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1  | INTRODUC TION

Community ecology is entering a new era, where data are becom-
ing multi- species, multi- trophic and integrate species interactions 
(Pellissier et al., 2018). So far, ecologists have compared community 
composition data on the basis of species identity, functional traits 
or phylogenetic similarities (reviewed in Münkemüller et al., 2020). 
With the ever- increasing availability of interaction knowledge, we 
are now facing the opportunity to also compare communities based 

on their interaction network architecture, that is, the configuration 
of the interaction links between species of a community. This might 
provide crucial insights to describe biodiversity variations across en-
vironments (Pellissier et al., 2018), unveil network architecture simi-
larities across communities composed of different species (Ohlmann 
et al., 2019) or understand the assembly rules behind multi- trophic 
assemblages (Münkemüller et al., 2020). In addition, the ecological 
properties that can be described from the architecture of a trophic 
network (e.g. degree of omnivory, generalism, compartmentalization, 
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Abstract
1. Comparing the architecture of interaction networks in space or time is essential 

for understanding the assembly, trajectory, functioning and persistence of species 
communities. Graph embedding methods, which position networks into a vector 
space where nearby networks have similar architectures, could be ideal tools for 
this purposes.

2. Here, we evaluated the ability of seven graph embedding methods to disentangle 
architectural similarities of interactions networks for supervised and unsuper-
vised posterior analytic tasks. The evaluation was carried out over a large number 
of simulated trophic networks representing variations around six ecological prop-
erties and size.

3. We did not find an overall best method and instead showed that the performance 
of the methods depended on the targeted ecological properties and thus on the 
research questions. We also highlighted the importance of normalising the em-
bedding for network sizes for meaningful posterior unsupervised analyses.

4. We concluded by orientating potential users to the most suited methods given the 
question, the targeted network ecological property, and outlined links between 
those ecological properties and three ecological processes: robustness to extinc-
tion, community persistence and ecosystem functioning. We hope this study will 
stimulate the appropriation of graph embedding methods by ecologists.
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number of trophic levels) are important to characterise ecosystem 
functioning, resilience and robustness to extinctions (Monteiro & 
Faria, 2016; Tylianakis et al., 2010). To address these objectives, 
graph embedding methods that cast many networks into a common 
multi- dimensional vector space reflecting many aspects of architec-
tural variations across the networks (e.g. Narayanan et al., 2017), are 
appealing. They allow standard multivariate analyses to be applied 
a posteriori to a set of networks, including descriptive analyses (e.g. 
dimension reduction techniques for visualization) and supervised 
learning (i.e. predicting an external characteristic from a network 
embedding coordinates based on knowledge of its values over a 
sample of network examples). Despite the diversity of individual 
network metrics or motifs studied in ecology (Lau et al., 2017), a 
small number of multi- dimensional graph embedding methods have 
been applied to trophic networks, and there has been no comparison 
of their abilities to capture the signatures of ecological processes on 
network architectures.

The ecological properties of a trophic network partially deter-
mine its dynamics, especially its persistence, its robustness to ex-
tinctions and other ecological processes. The distribution of species 
across trophic levels in a network especially impacts its robustness 
to extinctions (Pimm et al., 1991). For example, a lower proportion 
of basal species induces less prey per predators in higher trophic 
levels and thus increases the likelihood of secondary extinctions 
and extinction cascades. Regarding community persistence, longer 
trophic chains are also suggested to decrease the recovering rate 
of species populations after disturbance (Pimm et al., 1991), which 
explains shorter chains in fluctuating environments like for insect 
food webs. The length of trophic chains may also impact the global 
balance of carbon fluxes in the ecosystem through compensation of 
primary production and respiration as shown for lake ecosystems 
(Schindler et al., 1997). Compartmentalization has been theoretically 
shown to favour robustness to extinctions in food webs because it 
limits the effect of extinction cascades across modules (Thébault 
& Fontaine, 2010; Tylianakis et al., 2010). Compartmentalization 
can also impact ecosystem functioning, for instance by decreas-
ing parasitism rate in plant– herbivore– parasite system (Montoya 
et al., 2003). Regarding more local ecological properties, predator 
generalism (number of preys), which is related to connectance, in-
creases robustness to extinctions (Thébault & Fontaine, 2010). 
Moreover, theory suggests a strong link between generalism and 
the long- term persistence of community (Pimm et al., 1991; Thébault 
& Fontaine, 2010; Tylianakis et al., 2010), even though the pre-
cise mechanism behind this phenomenon still appears ambiguous. 
While it is often documented that generalism negatively affects 
community persistence (Thébault & Fontaine, 2010; Torres- Alruiz 
& Rodrguez, 2013), it may also provide a buffer in the response of 
individual predators to stochastic fluctuations of prey abundances 
(Tylianakis et al., 2010). This paradox is apparently resolved when 
high generalism is composed of many weak links which favours per-
sistence (McCann et al., 1998). While generalism makes a species 
less sensitive to varying prey populations, vulnerability increases 
its population control. When both increase, the biomass transfer 

rates are optimised at the network scale and may improve ecosys-
tem resilience. For instance, the vulnerability of herbivores to many 
predators improved their population control in a collard- aphid sys-
tem (Snyder et al., 2006), but excessive competition can lead to the 
opposite effect (Montoya et al., 2003). Omnivory is another local 
property known to influence parasitism rate (Montoya et al., 2003) 
and community persistence (Borrelli, 2015; Pimm et al., 1991). Loop 
patterns are suggested to destabilise trophic networks and decrease 
the persistence of species participating in them. Indeed, triangular 
motifs containing loops are less stable compared to other triangular 
motifs which was proposed as an explanation of their rarity in empir-
ical food webs (Borrelli, 2015; Monteiro & Faria, 2016). As those eco-
logical properties can be measured from network architectures and 
are important for many ecological processes, they provide a solid 
ground for comparing networks through graph embedding methods.

Among the few methods used to analyse the spatial variation of 
interaction networks, most quantify interaction turnover (i.e. turn-
over of links) between pairs of species (Ohlmann et al., 2019; Poisot 
et al., 2012). However, these methods do not account for the ecolog-
ical properties that involve more than two species like omnivory and 
generalism degrees, trophic levels, loops or compartmentalization. 
Yet, it is crucial to compare these properties across distant ecosys-
tems, independently of pure species and interaction turnover. Thus, 
measuring more complex network ecological properties requires to 
look at sub- structures composed of more than two species, often 
interlinked and very numerous. These characterizations of network 
architectures may be simplified by finding a suited vector space 
where each network will be represented as a vector, which is exactly 
the purpose of graph embedding methods. Some common network 
metrics in ecology (e.g. connectance) may be seen as components of 
graph embedding methods (Braga et al., 2019; Kortsch et al., 2019; 
Thompson & Townsend, 2005; Wood et al., 2015). Ecologists have 
indeed already used node level metrics (e.g. average number of links 
per node), node distances (e.g. diameter, mean distance) and whole 
networks metrics (e.g. connectance, modularity or nestedness) that 
measure specific properties of the network architecture. However, 
it is notoriously difficult to select the right metric to measure the 
variability of an ecological property (Braga et al., 2019) and one may 
also miss variations that are not explicitly dealt with the selected 
metrics. Counts of subgraphs with fixed number of nodes, called mo-
tifs, are also used in ecology. For instance, counts of triangular and 
bipartite motifs were applied to compare trophic network (Camacho 
et al., 2007) and plant– pollinator mutualistic network architectures 
(Simmons et al., 2019). However, these methods are restricted to 
small motif sizes due to computational complexity (i.e. up to four 
nodes in food webs, see Monteiro and Faria (2016), up to six nodes in 
bipartite mutualistic networks, see Simmons et al. (2019)).

Interestingly, a spectrum of efficient graph embedding methods 
has been developed in other domains to represent networks based 
on different types of sub- structures. Some methods may further inte-
grate information on node labels to which we could feed information 
on trophic groups (Cirtwill et al., 2018), that is, sets of species sharing 
similar prey and predators, or any other relevant external information 
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that classifies species into groups. Several sophisticated unsupervised 
machine learning algorithms (e.g. UGRAPHEMB (Bai et al., 2019), 
Graph2Vec (Narayanan et al., 2017)) have been proposed to produce 
graph embeddings. Particularly, Graph2Vec (Narayanan et al., 2017) 
is an interesting candidate for ecological applications. In this method, 
networks composed of similar node neigbourhoods are represented 
by embedding coordinates that are close in terms of Euclidean dis-
tance. Shortest path lengths have also been used to compare network 
architectures (Borgwardt & Kriegel, 2005). Comparing shortest path 
lengths across trophic networks is also interesting from a functional 
point of view. Indeed, shortest path lengths encode information re-
lated to trophic chain lengths or energy flows and are at the root of 
centrality measures (Costa et al., 2019). These methods might bring 
different and relevant perspectives to ecological network analyses, 
but they require a comprehensive and contextual understanding to 
be successfully applied.

To compare graph embedding methods for their use in ecology, 
we need to define their usage scenarios. They may be used for dif-
ferent posterior analytic tasks on networks including supervised and 
unsupervised learning. An unsupervised learning task would typi-
cally consist in identifying gradients or clusters of variation through 
visualization after reducing the embedding space dimensionality 
(e.g. two dimensions). In this visualization space, a set of networks 
that appear clustered, are thus neighbours in the embedding and 
share similarities in their architectures. This task requires depicting, 
in the embedding matrix, the main architectural variations exist-
ing across networks while reducing the effects of non- interesting 
sources of variability (e.g. network size). Alternatively, supervised 
learning aims to predict a given property of a network as a function 
of its embedding coordinates. For instance, one may want to predict 
the robustness to extinction (Dunne et al., 2002) as a function of the 
counts of shortest path lengths. We therefore appraise the ability 
of graph embedding methods to represent important architectural 
variations across trophic networks and for posterior supervised and 
unsupervised analyses. We first introduce five graph embedding 
methods that are relevant to trophic network analyses and based on 
different architectural characteristics (e.g. motifs or paths lengths). 
Since two of these methods can handle node labels information, 
we thus moreover test the use of known trophic groups as node 
labels. Second, we illustrate the dimension reduction step for visu-
alization (unspervised learning) with a recent nonlinear dimension 
reduction technique called Uniform Manifold Approximation and 
Projection (UMAP; McInnes et al., 2018). Third, we detail our simu-
lation procedure of trophic networks where we control the variation 
of six important categorical ecological properties (maximum trophic 
length, trophic group composition, compartmentalization, omnivory, 
generalism and intra- trophic group predation) and, independently, 
species richness. Fourth, we introduce several measures to evalu-
ate the relative performances of the embedding methods for super-
vised and unsupervised scenarios, including robustness to species 
richness variability for the latter. This methodological workflow is 
summarised by Figure 1. We finally guide the user towards the most 
suited method given the general aim of the analysis and the network 

ecological properties focused on, and further relate these properties 
to important ecological processes.

2  | MATERIAL S AND METHODS

2.1 | Embedding methods

Among the available graph embedding methods, we selected five of 
them that should prove useful for ecological data and are relatively 
easy to use (Table 1). Two of them (Graph2Vec and ShortPaths2Vec) 
can also use prior information on species (node labels) like the be-
longing to a trophic group. These methods all apply to directed un-
weighted graphs and thus account for the asymmetry of interactions 
between species' pairs. We consider by convention that interactions 
are directed from prey to predators.

2.1.1 | Groups2Vec

The underlying idea is that all species of the metanetwork (which de-
scribes potential interactions between the union of species over all 
networks) can be sorted by their belonging to trophic groups, meant 
to represent their topological role in the metanetwork (Cirtwill 
et al., 2018). In general, there exist many ways to define a partition 
of species into trophic groups. For instance, one could rely on pre-
defined known guilds or trophic groups, build a classification from 
species functional traits or use a statistical approach that group spe-
cies behaving in the same way in the network, like a stochastic block 
model (SBM, see Allesina et al., 2008; Kéfi et al., 2016) applied on 
the metanetwork as done by Ohlmann et al. (2019). In this study, 
for the sake of simplicity, we rely on the trophic groups used for the 
construction of the simulated networks. Thus, we do not infer those 
groups from the data but rather use the already known group struc-
ture. Groups2Vec simply builds its embedding matrix by computing 
the vector of group proportions (species richness in each group di-
vided by total richness) for each network.

2.1.2 | Metrics2Vec

Several metrics have long been used to characterise variations 
of trophic networks in space (see e.g. Braga et al., 2019; Kortsch 
et al., 2019; Thompson & Townsend, 2005; Wood et al., 2015) or in 
time (Albouy et al., 2014). We selected a total of 17 classical metrics 
(detailed in Table S1) including the average trophic level (Williams & 
Martinez, 2004), the average generalism, the frequency of omnivore 
species (defined as species that pre- date other species across more 
than one trophic level), proportions of top and basal species, modu-
larity (Newman, 2006) and trophic length. Note that for our follow-
ing analyses, we centred and scaled each metric (i.e. each column of 
the embedding matrix) so that metrics had equivalent contributions 
in analyses based on Euclidean distances.
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2.1.3 | Motifs2Vec

This embedding method gathers the frequencies of the 13 directed 
connected triangular motifs (see Figure S3), without self- loop (i.e. 
their count divided by the number of possible species triplets which 
is n(n − 1)(n − 2)/6 for a network of size n). These small motifs have 
been regularly used to characterise local architectures in trophic 
networks (Camacho et al., 2007). This normalization allows to cor-
rect for the effect of network size on motifs counts when comparing 
different networks. Larger motifs would give more precise repre-
sentation of the whole network structure, but the computational 
complexity of motifs count, O(nk) for k- nodes motifs, is prohibitive 
(Shervashidze et al., 2009).

2.1.4 | Graph2Vec

Graph2Vec (Narayanan et al., 2017) is an approach based on the de-
scription of the local neighbourhood of each node. Practically, the 
algorithm decomposes each network into trees rooted at each of its 
nodes. It takes as input a maximal depth, which corresponds to the 
distance up to which the neighbours of each node will be explored. 
Then, the description of the local neighbourhood of each node is used 
to generate an embedding matrix, whose dimensionality is chosen a 
priori by the user and where networks with similar node neighbour-
hoods tend to be close (more details in Section A.3 of Supporting 
Information). Graph2Vec has the possibility to account (or not) for 
prior information on node labels. In the case of no prior information, 

F I G U R E  1   Study workflow. We used a group model to simulate 5,000 trophic networks with controlled ecological properties, cast them 
in a graph embedding matrix using various methods, reduced the embedding matrix dimension to generate a 2D visualization space, and 
compare the embedding methods qualities for supervised and unsupervised posterior analysis tasks
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it takes the node degree as a label. In this study, we compared the 
embedding method (hereafter called Graph2Vec) with no prior in-
formation on node labels, with Graph2Vec_lab that directly uses the 
species trophic group as node label (the same than in Groups2Vec). 
Since Graph2Vec was originally designed for undirected graphs, we 
forced the method to take into account edges direction when build-
ing a node neighbourhood. By default, it explores the network from 
prey to predators. We also tested to concatenate this default embed-
ding matrix with the one derived from the network transposed adja-
cency matrix (exploration from predators to prey) to better represent 
the directed architecture of the trophic network. We compared the 
concatenated version to the default embedding matrix and also the 
effect of the maximal depth choice (Section A.4 from of Supporting 
Information). In the following application, we used the concatenated 
version of Graph2Vec (with an embedding matrix dimension of 30 for 
both the default and transposed version) with a maximal depth of 2.

2.1.5 | ShortPaths2Vec

This embedding method gathers the frequencies of the directed 
shortest path lengths. For a network, we first computed the length 
of the shortest path between all pairs of nodes, following edges di-
rection. When there is no path between two nodes, it is counted as 
an infinite length. Then, the frequency vector of this set of lengths 
is constructed (for each length, its occurrence count is divided by 

n(n − 1), the total number of ordered pairs of distinct nodes for a 
size- n graph). When considering several networks, the columns 
of this embedding matrix correspond to the set of all lengths ob-
served across the different networks. This embedding method gath-
ers information related to the notion of trophic length, sometimes 
computed as the length of the longest directed shortest path. The 
ratio of shortest paths with infinite length may also encode infor-
mation on compartmentalization in the network. As for Graph2Vec, 
our proposed ShortPaths2Vec approach is generalised to account 
for prior information on node label in a second version called 
ShortPaths2Vec_lab. In ShortPaths2Vec_lab, the counts of shortest 
paths of any given length is decomposed per combination of source 
and target node labels. In other words, any column of the embedding 
matrix corresponds to the count of shortest paths of a given length 
k starting from a node with a given label l and going to a node with 
a given label l′ divided by n(n − 1), as for ShortPaths2Vec. We again 
use trophic groups as node labels (the same than in Groups2Vec).

2.2 | From embedding space to visualization space 
using UMAP dimension reduction

Once an embedding matrix is obtained from a set of networks, 
dimension reduction techniques can be used to visualise the net-
works in a lower dimensional vector space (here two dimensions) 
called the visualization space. Indeed, our embedding matrices have 

TA B L E  1   Graph embedding methods tested in this study

Acronym Principle Reference

Groups2Vec Trophic group proportions This study

Metrics2Vec Seventeen classic food web metrics Thompson and Townsend (2005)

Motifs2Vec Directed triangular motif proportions Camacho et al. (2007)

Graph2Vec Decomposition into local neighbourhoods Narayanan et al. (2017)

Graph2Vec_lab Graph2Vec + trophic groups as node labels Narayanan et al. (2017)

ShortPaths2Vec Shortest path lengths distribution This study

ShortPaths2Vec_lab ShortPaths2Vec + trophic groups as node labels This study

Property acronym Effect
Possible values 
(categories)

nModules Number of modules (compartments) {1, 2}

trophLens Trophic length in each module see Section B from 
Supporting 
Information

maxTrophLen Maximal trophic length across modules {2, 3, 4, 5}

omni Activates interactions between non- 
successive trophic levels in a module

{TRUE, FALSE}

generalism Favours interactions between successive 
trophic levels in a module

{TRUE, FALSE}

loop Allows intra- group interactions and thus 
favours loops

{TRUE, FALSE}

TA B L E  2   The six ecological properties 
controlled in our networks simulation and 
their categories
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dimensionality ranging from 13 (Motifs2vec) to 60 (Graph2Vec 
in both directions) and above (dimension of ShortPaths2Vec/
ShortPaths2Vec_lab depends on the networks shortest paths). 
We thus used a nonlinear dimension reduction technique called 
UMAP(McInnes et al., 2018) that was recently popularised for the 
analysis of biological data (Becht et al., 2019). UMAP relies on a 
user- defined distance metric (e.g. here the Euclidean distance) 
computed between all pairs of networks using their embedding 
coordinates. For any embedded network, UMAP considers its 
closest neighbours (we selected 150 neighbours here), and aims 
to find a projection into the visualization space such that, in this 
new space, these neighbouring networks are also close to the tar-
geted one. This property has to be satisfied for every embedded 
network, and a mathematical criterion is numerically optimised to 
achieve this goal.

2.3 | Simulation experiment

To compare these seven embedding methods, we carried out a 
simulation study to generate 5,000 trophic interaction networks 
(i.e. food webs). Each network was drawn from a parametric ran-
dom network model (a SBM, see Allesina et al., 2008), hereafter 
called a group model, where species are divided into trophic groups 
and where the probabilities of interaction between species depend 
on their belonging to trophic groups. A group model is defined by 
its trophic groups (here, between 2 and 10 groups), the interac-
tion probabilities between groups and the distribution of nodes 
(species) in groups. For each simulated network, we first randomly 
draw the network size and six parameters, hereafter called eco-
logical properties (Table 2), determining the group model structure. 
As illustrated in Figure 2, our group model splits species in trophic 
groups which organise the network vertically in trophic levels and 
horizontally in one or two modules, in which case there are less 
interactions between modules than inside modules. As ecological 
properties varied across the networks, our procedure allowed gen-
erating networks with contrasted ecological characteristics. More 
details on the construction of the group models are provided in 
Section B from Supporting Information. We defined the number of 
species (network size) in {60, 120} and independently of the other 
properties. We affected one species per group (to avoid emptiness) 
and then randomly distributed the remaining species among the 
groups. Lastly, we randomly drew the presence of a directed in-
teraction between each ordered pair of species through the prob-
ability of interaction of their groups as defined by the group model. 
Figure 2 illustrates the variety of our simulated networks and the 
effects of the variations in ecological properties through some 
examples.

We then applied the seven embedding methods to the 5,000 
simulated networks. Practically, the 10 trophic groups resulting 
from the largest possible group model (see details in Section B from 
Supporting Information) were used as the groups for Groups2Vec and 
also as the node labels in Graph2Vec_lab and ShortPaths2Vec_lab.

2.4 | Quality assessment of the embedding methods

We evaluated the ability of the seven embedding methods to disen-
tangle the network ecological properties (maxTrophLen, trophlens, 
nModules, generalism, omni and loop) of the simulated networks for 
posterior supervised and unsupervised analysis tasks with several 
criteria (detailed in Section D from Supporting Information). In all 
that follows, we call categories the possible values taken by an eco-
logical property as shown in the right column of Table 2, for example, 
1 and 2 are the categories of the property nModules. For poste-
rior supervised learning tasks, we used the predictive accuracy as a 
measure of quality to evaluate how well each property is predicted 
from network embedding coordinates. For a given property, we 
used the classification accuracy of a Random Forest (Breiman, 2001) 
trained to predict the category of a network from its coordinates 
in the embedding (e.g. predict the category of nModules using the 
13 motifs proportions provided by Motifs2Vec). For unsupervised 
analyses, we aimed at evaluating how well the segregation between 
categories can be detected by human eyes in the visualization space. 
We assumed that if each category forms a cluster of networks well 
separated from other categories in the embedding space, the user 
has more chances to detect a structure with a clustering method 
or visually on the visualization space. For that purpose, three crite-
ria were used. First, we measured how well networks of the same 
category aggregate into clusters, that is, how well distinct catego-
ries were segregated, in (a) the embedding space using a metric 
called R2- ebd and (b) in the 2D visualization space obtained from 
dimension reduction of the embedding matrix using UMAP using a 
metric called R2- umap (see Sections D.2 and D.3 from Supporting 
Information). The third criterion evaluated how the segregation of 
categories (in the embedding space and in the visualization space 
respectively) is blurred due to variation in network sizes (see Section 
D.4 from Supporting Information for the definitions of the two met-
rics R2- loss- ebd and R2- loss- umap). Note that, given the simula-
tion design, Groups2Vec, Graph2Vec_lab and ShortPaths2Vec_lab 
were unfairly favoured for all criteria on properties maxTrophLen, 
trophlens and nModules compared to other embedding methods 
because they directly encoded trophic group composition that gen-
erated the network. Groups2Vec was also disfavoured compared 
to other methods for the omni, generalism and loop properties be-
cause, by our simulation design the trophic group proportions were 
not affected by changes in these three properties.

3  | RESULTS

3.1 | Evaluation for supervised learning task: 
Predictive accuracy

The relative ability of the different embedding methods to pre-
dict the categories varied across ecological properties (Table 3). 
Among the different methods, Metrics2Vec had the highest 
predictive accuracy for maxTrophLen, trophlens and nModules 
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(excluding methods that integrate a priori information on trophic 
groups), closely followed by ShortPaths2Vec. For omni, the 
methods with the highest predictive accuracy were Graph2Vec_
lab, ShortPaths2Vec_lab and Motifs2Vec. Metrics2Vec and 
ShortPaths2Vec had the best predictive accuracy for generalism, 
and the latter was even more efficient when using trophic groups 

as node labels (ShortPaths2Vec_lab, Table 3). loop was almost 
perfectly predicted by all embedding methods. Unlike its exten-
sion with node labels, we found that Graph2Vec had a relatively 
weak predictive accuracy for all properties except loop (Table 3, 
also visible on Figure 3d). This relatively low predictive accu-
racy persisted when applying the algorithm with more iterations 

F I G U R E  2   Examples of simulated trophic networks of size 60 and their group model parameters (ecological properties). These networks 
span the four possible combinations of values for nModules (compartmentalization) and loop (intra- group predation). Nodes are coloured 
according to their trophic group
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(higher order neighbourhood exploration, see Section A.4 from 
Supporting Information).

3.2 | Evaluation for unsupervised learning task: 
Segregation of categories

Motifs2Vec had the best segregation of categories in the embedding 
space (highest R2- ebd) for maxTrophLen, trophlens and nModules 
(Table 4). However, this relative performance was not consistently 
preserved in the UMAP plane. Indeed, its R2- umap was signifi-
cantly inferior to the one of Metrics2Vec for nModules (Table 4, and 
see Figure 3b/f). Even though the categories of maxTrophLen and 
nModules were well separated in the UMAP plans of Metrics2Vec, 
ShortPaths2Vec and Motifs2Vec, this separation was always non-
linear and would not allow us to distinguish visually the categories 
without knowing them a priori (see Figures 3b/f and 4d as exam-
ples, or more comprehensively Figures S7 and S8). Specifically, 
Motifs2Vec had a higher R2- ebd than Metrics2Vec (Table 4) whereas 
it had a lower predictive accuracy for the same three properties 
(Table 3). These apparent conflicting results showed that the most 
suited approach clearly depends on the research questions and the 
task scenario (unsupervised vs. supervised analysis). Surprisingly, 
categories of maxTrophLen seemed much less segregated in the em-
bedding space than in the visualization space for ShortPaths2Vec 
(R2- ebd < R2- umap, Table 4). This shows that even though a small 
portion of this embedding matrix variability was related to max-
TrophLen, it was well retained after UMAP compression (see 
Figure 3d). Properties omni and generalism had an overall much 
weaker effect on the embedding matrix structures than nModules, 
loop and n (R2- ebd and R2- umap close to 0, see Table 4), even if they 
had the same number of categories. Here, the heterogeneity of re-
sults between methods was not meaningful enough to recommend 

one method over another. This result might arise from our simulation 
model and might not be generalised to other datasets. For loop, the 
segregation of categories was heterogeneous across methods both 
in the embedding spaces and visualization spaces. ShortPaths2Vec 
showed the highest performance in the embedding space (R2- ebd, 
Table 4), but not in the visualization space where Graph2Vec and 
Graph2Vec_lab had the highest R2- umap. Visually, all embeddings 
except ShortPaths2Vec_lab exhibited a clean segregation of catego-
ries for loop in their visualization space, as shown in Figures 3d/e 
and 4b/c. Note, however, that it is certain that ShortPaths2Vec_lab 
separates linearly loop in its embedding space (non- infinite shortest 
path lengths exist between species of a same trophic group when 
loop is activated), but its R2- ebd does not reflect it and remains rela-
tively small probably because this embedding space contains mostly 
dimensions unrelated to loop.

3.3 | Robustness to size variability

Groups2Vec and Motif2Vec were almost insensitive to network 
sizes variability and were thus the most robust methods both in 
the embedding and visualization spaces (R2- loss- ebd and R2- loss- 
umap almost null in Tables S3 and S4) for all ecological properties, 
revealing the efficiency of their normalization for size. For other 
methods, network size variability decreased more or less the seg-
regation of categories in their embedding and visualization spaces 
for all properties (R2- loss- ebd > 0 and R2- loss- umap > 0). Indeed, 
for Metrics2Vec, ShortPaths2Vec and ShortPaths2Vec_lab, the seg-
regation of categories decreased by around 10% in the embedding 
space and visualization space (i.e. R2- loss- ebd and R2- loss- umap are 
around 10 in Tables S3 and S4) when networks of size 60 and 120 
were all considered together compared to the average segregation 
of categories when considering only one size at a time. This shows 

TA B L E  3   Predictive accuracy percentage for each ecological property and embedding method. This is the Out- Of- Bag classification 
accuracy of a Random Forest trained to predict the category of the ecological property from the coordinates of the network in the 
embedding. Some coefficients are shaded because their comparison with other embedding methods would be unfair, see our methodology. 
Bold values correspond to the best performance for each property (per column)

Method maxTrophLen trophlens nModules omni generalism loop

Groups2Vec 100 100 100 52 50 49

Metrics2Vec 93 71 99 89 95 100

Motifs2Vec 85 64 98 90 93 100

Graph2Vec 67 49 89 83 75 100

Graph2Vec_lab 100 99 100 92 88 100

ShortPaths2Vec 93 69 99 82 94 100

ShortPaths2Vec_lab 100 99 100 91 96 100

F I G U R E  3   UMAP 2D plans, Part 1. Each plane, that is, visualization space, is output by UMAP applied to an embedding of the simulated 
networks. Axes UMAP1 and UMAP2 may be read as the principal axes in multivariate linear analyses, without notion of importance ranking. 
Each point represents a network and the color (resp. shape) indicates the category of the ecological property at stake (resp. species richness 
n ∈ {60, 120}). For visualization clarity, we randomly subsampled 600 points out of 5,000
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that ShortPaths2Vec normalization for size is not fully working. 
Finally, Graph2Vec and Graph2Vec_lab appeared as the least robust 
methods as they showed the highest R2- loss- ebd and R2- loss- umap 
for all properties (resp. Tables S3 and S4). For instance, networks 
with the same size tended to be clustered in the UMAP plane of 
Graph2Vec (see Figure 3d). This strongly suggested that Graph2Vec 
and Graph2Vec_lab are not suitable to compare networks with dif-
ferent sizes (when the effect of size was not a feature of interest) 
in posterior unsupervised analysis tasks. On the other hand, one 
can observe how the positions of networks of different size were 
mixed on the visualization planes of Groups2Vec and Motif2Vec (e.g. 
Figure S6 for Groups2Ved and Figure 3a for Motifs2Vec).

4  | DISCUSSION

This study proposed a critical evaluation of the ability of differ-
ent graph embedding methods to detect ecological property vari-
ations between simulated trophic networks. We introduced two 
methods that have never been used to analyse ecological networks 
(Graph2Vec and ShortPaths2Vec) and proposed to use trophic 
groups as node labels to enrich the description of network architec-
ture for these two methods. We evaluated seven embedding meth-
ods for posterior use in supervised and unsupervised analysis tasks 
focusing on six important network ecological properties, and testing 
their robustness to network sizes variability for the unsupervised 
setting.

Depending on the type of task, supervised or not, and the eco-
logical property targeted, the relative performances of the embed-
ding methods differed. Overall, Motifs2Vec and ShortPaths2Vec, 
which have a relatively small dimensionality (here 13 and 15), inter-
pretable dimensions, and are relatively robust to network sizes vari-
ability, often proved to be more suitable for unsupervised analysis. 
Other embedding methods either poorly captured the properties of 
interest (e.g. Graph2Vec), or captured them in a nonlinear way which 
reduces their potential interpretability in visualization steps of unsu-
pervised task (e.g. ShortPaths2Vec_lab in Figure 3f). Metrics2Vec, 

ShortPaths2Vec_lab and Graph2Vec_lab, revealed their potential for 
posterior supervised learning tasks (Table 3). Moreover, predictive 
accuracy increased when architecturally relevant information (here 
trophic groups) was integrated as node labels in the embedding 
methods (ShortPaths2Vec_lab and Graph2Vec_lab, Table 3). In the 
following paragraphs, we suggest the most appropriate approach for 
a given targeted ecological property, and further motivate the study 
of a given property in the light of the ecological processes of interest 
(Table 5).

Motifs2Vec and Metrics2Vec proved to be the most suitable, re-
spectively for unsupervised and supervised tasks, for maximum tro-
phic length, trophic group composition and compartmentalization. 
As relationships between compartmentalization and robustness 
to extinction are mainly theoretical (Dunne et al., 2002; Thébault 
& Fontaine, 2010), supervised methods could be applied to predict 
the robustness to extinctions from an embedding coordinates that 
contains compartmentalization descriptors (e.g. modularity, cluster-
ing coefficient and nestedness). As noted earlier, trophic levels were 
suggested to impact resilience to perturbations and carbon flux 
balance (Pimm et al., 1991; Schindler et al., 1997). To test hypoth-
eses on the effect of these environmental factors, we could apply 
ShortPaths2Vec combined with dimension reduction to a large set 
of trophic networks spatially distributed in various conditions of per-
turbation frequency and primary productivity in order to visualise 
potential patterns of association with trophic chain lengths.

Concerning generalism, ShortPaths2Vec_lab and Metrics2Vec 
were the most suitable methods for supervised analysis while 
there was no efficient approach for unsupervised analyses (but 
Motifs2Vec performed best in R2- ebd, Table 4). This suggests 
that the effect of generalism appeared as a minor driver of the 
embedding matrices and one might probably specify another 
embedding method describing the joint distribution of in/out 
degrees across species to better capture variations of general-
ism. It might enable to better understand the still ambiguous re-
lationship between generalism, vulnerability and robustness to 
extinctions (Dunne et al., 2002; Thébault & Fontaine, 2010). For 
instance, we hypothesise that a stronger negative relationship 

TA B L E  4   Segregation of categories for each ecological property (column) in each embedding space and 2D visualization space (measured 
through R2- ebd and R2- umap). This measure reflects the level of clustering of networks of a same category compared to the average 
distance. Shaded values should not be compared with other embeddings (in the same column) as it would be unfair, see Section 2.4. Bold 
values correspond to the best performance for each property (per column)

Method

maxTrophLen trophlens nModules omni generalism loop

ebd umap ebd umap ebd umap ebd umap ebd umap ebd umap

Groups2Vec 0.42 0.60 0.90 0.99 0.38 0.30 0.00 0.00 0.00 0.00 0.00 0.00

Metrics2Vec 0.19 0.10 0.32 0.20 0.20 0.14 0.02 0.00 0.02 0.00 0.30 0.48

Motifs2Vec 0.39 0.19 0.62 0.25 0.32 0.05 0.01 0.00 0.07 0.01 0.09 0.25

Graph2Vec 0.06 0.08 0.12 0.13 0.07 0.08 0.00 0.00 0.01 0.01 0.09 0.61

Graph2Vec_lab 0.10 0.09 0.30 0.13 0.09 0.07 0.04 0.00 0.00 0.00 0.08 0.61

ShortPaths2Vec 0.03 0.21 0.15 0.24 0.13 0.04 0.01 0.01 0.01 0.00 0.61 0.48

ShortPaths2Vec_lab 0.35 0.04 0.64 0.35 0.22 0.22 0.01 0.01 0.00 0.00 0.10 0.15
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between species generalism and vulnerability within a network, 
for a fixed connectance, makes it more robust to extinctions. 
Furthermore, the change of these relationships in trophic net-
works along long time- scales have the potential to reveal sig-
natures of community level selection related to mass extinction 
events (Roopnarine et al., 2007). For omnivory, Graph2Vec_lab 
appears as the most adapted method for supervised learning, 
while no approach yielded significant performances for posterior 
unsupervised analyses. We might improve unsupervised analy-
sis applications by combining some triangular motifs proportions 
related to omnivory and some dedicated metrics (e.g. omnivore 
proportion, average degree of omnivory) in order to unveil con-
trasts in omnivory patterns across networks that are known to 
influence parasitism rate (Montoya et al., 2003) and community 
persistence (Pimm et al., 1991). Finally, the predictive accuracy 
for the loop property was almost perfect for all methods, so that 
we cannot discriminate between them for a supervised learning 
application. For the unsupervised case, ShortPaths2Vec turned 
out to be the most suitable. Lastly, it might be important to 
note that the tested food web Metrics and Graph2Vec require 
less computational effort than the shortest paths embeddings. 
Indeed, the complexity of the former is linear with the number 
of nodes, while it is cubic for the latter using the Floyd– Warshall 
algorithm (Floyd, 1962).

Most graph embedding developments concerned supervised 
learning problems and especially graph classification (Li et al., 2017; 
Xu et al., 2018). Even the unsupervised graph embedding methods 
(Ivanov & Burnaev, 2018; Verma & Zhang, 2017) have been mostly 
evaluated on supervised learning tasks. Furthermore, the evalua-
tion is most often done on multiple benchmark datasets coming 
from different research domains (e.g. bioinformatics or social net-
works) and weakly related to research questions of these domains, 
thus questioning the relevance of the evaluation for the end- users 
of these methods. Here, we took a different perspective since our 
comparative analysis and evaluation focused on the usefulness of 
graph embedding methods to address explicit research questions 
based on trophic network analyses, especially in the unsupervised 
context which is probably the most common case in ecology. This 
perspective comes at the price of some questions regarding the 

generality of our evaluation methodology and the potential lim-
its of our simulation experiments. Regarding network simulation, 
omnivory and generalism were especially difficult to segregate for 
all embedding methods suggesting that our simulation model did 
not make their variations salient. Besides, two species belonging 
to the same trophic group in our simulation model tend to interact 
with the same other groups and with an equal proportion of species 
in each of these groups. This is a way to model trophic Eltonian 
niches (O'Connor et al., 2020), but it induces very similar positions 
of species belonging to a given group in the network. Regarding 
the evaluation methodology, the UMAP dimension reduction step 
has sometimes drastically reduced the segregation of categories 
of some property in the visualization space compared to the em-
bedding space, while preserving it for others (e.g. nModules with 
Motifs2Vec, see Table 4). This behaviour might have been different 
using another dimension reduction technique.

Some lessons have been learnt and some questions have been 
raised on different embedding methods during this study. First, 
Groups2Vec did not allow us to segregate omnivory, generalism 
and loop because these properties were considered independently 
to generate the simulated trophic groups in our design. However, 
real studies demonstrated that some trophic groups can highlight 
differences in omnivory, the presence of loops or generalism. For 
example, Kéfi et al. (2016) fitted a SBM on a large interaction net-
work including trophic interactions and showed that some identified 
groups included more omnivore species than others. Then, net-
works having higher species richness for these groups would have 
a higher degree of omnivory. We therefore point out that the rel-
evance of Groups2Vec entirely depends on the ecological proper-
ties captured by the trophic groups so that results for this approach 
are very context dependent. We also showed that Graph2Vec was 
strongly affected by network size and thus not suitable for unsu-
pervised analyses. Indeed, the distribution of the local neighbour-
hoods that are present in a network is affected by network size. 
For instance, deeper node neighbourhoods are more likely in larger 
networks. However, to our knowledge, no suitable size normaliza-
tion procedure is available for this embedding method and its use 
in unsupervised analyses should thus be restricted to the compari-
son of networks with similar size. Even though ShortPaths2Vec was 

Property Supervised Unsupervised
Ecological 
processes

maxTrophLen Metrics2Vec Motifs2Vec CP, CFB

TrophLens Metrics2Vec Motifs2Vec RE, CP, CFB

nModules Metrics2Vec Motifs2Vec RE, PC

omni Graph2Vec_lab/
ShortPaths2Vec_
lab/
Motifs2Vec

CP, PC

generalism ShortPaths2Vec(_lab) RE, CP, PC

loop ShortPaths2Vec/
Metrics2Vec

TA B L E  5   Guide table summarising 
which embedding method to use 
according to the network ecological 
property that is targeted, the supervised 
or unsupervised nature of the analysis. 
Ecological processes demonstrably linked 
to each property are listed in the last 
column. We used the following acronyms, 
CFB, carbon flux balance; CP, community 
persistence; PC: population control; RE, 
robustness to extinctions
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more robust to size variability, finding the right normalisation for this 
embedding method is not simple either. The normalisation we used 
revealed to not be fully efficient. This is probably because the fre-
quencies of shortest path lengths are affected by network size, and 
not only their average count. Another important lesson regarding 
Graph2Vec concerns its parameterization. It is crucial to adapt the 
number of iterations (depth) to the average size of networks because 
the diversity of subtrees increases exponentially with the number 
of iterations. Then, applying a large depth to small graphs will tend 
to increase similarities between networks and thus induce approxi-
mately equally spaced points in the embedding space. In our experi-
ment, we standardised each column of the Metrics2Vec embedding 
matrix so that they have equal contribution to the Euclidean distance 
computed in the embedding space. This impacts the arrangement of 
networks in the UMAP plane and the measure of segregation of cate-
gories. Without standardization, we would have favoured properties 
discriminated by the columns with highest variance. Interestingly, 
we can use standardization to control the relative importance of 
the metrics by multiplying each column by a specific coefficient de-
pending on the targeted network ecological contrasts that we want 
to distinguish in the visualization space. Recently, graph neural net-
works (GNNs, see e.g. Gilmer et al., 2017; Kipf & Welling, 2016) have 
been proposed to produce more expressive and flexible graph em-
bedding methods. Most GNNs are designed for supervised learning 
tasks, such as graphs classification, rather than unsupervised graph 
embedding methods (but see e.g. Bandyopadhyay et al., 2020). 
Supervised graph embedding with GNNs may be a way forward to 
find more general representations of interaction networks, as a GNN 
embedding may be trained, for instance, to predict several network 
ecological features such as dynamical behaviours or robustness to 
extinctions.
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