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Abstract
Although abiotic factors, together with dispersal and biotic interactions, are often suggested to explain the

distribution of species and their abundances, species distribution models usually focus on abiotic factors only.

We propose an integrative framework linking ecological theory, empirical data and statistical models to

understand the distribution of species and their abundances together with the underlying community assembly

dynamics. We illustrate our approach with 21 plant species in the French Alps. We show that a spatially nested

modelling framework significantly improves the model�s performance and that the spatial variations of species

presence–absence and abundances are predominantly explained by different factors. We also show that

incorporating abiotic, dispersal and biotic factors into the same model bring new insights to our understanding

of community assembly. This approach, at the crossroads between community ecology and biogeography, is a

promising avenue for a better understanding of species co-existence and biodiversity distribution.
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INTRODUCTION

Understanding the factors driving the distribution of species and their

abundances is an important research area in ecology since it refers to

species coexistence and the maintenance of species diversity (Chesson

2000). Soberon (2007) proposed a conceptual framework distinguish-

ing three main drivers. Abiotic constraints delimit the species�
fundamental niche within which the species could establish and

maintain itself given its intrinsic physiological limits (Chase & Leibold

2003). Dispersal limitations may then restrict a species� range by

preventing it from reaching a suitable site. Dispersal limitation is

inherently linked to the species� dispersal capability, but may also be

influenced by historical legacies (Vellend et al. 2007). Some species

may reach high abundance in unsuitable sites due to frequent

immigration from neighbouring suitable sites, as predicted by source-

sink dynamics or mass effect (Pulliam 2000). Finally, biotic interac-

tions may modify either the resources availability or the local abiotic

environment with potentially contrasting consequences on abundance

(e.g. competition and facilitation, Lortie et al. 2004). These three main

drivers could interact together and influence the observed spatial

distribution of the environmental conditions suitable for a given

species (i.e. species� realised niche).

These drivers of species distributions may act at different spatial

scales (Kneitel & Chase 2004). For instance, frequent consideration is

given to abiotic variables acting at large spatial scales (Davies et al.

2004). Climate and soil variables have been shown to be the most

relevant variables when predicting continental to regional-scale plant

species presence–absence distributions (Thuiller et al. 2004). Other

factors, such as land cover, are also important to understand species

distribution at regional scales (Randin et al. 2009). On the other hand,

biotic interactions and consumer-resource dynamics are assumed to

occur at smaller spatial scales (Soberon 2007). Dispersal limitations

are most likely to occur at a larger extent than species dispersal

distances, whereas source-sink dynamics occur at the same scale as

dispersal.

So far, species distribution has been modelled using species

distribution models (SDMs), which, most of the time, ignore the

effects of dispersal and biotic interactions (VanDerWal et al. 2009).

Even if SDMs provide satisfactory predictions for presence-absence,

they typically fail to explain and predict species� abundances across

sites (Pearce & Ferrier 2001; Sagarin et al. 2006). Here we argue that

this failure is due to the omission of the above-mentioned dynamic

drivers (i.e. dispersal, biotic interactions) and that all processes acting

at different spatial scales are fitted in a unique response model. The

abundance of a given species is obviously driven to some extent by the

same processes as the presence-absence, but additional processes

might come into play to determine the abundance when the species is

present. They operate at finer resolutions where community compo-

sition, population dynamics and the microenvironment interact. For

explaining and modelling species abundances, the use of a spatially

nested approach, which model separately the processes underlying

presence–absence and abundance variation, seems therefore particu-

larly relevant.

We propose to account explicitly for the spatial nestedness of

processes in a comprehensive modelling framework where the species

undergoes successive filters. The first filter, related to larger scale

factors, determines the presence or absence of the species. This filter

is expected to be primarily driven by abiotic variables (eco-

physiological limitations) and by dispersal when site accessibility is

limited. Once a species is able to reach a suitable site, the second filter,

expected to be mainly determined by local-scale factors such as biotic

interactions and dispersal in case source-sink dynamics occur, will

determine the local abundance and other absences (Fig. 1, Theoretical

model). Our objective here is to test these expectations using an
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operational statistical framework (Fig. 1, Model structure). First, we

introduce a set of key innovations to account for biotic interactions,

using co-occurrence based indices, and for dispersal by proposing

a measurement based on species dispersal capabilities and observed

spatial distributions. Second, to separate presence–absence from

abundance underlying processes, we propose a two-step modelling

approach: (1) modelling species presence and absence and (2)

modelling abundances once presence has been determined. We

highlight the innovative nature and outputs of our framework with the

modelling of 21 plant species in the French Alps. We show how our

framework separates the drivers of presence–absence and abundances.

We then demonstrate how consideration of biotic interactions and

dispersal not only improves predictions of species distributions, but

also provides better knowledge of the elusive fundamental niche and

explores the key drivers of abundances within their niches.

MATERIAL AND METHODS

We applied our framework independently to 21 plant species

representative of the French Alps. We selected species with a

reasonable number of observations in different abundance classes and

represent varying life forms and dispersal abilities (Table S1 and S2).

The idea was to test our framework and underlying hypotheses with a

set of species that were sufficiently different to permit robust

conclusions. Sampling spread over a region of 30 000 km2, from

lowlands to alpine summits (Figure S1).

Vegetation database

We used a database of vegetation surveys provided by the National

Alpine Botanical Conservatory (CBNA), including 8160 community-

plots sampled in natural or semi-natural areas from 1980 to 2009

(Figure S1 left) and with a total of 2170 plant species (Boulangeat et al.

2012). Plot size information was not systematically available but was

approximately 10 · 10 m. Within each community-plot, species

abundances were recorded using a cover scheme with six classes

(1: less than 1%; 2: from 1 to 5%; 3: from 5 to 25%; 4: from 25 to

50%; 5: from 50 to 75%; 6: up to 75%) (Braun-Blanquet 1946).

Species abundance classes were converted to relative abundances for

co-occurrence based indices (see below). We first converted cover

classes to their mean percentages (0.5, 3, 15, 37.5, 62.5 and 87.5%) and

then normalised them between 0 and 1 to obtain the relative

abundance of each species.

We used a second dataset from the same source (CBNA) to build

the dispersal-based index and some of the co-occurrence based indices

(see below). This dataset contains approximately two million spatially

Figure 1 Theoretical framework and model structure. The aim of the nested model structure is to represent the theoretical framework. The first model focuses on presence–

absence only and is expected to primarily involve abiotic drivers due to physiological filtering and dispersal mechanisms due to dispersal limitation. The second model focuses

on abundance when presence has been assessed and is expected to involve local-scale mechanisms, including abiotic and biotic community-scale effects and source-sink

dynamics.
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localised single occurrences (i.e. presence-only data, Figure S1 right)

recorded from 1980 to 2009. Each of the 2170 plant species has been

recorded at least 20 times.

Abiotic variables

We considered climate, topography and soil (see Table S3 and

Figure S2). Four climatic variables (temperature, precipitation, mois-

ture index and radiation) were extracted from the Aurelhy meteoro-

logical model (Bénichou and Le Breton, 1987), based on interpolated

measurements at a resolution of 100 · 100 m. We used a 50 · 50 m

digital elevation model to generate slope angle (�), topography

(elevation range within the pixels) and the topographic wetness index.

Soil carbon and available water capacity were extracted from the

European soil database (1 · 1 km). We used land cover maps

(100 · 100 m) extracted from the 2006 Europe-wide Corine Land

Cover (artificial surfaces, agricultural areas, forest, scrub, open spaces,

wetlands and water bodies) (Table S3) to build the dispersal index and

the expected community assembly (see below). For community plots,

we assigned a land cover type from the plot description provided by

the botanists (i.e. wetland, open land, shrubland and wood), pairing

the European Corine land cover classification (Bossard et. al 2000).

Dispersal based index

We developed an index modelling the potential effects of dispersal on

species distribution and abundance. It aimed to account explicitly for

the spatial auto-correlation of species distributions with the inclusion

of the biological hypotheses underlying species dispersal abilities.

This index was based on a seed rain model and the integration of

the species presence–absence distribution in the neighbourhood of the

community (Fig. 2).

We first approximated the actual spatial patterns of species

presences and absences at the regional scale using traditional SDMs

because a complete sampling of the entire region at a reasonable

resolution is practically impossible. We assumed that there would be a

strong match between the first environmental filter and the presence–

absence distribution at a coarse resolution (100 · 100 m). We used

random forest models as they have been shown to be of very good

predictive accuracy (Peters et al. 2007). Our objective was to closely

match the observed distribution and only detect potential missing

presences (not sampled). The calibrations were made using all

available species observations (i.e. using both datasets, with a

minimum of 500 presences per focal species) and all gridded abiotic

variables (Figure S2).

Based on these estimated presence–absence distributions

(Figure S4), we modelled the potential seed rain received each year

in a plot using a spatially explicit dispersal model (adapted from Engler

et al. 2009). The expected seed rain of a species in a plot was modelled

as an integration of the presences in the neighbourhood weighted by a

species-specific seed dispersal kernel. The neighbouring pixels (from

0 m to a threshold distance dk) contributed to the seed rain as:

exp ðr � RÞ: lnð1� kÞ
dk

� �
� exp r :

lnð1� kÞ
dk

� �

2:p:r
R

ð1Þ

where r is the distance from the pixel to the community, k is the

proportion of seeds that fall before the distance dk and R is the pixel

size (here 100 m). The long distance pixels, from distance dk to

maximal dispersal distance ldd, contributed to the seed rain as:

1� k

p:ðldd þ dkÞ:ðldd � dkÞ
ð2Þ

The parameter k was fixed at 0.99, and ldd and d99 were assigned

from independent literature information in accordance with Vittoz &

Engler (2007) and Engler et al. (2009) (Table S2). The species-specific

dispersal index for a site was the overall potential seed rain received in

a community-plot (eqn 1 and2) integrated over all neighbouring pixels

(Fig. 2). Despite the effect of the abiotic environment on species

distributions and thus on the dispersal index, the correlations between

dispersal index and abiotic variables were lower than 0.7 for the 21

focal species and all variables (Table S4).

Co-occurrence based indices

We computed four site-specific co-occurrence-based indices to

estimate the effects of biotic interactions on species distribution.

Neighbourhood 

Pixels contributions 

dk

ldd
Figure 2 Contribution of neighbouring cells to the dispersal-

based index. A kernel function is applied to weight species

presences around each focal cell (sampled point, black dot). Pixels

under distance d99 contribute by short distance dispersal and

pixels between d99 and ldd contribute by long distance dispersal

(see equations). The neighbourhood map displays the species

presence (black) and absence (white) around the focal community.

The pixel contribution map shows the weights of each pixel. The

resulting map is then added up to obtain the potential seed rain,

known as the dispersal-based index.
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The indices aggregated pair-wise species interaction strength mea-

surements at community level. We took into account the interactions

between each of our 21 species with all species occurring in the

French Alps dataset. We used three different strategies based on

(1) the observed co-occurrences, (2) the expected community

composition according to abiotic environmental filters and (3) a

comparison between observations and expectations. The rationale was

to depict resource competition and coexistence resulting from species

interactions. Observed species co-occurrences (1) were a proxy for

actual species interactions. Expected species co-occurrences (2)

described the potential competitive pressure. The comparison

between the two and (3) measured the resulting species interactions

when controlling for the effect of the abiotic environment.

Observed co-occurrences (community aggregated C-score)

Pair-wise species association strengths between the focal species j and

the co-occurring species k were calculated using the C-score measure

(Stone & Roberts 1990). Pair-wise C-score represents the average

number of checkerboard units (i.e. when the two species occur in

distinct sites) and was calculated as (Nj)Njk).(Nk)Njk), were Nj and

Nk are the regional number of observations of species j and k

respectively, and Nik the number of co-occurrences between j and k.

Pair-wise C-scores were then aggregated at the community level,

weighted by the relative abundance of species k (pk).

Ijx ¼
X

k

Ijk:pk ð3Þ

where Ijk was the pair-wise C-score between the focal species j and

another species k and Ijx the community aggregated C-score at site

x. A value close to zero indicates independence between the focal

species and the local community. Conversely, a high value suggests

a strong repulsion between the focal species and the local

community.

Expected co-occurrences (niche overlap index)

Expected communities (i.e. expected species co-occurrences) were

constructed by relating observations to abiotic variables for all species

involved in the sampled communities (2170 species). A species was

expected to be present in a community-plot if the local conditions fell

into the observed species� environmental range, delimited by

minimum and maximum observed values for all abiotic variables

simultaneously. The rationale behind this was to identify those species

that were not observed in locations potentially suitable for them.

Species found in the community-plots could be viewed as the

�winners� that had already withstood the prevailing biotic interactions

within their communities. By accounting for all species for which the

environment of the observed community-plots were suitable, we took

into account the �absent� part of biodiversity or �dark diversity� that

theoretically could inhabit a particular site after accounting for the

physiological constraints (Pärtel et al. 2011).

The niche overlap index was evaluated in each plot by accounting

for all species expected to be present in the site and their niche

overlap with the focal species. The abiotic niche space was defined

by the first two axes of a principal component analysis (PCA, the

first two axes accounted for 73% of the total variation) of all pixels

of the study region (at a resolution of 100 · 100 m) and all abiotic

variables. Species niche overlaps were calculated in the abiotic space

using the D statistic (Schoener 1968). It ranges from zero to one

(method adapted from Broennimann et al. 2012). The niche overlap

index was calculated as the mean D between all species expected to

be present in a given site and the focal species. It aims at describing

the competitive pressure of the expected species pool on the focal

species.

Observed and expected co-occurrence comparison (attraction and repulsion indices)

We derived two indices based on a comparison between the observed

and expected species co-occurrences. The rationale for this compar-

ison was to partition the effect of positive vs. negative biotic

interactions (or other local factors). Both indices (for repulsion and

attraction) were estimated by comparing the two community matrices

(observed and expected, Table 1). Negative co-distribution (fewer co-

occurrences than expected, repulsion) should occur if species compete

intensively with each other (Table 1). Positive co-distribution (higher

co-occurrences than expected, attraction) should occur if they

positively interact with each other, or alternatively the presence of

one species changes the local environmental conditions in such a way

that a suitable habitat is created for the non-expected species (Gilpin &

Diamond 1982). Two types of pair-wise interactions were calculated to

quantify repulsion, (Ijk = (C01 + C10) ⁄ (C01 + C10 + CN + C0)) or

attraction (Ijk = (F01 + F10) ⁄ (F01 + F10 + FN + F0)) (Table 1) and

aggregated at the community level (from eqn 3). Resulting indices

quantified total negative (repulsion) or positive (attraction) interaction

between the community and the focal species.

Species abundance model

We followed the nested modelling framework presented in the

Introduction (Fig. 1). Inspired by the general idea of Zero Inflated

Poisson models for count data (Welsh et al. 1996), we first modelled

species presence and absence and then, in a second step, we did the

same with abundance cover classes for locations with predicted

Table 1 Classification of the different cases arising from the comparison between

expected and observed co-occurrences. Comparison of the observed (realised) co-

occurrences with the expected ones (potential) for each species pair. Situation 1:

both species are expected (1 ⁄ 1). If one species is not observed (C10 or C01), it is the

consequence of competitive exclusion or of an unsuitable local environment. Other

configurations are neutral (CN) or are the result of unconsidered factors (C0).

Situation 2: only one species is expected (1 ⁄ 0 or 0 ⁄ 1). If both species are observed

(F01 or F10), it is the consequence of a facilitation effect or a common local suitable

environment. Other situations are neutral (FN) or are the result of unconsidered

factors (F0)

Expected

co-occurrence

Observed

co-occurrence Interpretation Name

1 ⁄ 1 1 ⁄ 0 Competition or

specific environment

C10

0 ⁄ 1 C01

1 ⁄ 1 Neutral CN

0 ⁄ 0 Other factors C0

1 ⁄ 0 1 ⁄ 1 Facilitation F10

0 ⁄ 1 F01

1 ⁄ 0 1 ⁄ 0 Neutral FN

0 ⁄ 1 0 ⁄ 1

1 ⁄ 0 0 ⁄ 1 Other factors F0

0 ⁄ 1 1 ⁄ 0
1 ⁄ 0 0 ⁄ 0
0 ⁄ 1
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presence. To evaluate the models, final predictions were given by

absences predicted from the first model and abundance classes

(potentially including other absences) predicted using the second

model (see Figure S3 for a detailed workflow of the method). We

compared this nested model to a non-nested model (i.e. without the

first step) to evaluate its performance.

We used random forests (RF) to model both presence–absence and

abundance data. This choice was driven by the ability of RF to deal

with both binary and multilevel data and to estimate the importance of

predictor variables in high dimensional settings. They provide

estimates of the independent contribution of each predictor (Strobl

et al. 2009). We performed nine repetitions, following a cross-

validation procedure (see Figure S3).

We calibrated and evaluated four models using different sets of

predictor variables to evaluate the performance of our framework and

estimate the relevance of the proposed indices: abiotic variables (A),

abiotic variables and co-occurrence based indices (AC), abiotic

variables and dispersal index (AD) and all predictors (ACD).

Predictions about final abundance classes were evaluated using the

Hanssen-Kuipers discriminant statistic (Gandin & Murphy 1992) (see

supporting information eqn S1 for the formula). We computed

variable importance with a re-sampling method implemented into

random forest models (Broennimann et al. 2012) (see supporting

information eqn S2 for details and formula). We averaged the

importance values across the nine repetitions and then normalised

the results for each species by calculating the relative importance of

the different variables. A variable was considered as not significant

when the confidence interval included zero.

All analyses were carried out in R (R Development Core Team

2010) with the �raster� package for spatial data management, the �ade4�
package for PCAs, and the �party� package for random forest models

and variable importance.

Biotic interactions and dispersal effects on the abiotic niche

We illustrated how community-scale and dispersal mechanisms

affected the abiotic niche for the four species for which the

addition of the proposed indices increased performance the most.

We derived different predictions from the complete model (ACD)

and projected them onto the abiotic niche space. This space was

defined by the first two axes of a PCA involving the abiotic

variables of the sampled plots. These two axes together explained

53% of the total inertia. In this space, we drew the density of

presences derived from different model predictions, computed with

observed values of explicative variables or with dispersal and ⁄ or

biotic interactions set to zero. We grouped all repetitions into a

single prediction. First, absences were determined where predicted

absences had a majority amongst repetitions and then for presences,

abundance classes were given by the majority amongst repetitions�
predicted classes. Following Soberon (2007) we defined sinks as the

sites where the model predicted presences with observed values but

absences with null dispersal and we defined sources as the sites

where the model predicted presences with observed values as with

null dispersal. Then, to locate competition and facilitation areas, we

compared the current predictions with predictions where all co-

occurrence indices were set to zero. A predicted absence that

became a presence with a release of biotic interactions indicated a

negative impact of biotic interactions and conversely, a presence

changed to absence indicated a positive impact of biotic interac-

tions. We also compared the two response curves (current

predictions and those with co-occurrence indices equalling zero)

as a function of the temperature, which is the most important

climatic gradient in the region (explaining 70% of the first axis of

the PCA). We estimated these curves using local least square

regressions between probabilities of presences and temperature. We

used the �loess� function (Cleveland et al. 1992).

RESULTS

Nested vs. non-nested models of species� abundances across sites

The nested framework improved our ability to predict abundance

irrespective of the set of variables used and the focal species (see

Supporting Information Figure S5). The performance of the nested

model was better than the direct model (without the nested

framework) in 99% of the cases among all models, repetitions and

focal species, with an average increase for the Hanssen-Kuipers

discriminant equal to 0.26.

Is it useful to integrate biotic interactions and dispersal into SDMS?

The comparison of the performance of the three models (AC, AD and

ACD) with the model that only uses regional environmental filters (A)

demonstrated the importance of biotic interactions and dispersal to

explain the species� abundances across sites (Fig. 3). In general, the

inclusion of co-occurrence indices (i.e. biotic interactions) was sufficient

to significantly improve the model performance. For some species,

neither dispersal nor biotic interactions were relevant, whereas their

interaction greatly improved the performance of models (e.g. Ranunculus

glacialis, Phragmites australis, Fig. 3). Finally, only one species showed no

improvement using the proposed indices (Festuca paniculata, Fig. 3).

Disentangling species abundance and species presence–absence

drivers

The separate analysis of variable importance at each model step

highlighted major differences in the main drivers of presence–absence

or abundance (Fig. 4). In general, dispersal was relatively important in

predicting presence or absence but less for the abundance class where

presence was expected (Fig. 4). The most important biotic interaction

index was the repulsion one, followed by the community aggregated C-

score, and the attraction index for some species. The niche overlap

index was a poor predictor of both presence–absence and abundance.

The biotic interactions indices were more important (for all species) in

the second step of the model in predicting the abundance class where

presence was expected. For instance, Bromus erectus well illustrated these

results (Fig. 4). Dispersal was more important for presence-absence,

and the importance of biotic interactions increased for abundance.

Abiotic variables, although they varied in relative importance between

species, were relevant to both modelling steps (see Fig. S6 for details).

Biotic interactions and dispersal effects on species� abiotic niches

Our modelling framework allowed us to visualise the effects of the

different indices on the abiotic niche space (e.g. B. erectus in Fig. 5,

other species in Figure S7). For B. erectus, we found that the realised
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abiotic niche lies in drier and warmer places than the average of the

sampled plots (Fig. 5a). Using a comparison between the realised

niche and a prediction with no dispersal, we identified abiotic

conditions of sources and sinks (Fig. 5b). Surprisingly, sources were

located where the density of presences was relatively low (Fig. 5a,b).

Interestingly, sources corresponded to high abundance and sinks to

lower abundance (Fig. 5a,b). With a release of biotic interactions, the

abiotic niche did not expand significantly but became denser,

particularly in the warmer part of the gradient (Fig. 5c), suggesting

there is competition in these areas (red, Fig. 5c, right panel). At the

colder edge of the niche, the density decreased, pointing to positive

effects of biotic interactions (green, Fig. 5c, right panel). Some sinks

were potentially due to biotic interactions, as they occurred in the

same abiotic region as negative biotic interactions (Fig. 5b,c).

DISCUSSION

We proposed and tested a comprehensive framework for investigating

mechanisms underlying species distributions and their abundances.

First, we demonstrated that the nested modelling structure greatly

improves our understanding of distribution and abundance, increasing

model performance for all species studied here. Second, our nested

framework allowed us to show that the ranking in variable importance

was reversed between presence–absence and abundance when

presence was expected, supporting the hypothesis that different

processes were intertwined. Third, we showed that including the three

groups of drivers (abiotic, biotic and dispersal) in the same model

could offer insights into the mechanisms of community assembly and

revealed how they ultimately shape the realised niche from the abiotic

niche of species.

Biotic interactions

We showed that community-scale effects of biotic interactions were

more important for the second modelling step in explaining

abundance when presence was established. This result supports the

hypothesis that mechanisms underlying abundance variations occur at

community scale, which is where species interact. In our example

(B. erectus), the interaction with the community is essentially negative,

particularly at the warm edge of the abiotic niche (Fig. 5d) where the

environment is suitable for a large number of species. Moreover, co-

occurrence indices associated to repulsion are relatively important for

the abundance model step (Fig. 4b). These results suggest that co-

occurrence indices are strongly related to negative biotic interactions,

such as competition for resources (Chase & Leibold 2003; Soberon

2007). At the same time, we observed positive effects of biotic

interactions at the colder edge of the abiotic niche. This may be the

consequence of facilitation, which has been suggested to be an

important factor of species coexistence in harsh conditions (Choler

et al. 2001; Callaway et al. 2002).

Observed species co-occurrence has long been used to infer

community assembly rules (Gilpin & Diamond 1982; Gotelli &

McCabe 2002) and several co-occurrence based indices have been

used in SDMs as a proxy for unmeasured abiotic conditions and

species interactions (Leathwick 2002; Cottenie 2005; Araujo & Luoto

2007; Meier et al. 2010). The main limitation of these approaches is

that non co-occurring species pairs could be interpreted either as the

result of competitive exclusion or different species� environmental

niches (Gilpin & Diamond 1982). Here, we propose to use a

comparison between observed and expected community composition

to tease apart the effects of environment from those of competition

(Chesson 2000; Chase & Leibold 2003; Silvertown 2004). Moreover,

these new metrics allow distinguishing between positive (attraction)

and negative (repulsion) effects. In further studies, it would also be

interesting to separate the cases where a species undergoes compe-

tition (or facilitation) from the situation where the species has the

strongest competitive ability (or facilitate other species) (Table 1).

These indices still cannot distinguish biotic interactions from micro-

environmental conditions effects that may have a prominent role

(e.g. topographical heterogeneity inducing thermal differences,
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AM = Arnica montana, BE = Bromus erectus, BS = Buxus sempervirens, CA = Cacalia alliariae, CF = Carex ferruginae, DG = Dactylis glomerata, DO = Dryas octopetala,

EC = Euphorbia cyparissias, FP = Festuca paniculata, GS = Geranium sempervirens, KM = Kobresia myosuroides, LD = Larix decidua, PhA = Phragmites australis, PlA = Plantago

alpina, PV = Polygonum viviparum, RG = Ranunculus glacialis, RF = Rhododendron ferrugineum, UD = Urtica dioica, VM = Vaccinium myrtillus.
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Scherrer & Körner 2011). For instance, the co-occurrence indices for

P. australis possibly relate to specific local abiotic conditions (small

wetlands) whereas the repulsion index for Dactylis glomerata, a common

and widely distributed grass, probably reveals its competitive strategy.

Because we will never be able to measure every abiotic variable at

community scale, the attraction and repulsion indices provide an

interesting proxy for describing local abiotic and biotic environments.

Their influence on species distributions are stronger than the niche

overlap index and are relatively easy to interpret in respect to the

aggregated C-score.

The construction of the expected species pool is crucial for most of

the proposed indices and requires particular attention. As we assume

no dispersal limitation when calculating the expected species pool, we

may overestimate expected species richness at inaccessible sites. For

some species, important limiting variables might also be missing or

imprecise (e.g. soil data). These species would thus be wrongly added

to the species pool. However, this bias cannot explain alone the poor

predictive power of the niche overlap index because the expected

species pool is also used to build the repulsion index. This pattern

might suggest that competition does occur in few plots only, while in

the others plots, spatial and temporal environmental heterogeneity

allow species coexistence (Silvertown 2004). Finally, although com-

petition would preferentially occur between functionally similar

species, we did not consider species identity. The addition of weights

based on functional traits to our indices might be worth considering,

as they may be directly linked to resource acquisition or exploitation

(Lavorel & Garnier 2002).

Dispersal

There are now several studies supporting the importance of dispersal

on species distributions (e.g. Bahn & McGill 2007). This is, however,

usually approximated by spatial autocorrelation functions (e.g.

Borcard et al. 1992), generally built with little or no attention to the

true spatial processes that drive biogeographical patterns. Although

the fraction of variance explained by these variables is often

interpreted as the spatial signature of dispersal limitations (Beale et al.

2008), this spatial structure could also result from unaccounted

spatially auto-correlated environmental factors (Gravel et al. 2008;

Araujo et al. 2009). Here, we had an underlying hypothesis with an

explicit formulation based on species-specific dispersal distances,

which allows us to progress in our understanding of the processes

driving spatial distribution. Confusion may however still arise when

missing spatially autocorrelated abiotic drivers operate at the same

spatial scale as dispersal mechanisms (Cottenie 2005).

Our study showed that dispersal mechanisms were more important

for determining presence–absence patterns, suggesting strong dis-

persal limitations. Far from its geographical range, a species is

systematically predicted to be absent because it cannot reach the site,

even if the environment is suitable. It can introduce a bias in the
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Figure 4 Importance of variables. Each barplot represents the relative importance of each variable or group of variables. The relative importance of each abiotic variable was

added together. Species abbreviations are the same as for Fig. 3. Non-significant variables are marked with n.s. (a) Importance of variables to explain presence–absence

distribution (modelling step 1). (b) Importance of variables to explain abundance distribution (modelling step 2).
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Figure 5 Effects of the different drivers on the abiotic niche for Bromus erectus. The abiotic niche space is represented by the first two axes (53% of inertia) of a PCA of the

abiotic variables. (a) Realised niche. Predictions of model ACD. Left: density of predicted presences normalised by the number of sample plots within each grid cell. Right: third

quartile of predicted abundance class within each grid cell. Low: < 5% cover; Medium: 5–25% cover; High:> 25% cover. (b) Left ⁄ right: Proportion of sources ⁄ sinks among

predicted presences. Middle: abundances in source and sink plots. (c) Effect of biotic interactions. Left: density of predicted presences with co-occurrence indices equalling

zero. Right: negative and positive effects of the biotic interactions.
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relationship between species distribution and abiotic variables,

because in these sites, abiotic constraints might be neglected. It is

not possible however to reveal the real cause of such absences if all

sampled plots with similar abiotic conditions are systematically far

from the species geographical distribution. Ideally, to estimate the true

relationship between species distribution and abiotic variables (i.e. the

fundamental abiotic niche), the sampling should be homogeneous not

only in relation to the abiotic variables but also spatially.

The importance of the dispersal index in the second model step

highlights the implication of dispersal mechanisms at local scale, such

as source-sink dynamics. Interestingly, the sources identified in our

case study (and three other examples, Figure S7) are not related to the

density of presence but to species� abundance (Fig. 5). These results

support the source-sink theory, which predicts species occurrences in

unsuitable habitat if immigration from surrounding source popula-

tions is sufficiently large (Pulliam 2000).

Species distribution and abiotic niches

Species distribution models generally use topoclimatic predictors only

(Guisan & Zimmermann 2000). Consequently, the relationship they

model between abiotic variables and the distribution includes at the

same time abiotic constraints, dispersal mechanisms and interaction

between species (Guisan & Zimmermann 2000; Soberon 2007). Here,

because we introduced other explicative variables to describe dispersal

and species interactions mechanisms, the modelled relationship

between abiotic variables and the species distribution is refined and

should be closer to the fundamental niche. Although the approxima-

tion of the fundamental niche is obviously constrained by the area

considered and should be valid only for the gradient sampled, our

method refines the relationship between topoclimatic variables and

species distribution for our region. Whilst we agree that only

experiments can define the fundamental niche (e.g. Vetaas 2002;

Kearney & Porter 2009) whereas we only approximate it here, our

model allows us to explore the effects of dispersal and biotic

interactions on the abiotic niche, including the identification of

sources and sinks (Fig. 5b) and is able to point out potential sites

where facilitation or competition have a strong impact (Fig. 5c).

Perspectives

Our framework extends the boundaries of SDMs and should allow

important ecological questions to be addressed. It offers an innovative

way to improve our understanding of community assembly processes

for large spatial scales and for many species at once, based on largely

available data: coarse scale environmental variables, community

surveys at the scale of species interactions, and species-specific

dispersal abilities. For instance, understanding and predicting species

invasion might benefit from this framework, as the potential

distribution of the invader species in a region is often unknown

because the realised distribution of the species usually reflects the

place of introduction, dispersal capability of the species and biotic

resistance of the native communities (Gallien et al. 2010). More

fundamentally, not all species are influenced by the same factors.

Applying our framework to a large set of species could help providing

general rules or patterns for groups of species. For instance, dominant

and generalist species are in theory less likely to be influenced by

negative biotic interactions than subordinated species (Boulangeat

et al. 2012). These relatively old but generally unresolved questions in

ecology and biogeography might be now tackled or addressed from a

different angle.
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