}

\subsection*{6.1 Models' projection}

For all the models currently implemented, BIOMOD is able to project potential distributions of species or land-use classes for other areas, other resolutions or other times. BIOMOD does not utilise the geographical coordinates nor does it perform a re-ordering of the data for making projections. The user must ensure that all datasets are kept in the same order in order to allow unmistaken comparisons between observed and predicted maps.

To make the projections, use the function Projection.
The syntax is very similar to previous functions. First add the new data (e.g. climate change scenario), then the prefix name of the output (Proj.name), and then the models for which the projections have to be made.

The Proj.name argument is very important as it will be used to store the results and also used by other functions to reload this data. The Projection function will create a directory using that name. In our case, it will produce "proj.Future1" next to "pred" and "models" in the working directory. A directory is created for each run of the function with a different scenario.
```

 R code
 \#load the example dataset : future scenario 1
data(Future1)
head(Future1)
Projection(Proj = Future1[,4:10], Proj.name='Future1',
GLM = T, GBM = T, GAM = T, CTA = T, ANN = T,
SRE = T, quant=0.025, MARS = T, RF = T,
BinRoc = T, BinKappa = T, BinTSS = T, FiltRoc = T,
FiltKappa = T, FiltTSS = T, repetition.models=T)
save.image('RUN.RData')

```

Let's check the future projections made for this scenario :
\begin{tabular}{l}
\hline load('RUN.RData') \\
\begin{tabular}{l} 
load("proj.Future1/Proj_Future1_Sp290") \\
dim(Proj_Future1_Sp290)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{llllll}
\hline\([1]\) & 2264 & 9 & 4 & 1 & \(R\) code \\
\hline
\end{tabular}
\(\qquad\)
dimnames(Proj_Future1_Sp290)[-1]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{[[1]]} \\
\hline [1] "ANN" "CTA" & "GAM" & "GBM" & "GLM" & "MARS" "FDA" & "RF" \\
\hline [9] "SRE" & & & & & \\
\hline \multicolumn{6}{|l|}{[ [2]]} \\
\hline [1] "total.data" & "rep1" & & "rep2" & "rep3" & \\
\hline \multicolumn{6}{|l|}{[ [3] ]} \\
\hline [1] "PA1" & & & & & \\
\hline
\end{tabular}
Proj_Future1_Sp290[740:750,, 1, 1\(]\) code \(\square\)
\begin{tabular}{llllllllrr}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA & \(R\) & code \\
& 989 & 987 & 999 & 930 & 999 & 998 & 984 & 1000 & 1000 \\
741 & 986 & 987 & 999 & 930 & 999 & 997 & 984 & 992 & 0 \\
742 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
743 & 985 & 987 & 999 & 930 & 999 & 996 & 984 & 985 & 0 \\
744 & 979 & 987 & 997 & 929 & 999 & 999 & 984 & 997 & 1000 \\
745 & 981 & 987 & 999 & 930 & 999 & 998 & 984 & 1000 & 1000 \\
746 & 979 & 916 & 710 & 828 & 853 & 956 & 983 & 956 & 0 \\
747 & 989 & 987 & 982 & 930 & 999 & 991 & 984 & 1000 & 1000 \\
748 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
749 & 989 & 987 & 999 & 930 & 999 & 998 & 984 & 1000 & 1000 \\
750 & 989 & 987 & 999 & 930 & 999 & 997 & 984 & 1000 & 1000 \\
\hline
\end{tabular}
load("proj.Future1/Proj_Future1_Sp290_BinRoc")
Proj_Future1_Sp290_BinRoc[740:750, ,1,1]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & ANN & CTA & GAM & GBM & GLM & MARS & & & \\
\hline 740 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 741 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 742 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 743 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline 744 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 745 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\hline 746 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}
\begin{tabular}{llllllllll}
747 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
748 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
749 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
750 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{tabular}

We also have them in binary and filtered format which have been directly produced by the Projection function.

Compare the projections produced with original data
```

R code
multiple.plot(cbind(Sp.Env[,'Sp290'], Proj_Future1_Sp290[,1:8,1,1]), LatLong, cex=0.73)
load("proj.Future1/Proj_Future1_Sp281")
\#PA1 et PA2
multiple.plot(cbind(PA1=Sp.Env[,'Sp281'],PA2=Sp.Env[,'Sp281'], Proj_Future1_Sp281[,1:8,1,1.

```

\section*{\#repetitions}
```

multiple.plot(cbind(full=Sp.Env[,'Sp281'], Proj_Future1_Sp281[,1:8,1,2]), LatLong, cex=0.7 multiple.plot(cbind (rep1=Sp.Env[,'Sp281'], Proj_Future1_Sp281[,1:8,2,2]), LatLong, cex=0.7i multiple.plot (cbind (rep2=Sp.Env[,'Sp281'], Proj_Future1_Sp281[,1:8,3,2]), LatLong, cex=0.7 multiple.plot(cbind(rep3=Sp.Env[,'Sp281'], Proj_Future1_Sp281[,1:8,4,2]), LatLong, cex=0.7

```

So we have here \(9 \times 4\) projections for each PA run, which gives 72 projections per fufture scenario (2 PA runs). So in total : 144 projections.

\subsection*{6.2 Ensemble Forecasting}

Several approaches are available for combining ensembles of models in BIOMOD. Here is an example of the use of the Ensemble.Forecasting function as well as some details of the different strategies:

Four straightforward means of 'committee averaging' (giving the same weight to all the elements) are done across all the models for each run:
- on the probabilities
- on the binary projection according to the Roc method
- on the binary projection according to the Kappa method
- on the binary projection according to the TSS method

A weighted approach is also available that ranks the models using their evaluation score.
Making a mean on the 0-1 projections gives some sort of probability of occurence. For example, for a given site and with the TSS method, 6 projections give a " 1 " and 2 give a " 0 ". The mean will be 0.75 . It is extracted from binary projection and it is therefore not possible to determine a prior threshold. Conversion into binary is nevertheless possible (see binary below).

The median value is also calculated on the probabilities given by the models. It is considered to be more reliable because it is less influenced by extreme values.

\section*{Some options:}
repetition.models: You can choose to switch on or off the repetition models. If selected, the function will calculate the ensemble forecasts for each run and generate a final one which produces a general ensemble forecast across all the runs for each method. This total consensus is done inconsistently of this argument being set to TRUE or FALSE.
weight.method: the method for ranking the models according to their predictive performance. The decay gives the relative importance of the weights. The default weight decay is 1.6 ; See the example below.
\begin{tabular}{lrrrrrrrr} 
models & GAM & GBM & GLM & ANN & RF & MARS & CTA & FDA \\
score with Roc & 0.96 & 0.92 & 0.90 & 0.88 & 0.87 & 0.75 & 0.72 & 0.68 \\
decay of 1 & 0.125 & 0.125 & 0.125 & 0.125 & 0.125 & 0.125 & 0.125 & 0.125
\end{tabular}
\begin{tabular}{lllllllll} 
decay of 1.2 & 0.217 & 0.181 & 0.151 & 0.126 & 0.105 & 0.087 & 0.073 & 0.061 \\
decay of 1.6 & 0.384 & 0.240 & 0.150 & 0.094 & 0.059 & 0.037 & 0.023 & 0.014 \\
decay of 2 & 0.502 & 0.251 & 0.125 & 0.063 & 0.031 & 0.016 & 0.008 & 0.004
\end{tabular}

You can type in any value (it has however to be higher than 1) depending on the strength of discrimination that you want. A decay of 1 is equivalent to a committee averaging (i.e. same weights given to all elements).
final.model.out: set to True if you want the total ensemble to be build with the final models taken into account.
qual.th: enables to switch off the models under a certain evaluation score. This will be applied to all models on all species. This option is usefull if you think some of your models are realy bad for your study case.
compress: logical or character string specifying whether saving to a named file is to use compression. FALSE corresponds to no compression, and character strings "gzip", or "xz" specify the type of compression. See ?save for more details. Default is "xz". Note that compression may be a long task so you can switch it off if you are more interesting in saving time than in saving space.
```

Ensemble.Forecasting(Proj.name= "Future1", weight.method='Roc',
PCA.median=T, binary=T, bin.method='Roc',
Test=F, decay=1.6, repetition.models=T,
final.model.out=FALSE, qual.th=0, compress="xz")

```
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{Sp281} \\
\hline \multicolumn{8}{|l|}{Sp290} \\
\hline \multicolumn{8}{|l|}{consensus_Future1_results} \\
\hline \multicolumn{8}{|l|}{\$Sp281} \\
\hline \multicolumn{8}{|l|}{\$Sp281\$weights} \\
\hline & ANN & CTA & GAM & GBM & GLM & MARS & FDA \\
\hline PA1 & 0.0297 & 0.0143 & 0.0297 & 0.1500 & 0.0762 & 0.3120 & 0.0762 \\
\hline PA1_rep1 & 0.0229 & 0.0143 & 0.0586 & 0.1500 & 0.0366 & 0.3839 & 0.0937 \\
\hline PA1_rep2 & 0.0297 & 0.0143 & 0.0297 & 0.1219 & 0.1219 & 0.2400 & 0.0586 \\
\hline PA1_rep3 & 0.0366 & 0.0143 & 0.0229 & 0.1500 & 0.0937 & 0.2400 & 0.0586 \\
\hline PA2 & 0.0366 & 0.0229 & 0.0586 & 0.2400 & 0.0143 & 0.1500 & 0.0937 \\
\hline PA2_rep1 & 0.0366 & 0.0229 & 0.0586 & 0.2400 & 0.0143 & 0.1500 & 0.0937 \\
\hline PA2_rep2 & 0.0366 & 0.0143 & 0.0586 & 0.2400 & 0.0229 & 0.1500 & 0.0937 \\
\hline PA2_rep3 & 0.0476 & 0.0229 & 0.0476 & 0.0937 & 0.0143 & 0.3120 & 0.1500 \\
\hline \multicolumn{8}{|c|}{RF SRE} \\
\hline
\end{tabular}
\begin{tabular}{lll} 
PA1 & 0.3120 & 0 \\
PA1_rep1 & 0.2400 & 0 \\
PA1_rep2 & 0.3839 & 0 \\
PA1_rep3 & 0.3839 & 0 \\
PA2 & 0.3839 & 0 \\
PA2_rep1 & 0.3839 & 0 \\
PA2_rep2 & 0.3839 & 0 \\
PA2_rep3 & 0.3120 & 0
\end{tabular}
\$Sp281\$PCA.median
model.selected
PA1 "MARS"
PA1_rep1 "GBM"
PA1_rep2 "GLM"
PA1_rep3 "GLM"
PA2 "MARS"
PA2_rep1 "RF"
PA2_rep2 "GBM"
PA2_rep3 "FDA"
\$Sp281\$thresholds
PA1 PA1_rep1 PA1_rep2 PA1_rep3 PA2
prob.mean \(496.8 \quad 511.7 \quad 451.3 \quad 451.6502 .4\)
prob.mean.weighted \(465.1 \quad 387.9 \quad 370.9 \quad 402.7519 .0\)
\begin{tabular}{lllll} 
median & 572.6 & 609.4 & 498.2 & 499.7 \\
& 576.0
\end{tabular}
\begin{tabular}{lllll} 
Roc.mean & 500.0 & 500.0 & 500.0 & 500.0500 .0
\end{tabular}
\begin{tabular}{lllll} 
Kappa.mean & 500.0 & 500.0 & 500.0 & 500.0500 .0
\end{tabular}
\begin{tabular}{llllll} 
TSS.mean & 500.0 & 500.0 & 500.0 & 500.0 & 500.0
\end{tabular}
\(\begin{array}{lll}\text { prob.mean } & 470.4 & 491.7 \\ 454.0\end{array}\)
\(\begin{array}{llll}\text { prob.mean.weighted } & 406.8 \quad 421.2 \quad 332.1\end{array}\)
median
\(543.2 \quad 584.3 \quad 487.9\)
Roc.mean
Kappa.mean
\(500.0 \quad 500.0 \quad 500.0\)
\(500.0 \quad 500.0 \quad 500.0\)
\(\begin{array}{llll}\text { TSS.mean } & 500.0 & 500.0 & 500.0\end{array}\)
\$Sp290
\$Sp290\$weights
ANN CTA GAM GBM GLM MARS FDA
\(\begin{array}{lllllllllllll}\text { PA1 } & 0.0366 & 0.0143 & 0.0937 & 0.240 & 0.0586 & 0.1500 & 0.0229\end{array}\)
\(\begin{array}{llllllllllllll}\text { PA1_rep1 } & 0.0366 & 0.0143 & 0.0937 & 0.258 & 0.0586 & 0.2580 & 0.0229\end{array}\)
PA1_rep2 0.03660 .01430 .09370 .2400 .05860 .15000 .0229
PA1_rep3 0.03660 .01430 .19500 .1950 .07620 .07620 .0229
RF SRE
PA1 0.38390
PA1_rep1 0.25800
PA1_rep2 0.38390
PA1_rep3 0.38390
```

$Sp290$PCA.median
model.selected
PA1 "GBM"
PA1_rep1 "MARS"
PA1_rep2 "RF"
PA1_rep3 "RF"

```
\$Sp290\$thresholds
\begin{tabular}{lrrrr} 
& PA1 & PA1_rep1 & PA1_rep2 & PA1_rep3 \\
prob.mean & 684.7 & 651.5 & 643.5 & 579.5 \\
prob.mean.weighted & 592.3 & 610.7 & 602.1 & 505.2 \\
median & 695.1 & 650.8 & 568.3 & 511.8 \\
Roc.mean & 500.0 & 500.0 & 500.0 & 500.0 \\
Kappa.mean & 500.0 & 500.0 & 500.0 & 500.0 \\
TSS.mean & 500.0 & 500.0 & 500.0 & 500.0
\end{tabular}

\section*{OUTPUTS}

Objects produced : consensus_Future1_results (in Rs memory) which is the list returned by the function. It contains all the computational information that has been used to render the ensemble forecasts, the weights awarded to the models in the weighting process. The model selected by the PCA.median method (if set to True) is also returned and give us the model selected as the first axis of a PCA analyses (that means the model that explain the best the consensus probabilites). The forecasts themselves are stored on the hard disk directly in the corresponding folder.

NOTE1 : For the slot containing the weigths (e.g. \$Sp281\$weights), the PA1 line correspunding to a run calibrate with all the pseudo-absences selected and presences data (models are evaluated on the same data so are often over optimistic). The PA1_rep1, PA1_rep2, and PA1_rep3 lines are linked to models calibrated and validated on two different subset of the pseudo-absences selected and presences data (DataSplit opton in Models).

NOTE2 : The thresholds slot contains some consensus thresholds for differents run. prob.mean and prob.mean.weighted correspund respectivly to the mean and weighted mean of thresholds used to convert probabilities into presences/abscences data(e.g (Evaluation.results.xx) table). median is the median of the same thresholds. The values of Roc.mean, Kappa.mean and TSS.mean is always set to 500 . We made the assumption that as index are resacaled on a 0-1 ladder, 0.5 is the treshold that will discriminate presences and absences.

The function produces an object per species. These objects are arrays of three dimensions :
```

R code
load("proj.Future1/consensus_Sp290_Future1")
dim(consensus_Sp290_Future1)

$[1]$	2264	4	6	R code \square

```
\(\qquad\)
[[1]] \(R\) code \(\longrightarrow\)
[1] "PA1" "PA1_rep1" "PA1_rep2" "PA1_rep3"
[ [2] ]
[1] "prob.mean" "prob.mean.weighted"
[3] "median" "Roc.mean"
[5] "Kappa.mean" "TSS.mean"

The second dimension is the repetition runs and the third dimension is the consensus methods. There is also an object called "Total_consensus_Future1" that makes a single output out of all the repetitions.

\section*{\(R\) code}
load("proj.Future1/Total_consensus_Future1")
dim(Total_consensus_Future1)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{llll}
\hline\([1]\) & 2264 & 2
\end{tabular} & R code \\
\hline \multicolumn{2}{|l|}{dimnames(Total_consensus_Future1) \(\begin{gathered}R \text { code } \\ {[-1]}\end{gathered}\)} \\
\hline \multicolumn{2}{|l|}{[ [1]]} \\
\hline [1] "Sp281" "Sp290" & \\
\hline \multicolumn{2}{|l|}{[ [2] ]} \\
\hline [1] "prob.mean" & "prob.mean.weighted" \\
\hline [3] "median" & "Roc.mean" \\
\hline [5] "Kappa.mean" & "TSS.mean" \\
\hline
\end{tabular}

Now the second dimension is the species. Let's see and plot some of these :
\[
\begin{aligned}
& \text { Total_consensus_Future1[1:20, , 1] } \\
& \text { multiple.plot(cbind(DataBIOMOD[, 'Sp281'], } \\
& \qquad \text { Total_consensus_Future1[, 'Sp281', } \\
& \qquad(1,2,3,5,6)]), \text { LatLong, cex=0.8) }
\end{aligned}
\]


If binary is set to True, the same names are used with a terminal _Bin containing the consensus results in binary format.

\section*{7 Distributions Changes}

\subsection*{7.1 Species Range Change}

This function allows to estimate the proportion and relative number of pixels (or habitat) lost, gained and stable for the time slice considered : the range change.

The future range changes are calculated as a percentage of the species' present state. For example, if a species currently occupies 100 cells and is estimated by a model to cover 120 cells in the future, the range change will be \(+20 \%\).

The function uses two datasets. The current species distributions and the future one. Note that predictions for current and future must be in a binary (presence and absence) format and in the same resolution.

Let's use our data :
```

load("proj.Future1/Total_consensus_Future1_Bin")
Biomod.RangeSize(CurrentPred = Sp.Env[,c(11,13)],
FutureProj = Total_consensus_Future1_Bin[,, 2],
SpChange.Save="SpChange")

```

\section*{A list of two datasets is created: Compt.By.Species and Diff.By.Pixel}

Diff.By.Pixel stores useful information for each species. The species are in columns and the pixel in rows. For each species, a pixel could have four different values:
-2 if the given pixel is predicted to be lost by the species. -1 if the given pixel is predicted to be stable for the species. 0 is the given pixel was not occupied, and will not be into the future. 1 if the given pixel was not occupied, and is predicted to be into the future.

In our examples :

\begin{tabular}{rrr}
742 & 1 & -1 \\
743 & 1 & 1 \\
744 & 0 & -1 \\
745 & 1 & -1 \\
746 & 0 & -1 \\
747 & 1 & -1 \\
748 & 1 & -1 \\
749 & 1 & -1 \\
750 & 0 & -1 \\
751 & 0 & -1 \\
752 & -1 & 0 \\
753 & -1 & 0 \\
754 & -1 & -2 \\
755 & -1 & 0 \\
756 & -1 & -1 \\
757 & -1 & -1 \\
758 & -1 & -1 \\
759 & -1 & -1 \\
760 & 1 & 1
\end{tabular}

\footnotetext{
multiple.plot(SpChange\$Diff.By.Pixel, LatLong)
}


Compt.By.Species stores the summary of range change for each species (by rows).
The first four columns are relative numbers: Disa represents the number of pixels predicted to be lost by the given species. Stable0 is the number of pixels which are not currently occupied by the given species and not predicted to be. Stable1 represents the number of pixels currently occupied by the given species, and predicted to remain occupied into the future. Gain represent the number of pixels which are currently not occupied by the given species but predicted to be into the future.
PercLoss, PercGain and SpeciesRangeChange are the related percentage estimating as the following:
- CurrentRangeSize represent the modelled current range size (number of pixels occupied) of the given species.
- FutureRangeSize0Disp represents the future modelled range size assuming no migration of the given species.
- FutureRangeSize1Disp represents the future modelled range size assuming migration of the given species (depending on the datasets given in input, if Migration has been used or not).
\begin{tabular}{l}
\hline SpChange\$Compt.By.Species
\end{tabular}\(\quad R\) code \(\quad \square\)


For other examples, we need some extra species data than the one we have been modelling. Load the dataset called DATA100SP.txt :
\(\qquad\)
load("DATA100SP.RData")
\#adds three objects : storeC, storeF and Curr
1s()

```

[25] "model"
[26] "myPackages"
[27] "obj"
[28] "our.lines"
[29] "Pred"
[30] "Pred2"
[31] "Pred3"
[32] "PredBestModelByKappa"
[33] "Pred_Sp281"
[34] "Pred_Sp290"
[35] "Pred_Sp290_BinKappa"
[36] "Pred_Sp290_FiltKappa"
[37] "Pred_Sp290_indpdt"
[38] "Proj_Future1_Sp290"
[39] "Proj_Future1_Sp290_BinRoc"
[40] "rand"
[41] "Resp.Var"
[42] "Sp290_GLM_PA1"
[43] "Sp290_RF_PA1"
[44] "SpChange"
[45] "Sp.Env"
[46] "store"
[47] "storeC"
[48] "storeF"
[49] "Total_consensus_Future1"
[50] "Total_consensus_Future1_Bin"
[51] "VarImportance"

```

It corresponds to the run of the FDA on 100 species with the same resolution on current and future data, and coordinates (in Curr). Let's have a look at them :

\section*{\(R\) code}
```

multiple.plot(storeC[,1:9], Curr[,1:2], cex=0.7)
multiple.plot(storeF[,1:9], Curr[,1:2], cex=0.7)

```


Let's have a look at the SRC for some of those species :
\[
\begin{gathered}
\text { Biomod.RangeSize (CurrentPred }=R \text { store } \quad, \\
\text { FutureProj }=\text { storeF, } \\
\text { SpChange.Save }=\text { "SpChange100") } \\
\text { SpChange100\$Compt.By.Species }[1: 20,]
\end{gathered}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Loss & Stable0 & Stable1 Gain & PercLoss & PercGain \\
\hline V338 & 2568 & 16028 & 43476588 & 37.14 & 95.2711 \\
\hline V341 & 3988 & 16826 & 32155502 & 55.37 & 76.3848 \\
\hline V342 & 3710 & 19587 & 9945240 & 78.87 & 111.3946 \\
\hline V348 & 306 & 22084 & 18405301 & 14.26 & 247.0177 \\
\hline V352 & 4426 & 23197 & 1269639 & 77.72 & 11.2204 \\
\hline V353 & 7175 & 17449 & 26372270 & 73.12 & 23.1349 \\
\hline V356 & 809 & 13362 & 60309330 & 11.83 & 136.4235 \\
\hline V358 & 3980 & 11136 & 96294786 & 29.25 & 35.1679 \\
\hline V359 & 951 & 19655 & 45564369 & 17.27 & 79.3354 \\
\hline V360 & 3641 & 11938 & 100533899 & 26.59 & 28.4723 \\
\hline V365 & 606 & 9956 & 110927877 & 5.18 & 67.3363 \\
\hline V366 & 2752 & 23198 & 11512430 & 70.51 & 62.2598 \\
\hline V367 & 1016 & 16503 & 33588654 & 23.23 & 197.8509 \\
\hline V368 & 1347 & 11846 & 68209518 & 16.49 & 116.5422 \\
\hline v372 & 1053 & 21293 & 45532632 & 18.78 & 46.9497 \\
\hline V376 & 556 & 15217 & 49588800 & 10.08 & 159.5938 \\
\hline V377 & 591 & 23803 & 16023535 & 26.95 & 161.1947 \\
\hline V379 & 1817 & 27081 & 6285 & 74.31 & 0.2045 \\
\hline V382 & 396 & 24532 & 17502853 & 18.45 & 132.9450 \\
\hline V385 & 400 & 18976 & 30457110 & 11.61 & 206.3861 \\
\hline \multicolumn{6}{|c|}{SpeciesRangeChange CurrentRangeSize} \\
\hline V338 & & & 58.134 & 6915 & \\
\hline V341 & & & 21.019 & 7203 & \\
\hline V342 & & & 32.526 & 4704 & \\
\hline V348 & & & 32.759 & 2146 & \\
\hline V352 & & & 66.497 & 5695 & \\
\hline V353 & & & -49.990 & 9812 & \\
\hline V356 & & & 24.594 & 6839 & \\
\hline V358 & & & 5.923 & 13609 & \\
\hline V359 & & & 62.066 & 5507 & \\
\hline V360 & & & 1.884 & 13694 & \\
\hline V365 & & & 62.156 & 11698 & \\
\hline V366 & & & -8.250 & 3903 & \\
\hline V367 & & & 74.623 & 4374 & \\
\hline V368 & & & 100.049 & 8167 & \\
\hline V372 & & & 28.166 & 5606 & \\
\hline V376 & & & 49.510 & 5514 & \\
\hline V377 & & & 34.245 & 2193 & \\
\hline V379 & & & 74.110 & 2445 & \\
\hline V382 & & & 14.492 & 2146 & \\
\hline V385 & & & 94.775 & 3445 & \\
\hline \multicolumn{6}{|r|}{FutureRangeSize.NoDisp FutureRangeSize.Fulldisp} \\
\hline V338 & & & 4347 & & 10935 \\
\hline V341 & & & 3215 & & 8717 \\
\hline V342 & & & 994 & & 6234 \\
\hline V348 & & & 1840 & & 7141 \\
\hline V352 & & & 1269 & & 1908 \\
\hline V353 & & & 2637 & & 4907 \\
\hline
\end{tabular}
\begin{tabular}{lrr} 
V356 & 6030 & 15360 \\
V358 & 9629 & 14415 \\
V359 & 4556 & 8925 \\
V360 & 10053 & 13952 \\
V365 & 11092 & 18969 \\
V366 & 1151 & 3581 \\
V367 & 3358 & 12012 \\
V368 & 6820 & 16338 \\
V372 & 4553 & 7185 \\
V376 & 4958 & 13758 \\
V377 & 1602 & 5137 \\
V379 & 628 & 633 \\
V382 & 1750 & 4603 \\
V385 & 3045 & 10155 \\
\hline
\end{tabular}
```

samp <- sample(100, 1)
x11()
level.plot(SpChange100\$Diff.By.Pixel[,samp], Curr[,1:2], cex=0.6,
title=colnames(storeC) [samp])

```

\subsection*{7.2 Species Turnover}

This function allows to estimate species loss, gained, and turnover by pixel for the time slice considered.
The function uses two datasets: the current species distributions and a future one. Note that predictions for current and future must be in a binary (presence and absence) format.

We can calculate the projected turnover for the 100 species and produce a plot of the turnover values.
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{```
Biomod.Turnover(CurrentPred = storeC, FutureProj = storeF,
    Turnover.Save= "Turnover")
level.plot(Turnover[,7], Curr[,1:2],
    title='projected species turnover',
    cex=0.6)
```} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
projected species turnover

\(R\) code
Turnover[740:750,]
\begin{tabular}{lrrrrrrr}
\hline \multicolumn{8}{c}{ Loss } \\
& Stable0 & Stable1 & Gain PercLoss & \(R\) code & & PercGain & Turnover \\
740 & 15 & 59 & 18 & 8 & 45.45 & 24.24 & 56.10 \\
741 & 15 & 58 & 19 & 8 & 44.12 & 23.53 & 54.76
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 742 & 16 & 52 & 21 & 11 & 43.24 & 29.73 & 56.25 \\
\hline 743 & 10 & 61 & 23 & 6 & 30.30 & 18.18 & 41.03 \\
\hline 744 & 9 & 61 & 24 & 6 & 27.27 & 18.18 & 38.46 \\
\hline 745 & 11 & 58 & 25 & 6 & 30.56 & 16.67 & 40.48 \\
\hline 746 & 9 & 59 & 26 & 6 & 25.71 & 17.14 & 36.59 \\
\hline 747 & 9 & 59 & 27 & 5 & 25.00 & 13.89 & 34.15 \\
\hline 748 & 10 & 57 & 26 & 7 & 27.78 & 19.44 & 39.53 \\
\hline 749 & 8 & 60 & 26 & 6 & 23.53 & 17.65 & 35.00 \\
\hline 750 & 10 & 58 & 25 & 7 & 28.57 & 20.00 & 40.48 \\
\hline \multicolumn{8}{|c|}{CurrentSR FutureSR.NoDisp FutureSR.FullDisp} \\
\hline 740 & & & & 18 & & 26 & \\
\hline 741 & & & & 19 & & 27 & \\
\hline 742 & & & & 21 & & 32 & \\
\hline 743 & & & & 23 & & 29 & \\
\hline 744 & & & & 24 & & 30 & \\
\hline 745 & & & & 25 & & 31 & \\
\hline 746 & & & & 26 & & 32 & \\
\hline 747 & & & & 27 & & 32 & \\
\hline 748 & & & & 26 & & 33 & \\
\hline 749 & & & & 26 & & 32 & \\
\hline 750 & & & & 25 & & 32 & \\
\hline
\end{tabular}

In the stored database, 10 columns are created.
The first four columns are relative numbers: Disa represents the number of species predicted to disappear from the given pixel. Stable0 is the number of species which are currently not in the given pixel and not predicted to migrate. Stable1 represents the number of species currently occurring in the given pixel, and predicted to remains into the future. Gain represent the number of species which are currently absent but predicted to migrate in the given pixel.

PercLoss, PercGain and Turnover are the related percentage estimated as the following:
- PercLoss \(=100 \times \mathrm{L} /(\mathrm{SR})\)
- PercGain \(=100 \times \mathrm{G} /(\mathrm{SR})\)
- Turnover \(=100 \times(\mathrm{L}+\mathrm{G}) /(\mathrm{SR}+\mathrm{G})\)

Where SR is the current species richness.
CurrentSR represent the current modelled species richness in the given pixel.
FutureSR0Disp represents the future modelled species richness assuming no migration of species
FutureSR1Disp represents the future modelled species richness assuming migration (depending on the datasets given in input, if Migration has been used or not).
```

R code
multiple.plot(Turnover[,5:8], Curr[,1:2], cex=0.6)

```


\subsection*{7.3 Probability Density Function}

This function enables an overall viewing of the future projections range per species and gives the likelihood of range shift estimations. The optimal way for condensing \(50,75,90\) and \(95 \%\) of the data will be calculated.
initial: a vector in a binary format (ones and zeros) representing the current distribution of a species which will be used as a reference for the range change calculations.
projection: a matrix grouping all the projections where each column is a single prediction. Make sure you keep projections in the same order as the initial vector (line1=site1, line2=site2, etc.).

Resolution: the step used for classes of projection in graphics. The default value is 5 .

NOTE: modifying the resolution will directly influence the probability scale. Bigger classes will cumulate a greater number of predictions and therefore represent a greater fraction of the total predictions. The probability is in fact that of the class and not of isolated events.
cusn: stands for current vs new. If true, the range change calculations will be of two types: the percentage of cells currently occupied by the species to be lost, and the relative percentage of cells currently unoccupied but projected to be, namely 'new' cells, compared to current surface range.

With the example above where the species will have 120 suitable sites in the future whilst only 100 at present, this might be the result of different events. A case could be that the 100 present cells are kept and an additional 20 new sites makes the 120 cells. Another possibility is that the 100 current cells are predicted to be lost with 120 new cells, also giving 120 total cells in future.

These two cases bring the same SRC calculations results, but whilst the first case does not imply much as in survival strategies (the current populations will still be in good conditions in future, plus even having new potential territories to explore and colonise), the second case, however, implies a strong migrating effort for the populations to stay in suitable environments. Those two cases and all in-between possibilities are distinguishable with this method.
groups: an option for ungrouping the projections enabling a separated visualisation of the prediction range per given group. A matrix is expected
where each column is a single projection and each line is giving details of one parameter.

Do keep in mind that this matrix represents the projections the way you have put them into the projection argument. Sort your matrix the way you have sorted your projections!

In can look like this:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & [,1] & [,2] & [,3] & [,4] & \[
\begin{aligned}
& R \\
& {[, 5]} \\
& , 50
\end{aligned}
\] & [,6] & [,7] & [,8] \\
\hline [1,] & "GAM" & "GAM" & "GAM" & "CTA" & "CTA" & "CTA" & "RF" & "RF" \\
\hline [2,] & \[
\begin{aligned}
& \text { "Roc" } \\
& {[, 9]}
\end{aligned}
\] & "Kарра" & "TSS" & "Roc" & "Kappa" & "TSS" & "Roc" & "Kappa" \\
\hline [1,] & "RF" & & & & & & & \\
\hline [2,] & "TSS" & & & & & & & \\
\hline
\end{tabular}
```

\#preparation of data

## Sp281

scenarios <- "Future1"
models <- c("ANN", "CTA", "GAM", "GBM", "GLM", "MARS", "FDA", "RF", "SRE")
evaluation <- c("Roc", "Kappa", "TSS")
reps <- 4
PAs <- c("PA1", "PA2")
DataFrame <- matrix(NA, 2264, 2)
Groups <- matrix(NA, 3, 216)
Groups[1,] <- c(rep(models,24))
Groups[2,] <- c(rep(rep(evaluation, each=36),2 ))
Groups[3,] <- c(rep(rep(PAs, each=108), 1))
for(sc in scenarios){
for(PA in PAs){
for(ev in evaluation){
eval(parse(text=paste("load('proj.", sc, "/Proj_", sc,
"_Sp281_Bin", ev, "')", sep="")))
add.data <- eval(parse(text=paste("Proj_", sc, "_Sp281_Bin",
ev, sep="")))
DataFrame <- cbind(DataFrame, add.data[,, 'total.data', PA])
DataFrame <- cbind(DataFrame, add.data[,, 'rep1', PA])
DataFrame <- cbind(DataFrame, add.data[,, 'rep2', PA])
DataFrame <- cbind(DataFrame, add.data[,, 'rep3', PA])
}
}
}

```

PDFdata281 <- DataFrame[,-1] [, -1]
ProbDensFunc(initial=Sp.Env[,'Sp281'], projections=PDFdata281, cvsn = T, groups = Groups, resolution = 5)
\begin{tabular}{lrrr}
& & \(R\) code \\
\hline \$stats & & \\
\multicolumn{3}{l}{\begin{tabular}{l}
lower
\end{tabular}} & limit upper \\
limit & & \\
\(50 \%\) & 116.33 & 146.2 & \\
\(75 \%\) & 80.87 & 147.2 & \\
\(90 \%\) & 80.87 & 172.2 & \\
\(95 \%\) & 66.07 & 177.3 &
\end{tabular}

The two lines represent where the SRC value is 0 (no absolute change in the number of suitable sites) and \(+100 \%\) (the species will double its current potential distribution size). Along those line, you have all the possibilities for giving that one value \((-10+10=0 ;-40+40=0 ; \ldots)\).

On the cvsn graph, each dot is a projection. See how the single SRC value does not reflect every thing that is going on. In certain cases it hides the potential loss of current habitats, which would surely lead to different
management decisions if known.

\subsection*{7.3.1 An example with repetitions}

The help file of the ProbDensFunc function provides a full example. It is done with 20 repetitions for half of the models to assess the variability in prediction making when the calibration of the model is done on partial data. Only Sp163 is done. Please look in details the help file for an example of the data preparation you should go through to run the function properly.
example(ProbDensFunc)```

[^0]: \#the number of data selected by the pseudo-absences procedure
 length(Biomod.PA.data\$Sp290)

