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Abstract. The fourth-corner analysis aims to quantify and test for relationships between species
traits and site-specific environmental variables, mediated by site-specific species abundances. Since
there is no common unit of observation, the significance of the relationships is tested using a double
permutation procedure (site based and species based). This method implies that all species and sites
are independent of each other. However, this fundamental hypothesis might be flawed because of
phylogenetic relatedness between species and spatial autocorrelation in the environmental data. Here,
using a simulation-based experiment, we demonstrate how the presence of spatial and phylogenetic
autocorrelations can, in some circumstances, lead to inflated type I error rates, suggesting that signifi-
cant associations can be misidentified. As an alternative, we propose a new randomization approach
designed to avoid this issue, based on Moran’s spectral randomization. In this approach, standard
permutations are replaced by constrained randomizations so that the distribution of the statistic under
the null hypothesis is built with additional constraints to preserve the phylogenetic and spatial struc-
tures of the observed data. The inclusion of this new randomization approach provides total control
over type I error rates and should be used in real studies where spatial and phylogenetic autocorrela-
tions often occur.

Key words: community ecology; fourth-corner analysis; functional ecology; Moran’s spectral randomization; null
models; type I error.

INTRODUCTION

Analyzing how species with given functional traits
respond to environmental gradients generally requires the
simultaneous analysis of three types of information: a trait
database, a species by site matrix, and an environment by
site matrix. The first (table T) contains information on the
morphological or physiological traits of each species (species
as rows and traits as columns). The second (table L) con-
tains species abundances (or presence and absence) for each
site (sites as rows and species as columns). The third (table
E, sites as rows and species as columns) contains a set of
environmental variables for each site (e.g., soil properties,
climate, or land use).
The simultaneous analysis of these three tables is a statis-

tical challenge that has led to a wide range of developments.
Regression-based approaches (e.g., Jamil et al. 2013, Brown
et al. 2014) model species abundances (or species presence/
absence) as a function of their respective traits, environmen-
tal variables and the interaction between both species traits
and environment using generalized linear models (GLMs)

or generalized linear mixed effects models (GLMMs, with
species and/or sites as random terms). In these models, the
trait–environment relationship is measured by the interac-
tion term. On the other hand, correlative approaches (for a
review, see Kleyer et al. 2012) broadly include community-
weighted mean approaches, where a single trait value for the
each community is calculated and correlated against the
environmental variable (Lavorel et al. 2008), ordination
approaches, such as RLQ analysis (Dol�edec et al. 1996) and
the fourth-corner analysis, which measures and tests correla-
tions between species traits and environmental variables
(Legendre et al. 1997, Dray and Legendre 2008). The com-
parison between regression-based and correlative appro-
aches is beyond the scope of this paper (some elements of
comparison between correlative and regression-based meth-
ods are given in ter Braak et al. [2017]).
Among the correlative methods, the fourth-corner analy-

sis can be used to measure and statistically test associations
between a functional trait and an environment variable,
while taking into account species’ abundances. Depending
on the nature (quantitative or qualitative) of the variables in
tables T and E, different statistics have been proposed to
quantify the link between traits and the environment
(Legendre et al. 1997, Dray and Legendre 2008). For
instance, when both the trait and the environment are
continuous (quantitative variables), their association is
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measured with a weighted cross-correlation coefficient
(Legendre et al. 1997, Dray and Legendre 2008).
As the fourth-corner involves two types of statistical units

(species on which traits are measured and sites at which envi-
ronment is measured), a statistically valid test requires two
separate permutation tests, one site based and one species
based. The significance of the trait–environment association
is then given by the largest of the two P-values (Dray and
Legendre 2008, ter Braak et al. 2012). The underlying
assumption of this test, as with any permutation test, is that
observations are independent under the null hypothesis. In
the case of the fourth-corner, an important consequence of
this assumption is that species and sites are considered as two
sets of independent observations. However, observation
dependence (i.e., autocorrelation) in ecological data is the
rule rather than the exception for two main reasons. First,
because spatial autocorrelation occurs when the values for a
variable sampled at nearby sites are not independent from
each other (Diniz-Filho et al. 2003). This is often the case
with environmental variables (table E). However, it is also
common in abundance data (table L), due to biotic interac-
tions, limited dispersal, and environmental filtering (Dale and
Fortin 2002, Dormann 2007). Second, species are not inde-
pendent units as they share a common evolutionary history,
which may not only create phylogenetic signal in traits (table
T, i.e., phylogenetic autocorrelation; Blomberg et al. 2003),
but also in abundance distributions (table L; Hardy 2008).
These two patterns arise in cases of strong trait and niche
conservatism (M€unkem€uller et al. 2012) and although they
are not necessarily ubiquitous in ecological data (Pearman
et al. 2014), they affect statistical performance when present.
How valid and powerful fourth-corner testing procedures

are in the presence of spatial and phylogenetic autocorrela-
tion is therefore a key question. It is indeed well known that
the presence of autocorrelation produces a kind of pseudo-
replication (Hurlbert 1984) leading to inflated type I error
rates and biased and imprecise parameter estimates. Several
approaches have therefore been proposed to solve this issue
in the phylogenetic (e.g., Martins and Hansen 1997, Rohlf
2001) and spatial (e.g., Lichstein et al. 2002) context.
In the spatial context, Wagner and Dray (2015) recently

proposed Moran spectral randomization (MSR) as an alter-
native strategy based on the use of spatially constrained ran-
domization methods. The basic idea behind this method is
to compare observed values for parameters to those
obtained under a null model that preserves the spatial auto-
correlation of the data. Although the idea of such null mod-
els is not a novelty per se (e.g., Fortin and Jacquez 2000,
Beale et al. 2008), the MSR method has the distinct advan-
tage of dealing with irregular sampling with minimal param-
eterization while preserving the multiscale structure of
spatial data (Wagner and Dray 2015). Although the MSR
method was originally developed for correlation analyses in
the presence of spatial autocorrelation, we argue that it is an
appealing approach that can be extended to deal with both
spatial and phylogenetic autocorrelations in a multivariate
context. Combining this method with the fourth-corner
analysis bridges the gap between spatial and phylogenetic
analyses as it considers the information contained in the
three tables E, T, and L and provides an original framework
that adapts simultaneously to both spatial and phylogenetic

autocorrelation structure. Here, we perform a simulation
study to demonstrate the impact from both phylogenetic
and spatial autocorrelations on fourth-corner type I error
rates. Then, we build MSR constrained randomizations for
both traits and environmental variables in order to address
these issues. In Data S1 we provide the code and tutorials
required to implement the approach in R (R Development
Core Team 2016).

METHODS

Testing the trait–environment relationship with the
fourth-corner

The fourth-corner analysis relies on permutation models
to measure the statistical significance of the observed statis-
tic. After calculating the observed statistic (e.g., weighted
correlation for quantitative traits and environmental vari-
ables) from the original data tables, table L is permuted n
times and for each time a new value is computed for the
fourth-corner statistic. The observed statistic is compared to
this distribution under the null hypothesis to compute a
P-value (Legendre et al. 1997).
Following the reasoning in Dray and Legendre (2008), ter

Braak et al. (2012) demonstrated that two permutation tests
are required to truly control for type I error. The first test
randomizes species abundances across sites (i.e., permutes
entire rows of table L or entire rows of table E). The second
test randomizes abundances across species (i.e., permutes
entire columns of table L or entire rows of table T). The
larger of the two P-values resulting from these two tests are
then taken as the final P-value to assess significance.

Spatially and phylogenetically constrained tests

Random permutations are valid under the assumption that
species and sites are independent statistical units. However,
this assumption is violated when spatial and/or phylogenetic
autocorrelation occur, requiring alternative randomization
procedures. One solution is to generate a distribution of the
fourth-corner statistic under a null hypothesis that also pre-
serves the structural properties (i.e., autocorrelation) of the
observed data. This changes the null hypothesis from “no
link between traits and environment” to “no link between
traits and environment given the presence of spatial and/or
phylogenetic autocorrelations,” providing a testing procedure
that controls for type I error rates in the presence of noninde-
pendent data.
In the case of spatial autocorrelation, the original Moran

spectral randomization (MSR) method (Wagner and Dray
2015) relies on Moran’s eigenvectors maps (MEM; Dray
et al. 2006) to produce random variables that preserve the
multi-scale spatial structure and the global autocorrelation
of the original data. In the fourth-corner context, we suggest
implementing MSR to generate random environmental
descriptors under the new null hypothesis, i.e., random vari-
ables that preserve the spatial autocorrelation of the original
variables (table E) while being generated independently of
species distribution (i.e., not linked to L). These MSR repli-
cates will then be used to build a distribution of the fourth-
corner statistic (see below) under the null hypothesis and

2668 JO~AO BRAGA ET AL. Ecology, Vol. 99, No. 12
St

a
ti
st
ic
a
l R

ep
or

ts



preserve the level of spatial autocorrelation in environmen-
tal variables.
Although MSR was initially developed for spatial vari-

ables, we propose extending it to deal with phylogenetically
structured data. In its original algorithm, MSR decomposes
the variance of a spatial variable onto n � 1 MEMs (i.e.,
eigenvectors of a spatial weights matrix, n being the number
of sites), which are all used to reproduce the underlying
structure of the data (Wagner and Dray 2015). Similarly, it
is possible to compute a matrix of phylogenetic proximities
(Pavoine et al. 2008) and then use the eigenvectors from this
matrix in the MSR algorithm. These eigenvectors can be
seen as a generalization of the phylogenetic eigenvectors
proposed by Diniz-Filho et al. (1998): whereas the latter are
the principal coordinates of the patristic distance matrix,
the former can be generated for any kind of phylogenetic
proximities (including model based; see Gu�enard et al.
[2013] for more details). The resulting MSR method gener-
ates random traits that preserve the multiscale phylogenetic
autocorrelation structure of the original one (table T) while
being independent of species distribution (i.e., not linked to
L). These MSR replicates will then be used to build a distri-
bution of the fourth-corner statistic under the null hypothe-
sis and preserve the level of phylogenetic signal in species
traits.
We thus propose incorporating MSR into the standard

fourth-corner analysis as follows:

1) Calculate the reference fourth-corner statistic value using
original data tables (for more details, see Dray and
Legendre [2008]).

2) Generate random replicates (e.g., 999) of the environ-
mental variable using the MSR algorithm with a given
spatial weights matrix. For each replicate, recalculate the
fourth-corner statistics using the original trait and spe-
cies abundance in order to obtain a distribution of the
fourth-corner statistic under the null hypothesis that
there is no traits–environment link for a given spatial
autocorrelation level.

3) Compute the associated P-value by comparing the
observed value of the fourth-corner statistic (step 1) with
the null distribution obtained in step 2.

4) Generate random replicates of the trait (e.g., 999) using
the MSR algorithm with a given phylogenetic proximity
matrix. For each replicate, recalculate the fourth-corner
statistics using the original environmental variable and
species abundance in order to obtain a distribution of
the fourth-corner statistic under the null hypothesis that
there is no traits–environment link for a given phyloge-
netic signal.

5) Compute the associated P-value by comparing the
observed value of the fourth-corner statistic (step 1) with
the null distribution obtained in step 4.

6) Combine the results of both tests by taking the largest
P-value from steps 3 and 5. This produces the final
P-value for the test.

Simulation study

In our simulation design, adapted from Dray and Legen-
dre (2008), we considered scenarios with varying levels of

spatial and phylogenetic autocorrelations. Community data
consisted of 50 species across 100 sites, where each species
was characterized by two traits, one active and one passive
(ta and tp) and each site was described by two environmental
variables, one active and one passive (ea and ep). The vari-
ables ea and ta were considered active in the sense that they
drove species abundances using the following Gaussian
response model:

Lij ¼ hj exp
� eai � taj
� �2

2r2
j

" #

where Lij represented the abundance of species j in the ith
site (varying between 0 and hj); hj was the maximum abun-
dance for species j (drawn randomly from a uniform distri-
bution between 0.5 to 1); eai was the environmental value for
site i; taj was the trait value for the jth species and corre-
sponded to the species’ optimum position along the environ-
mental gradient; rj was the tolerance or niche breadth
(randomly drawn from a normal distribution of mean of 5
and a standard deviation of 10) for the jth species. The vari-
ables ep and tp were passive in the sense that they had no
influence on species abundances.
In order to simulate community data, we generated trait

and environmental variables with varying degrees of phyloge-
netic and spatial autocorrelations, respectively. For each com-
munity data set, we simulated a pure-birth stochastic
phylogenetic tree (branching rate of 0.05; sim.bdtree function
from the R package geiger; Harmon et al. 2008). To intro-
duce phylogenetic signal in traits (active and passive), we gen-
erated, for each community data set, the evolution of two
traits tBa and tBp along the phylogenetic tree under a Brown-
ian motion model using the rTraitCont function from the R
package ape (Paradis et al. 2004). Both trait values ranged

from 0 to 100, by applying tB ¼ tBþ min tBð Þj j
max tBð Þ 9 100. Then, the

final active trait was computed by ta ¼ 1� wð Þrand tBað Þþ
wtBa, where rand tBað Þ corresponds to a random permutation
of the vector tBa and w is a coefficient ranging from 0 to 1.
Coefficient w controlled the intensity of phylogenetic signal in
the final active trait (w = 1 corresponds to a pure Brownian
model whereas w = 0 corresponds to the absence of phyloge-
netic signal). The formula was also used for tp (replacing tBa
by tBp). In the scenarios described below, we set w = 1 for tp
and w ranged from 0 to 1 (by 0.1 intervals) for ta. For each
phylogenetic tree we defined a phylogenetic proximity matrix.
Given that our traits were simulated based on a pure Brown-
ian model, we defined the phylogenetic proximity matrix as

1� dij
dmax

, where dij is the patristic distance between species i

and j and dmax is the maximum patristic distance between any
two tips of the phylogenetic tree. This equation relates inti-
mately to the hypothesis of a Brownian motion model, where
proximity linearly decreases with time of convergence (Diniz-
Filho et al. 2012).
For the sites, we considered a design where 100 sites are

located on a 10 by 10 regular grid and computed the associ-
ated spatial weights matrix using row standardization weights
specification in the nb2listw function from the spdep package
(Bivand et al. 2005). A protocol similar to the traits protocol
was used to introduce spatial autocorrelation in environmen-
tal variables ea and ep. We simulated two simultaneous

December 2018 TRAIT–ENVIRONMENT TESTS 2669
S
ta

tistica
lR

ep
orts



autoregressive random variables eAa and eAp (see Dray [2011]
for more details) with an autoregressive parameter q = 0.9
using the function invIrM in the spdep R package (Bivand
et al. 2005). Both environmental variables ranged from 0

to 100, by applying eA ¼ eAþ min eAð Þj j
max eAð Þ 9 100. Then, the final

active environmental variable was computed by ea ¼
1� wð Þrand eAað Þ þ weAa, where rand eAað Þ corresponds to a
random permutation of vector eAa and w is a coefficient
ranging from 0 to 1. The formula was also used for ep (replac-
ing eAa by eAp). Coefficient w controlled for the amount of
spatial autocorrelation in the final environmental variables
(w = 1 corresponds to a pure simultaneous autoregressive
model whereas w = 0 corresponds to the absence of spatial
structure). In the scenarios described below, we set w = 1 for
ep and w ranged from 0 to 1 (by 0.1 intervals) for ea.

Assessing method performance

To compare the performance of the standard fourth-cor-
ner and fourth-corner with MSR, we applied both analyses
to the same simulated data in order to quantify and compare
their respective power and type I error rates. Each scenario
corresponded to the analysis of the simulated abundance
table with a combination of a trait (ta or tp) and an environ-
mental variable (ea or ep). As table L was generated as a
function of ta and ea, community data ranged from a phylo-
genetically random and spatially random structure (w = 0)
to a pure phylogenetically and spatially autocorrelated struc-
ture (w = 1). For w = 1, if two sites were spatially close, they
shared similarities in their environmental values, therefore
they shared similarities in terms of species compositions.
Likewise, if two species shared similar trait values due to
phylogenetic relatedness, they had similar abundances,
regardless of the site considered. Therefore, as the w incre-
ased the variables that generated table L, and table L itself,
will be more phylogenetically and spatially structured. Five
scenarios were thereby considered and in total we generated
1000 community data sets per value of w.

Scenario ea ↔ ta—Since species abundances were driven by
both variables ta and ea, we expected to find a significant
association between them. This scenario evaluated the statis-
tical power to detect the true association between trait and
environmental variables.

Scenario Nea ↔ Nta—After generating table L, we added
random normal noise to ea and ta (mean of 5 and standard
deviation of 2) and to table L (mean of 0 and standard devi-
ation of 1). We replaced any negative values in table L by
zeros. This scenario evaluated the statistical power in the
presence of random noise to detect the true correlation
between trait and environmental variables.

Scenario ea ↔ tp—Since trait tp did not influence species
abundances, any significant association with ea was considered
as a false positive. This scenario evaluated type I error rates.

Scenario ep ↔ ta—Since environmental variable ep did not
influence species abundances, any significant association
with ta was considered as a false positive. This scenario eval-
uated type I error.

Scenario ep ↔ tp—Since neither environmental variable ep
nor trait tp influenced species abundances, any significant
association between ep and tp was considered as a false posi-
tive. This scenario evaluated type I error rates.
All tests used 999 repetitions for a 0.05 significance level.

The fourth-corner analysis is available from the fourth-cor-
ner function in the R package ade4 (Dray and Dufour
2007). We used the me.phylo function from the adephylo R
package (Jombart et al. 2010) to calculate phylogenetic
Moran’s eigenvectors. For MSR, we used the singleton algo-
rithm (Wagner and Dray 2015) as implemented in the msr
function in the adespatial package (Dray et al. 2016).

RESULTS

When only active variables were considered, both the
standard fourth-corner and the MSR version correctly iden-
tified the true associations (Fig. 1a). In contrast, in the pres-
ence of random noise on all tables, both methods decreased
in power and this loss was higher for the fourth-corner anal-
ysis with the MSR algorithm (Fig. 1b). Despite this loss in
power, both analyses identified more than 80% of true trait–
environment associations.
When passive variables were among the tested variables,

so that there was no real trait–environment association, the
performance of the standard fourth-corner was strongly
affected by spatial and/or phylogenetic autocorrelations. For
w = 0 (no spatial structure and no phylogenetic signal in
table L as values in ta and ea are independent), rejection
rates were always 5% or less for all tests involving tp and/or
ep. However, as the strength of the spatial and phylogenetic
autocorrelation increased in ta and ea (and thus in table L),
the rejection rates increased (maximum was 42.1% for w = 1
in scenario ep ↔ ta, Fig. 2a) for all scenarios involving tp
and/or ep indicating inflated type I error (Fig. 2). This was
not the case for MSR, as type I error rates were acceptable
(around or below 5% threshold) for all scenarios involving
at least one passive variable.

DISCUSSION

In this paper, we investigated the impact of phylogenetic
and spatial autocorrelations on the type I error rates for
fourth-corner analysis. When abundance data (table L) are
not affected by spatial and phylogenetic autocorrelation (i.e.,
w = 0), both the fourth-corner and its MSR version have
acceptable type I error rates. However, when abundance data
are spatially and phylogenetically structured, but not linked
to the environmental variable and/or trait considered in the
analysis (scenarios considering a passive variable), the effects
of spatial and phylogenetic autocorrelation can be dramatic.
The type I error rates increased along with the intensity of
autocorrelation. These results support Hurlbert’s (1984)
warning that the presence of autocorrelation in ecological
data may lead to pseudo-replication and inflated type I error
rates in statistical tests. Since spatial and phylogenetic auto-
correlation commonly occur in ecological data sets, it is quite
likely that some trait–environment relationships have been
erroneously uncovered and discussed in the past literature.
Here, we proposed a new randomization procedure for

the fourth-corner analysis using the MSR method. We
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modified the machinery of the approach, rather than its
statistics, such that spatial and phylogenetic structures are
now accounted for in the hypotheses testing. In other words,
the ecological interpretation remains as described in Dray
and Legendre (2008), “the fourth-corner statistic is a mea-
sure of the link between the characteristics (traits) of species
and their positions along the environmental gradient,”
which is now tested while accounting for the spatial and phy-
logenetic structures of the data.
The fourth-corner analysis is not alone in solving the

fourth-corner problem. Regression-based analyses have the
potential advantage of not only describing correlations, but
also predicting a community’s responses to environmental
changes, given by its response to environment, traits and
their interaction (Brown et al. 2014). Therefore, these
approaches provide a more complete picture of community
structure by decomposing the relative effect of each variable.
Nevertheless, regression-based approaches also share the

autocorrelation problem highlighted in this paper (ter Braak
2017), and it is here that the fourth-corner analysis has it
main methodological advantage. Regression-based appro-
aches that account for spatial and phylogenetic autocorrela-
tions require more advanced statistical models, such as
linear mixed models and GLMMs. These require the estima-
tion of random effects, which can be difficult as random
effects are nonlinear parameters (Bolker et al. 2009).
Recently, Li and Ives (2017) applied phylogenetic linear
mixed effect models to account for phylogenetic dependen-
cies between species into the fourth-corner problem, and
showed that considering phylogenetic structure as random
effects significantly improved type I error rates in compar-
ison to traditional linear mixed effects models. However,
their approach did not consider spatial autocorrelation and
required the estimation of five variance components (corre-
sponding to random effects for species and sites intercepts,
species responses to the environment, phylogenetic related-
ness between species intercepts and phylogenetic relatedness
of species responses to the environment) for a model with a

single trait and a single environmental variable. Adding
more environmental and trait variables would then require
more variance components (Jamil et al. 2013), which can be
computationally intensive. While Li and Ives (2017) fitted
linear mixed models by maximum likelihood methods, Ovas-
kainen et al. (2017) proposed GLMMs with phylogenetic
and spatial covariance matrices using a Bayesian framework
to solve the fourth-corner problem. This approach requires
the user to specify an appropriate distribution for the abun-
dance data, such as a negative binomial or Tweedie distribu-
tion with or without zero inflation. While this is seemingly
easy in a Bayesian framework where Markov Chain Monte
Carlo sampling replaces numerical integration of random
effects, Bayesian approaches have their own challenges.
While maximum likelihood methods may fail due to numeri-
cal issues (Bolker et al. 2009), Bayesian methods can have
convergence issues such as burn-in and poor mixing (Lesaf-
fre and Lawson 2012). Moreover, because any of these
approaches need considerable computer time and may fail
(Rue et al. 2009), it is difficult to explore variants of models.
Also, there are no guarantees that the whole procedure has
desirable statistical properties, such as control of false posi-
tives as investigated in this paper. As noted in the discussion
of ter Braak (2017), even a simple model, such as the nega-
tive binomial GLM, requires resampling for statistical infer-
ence as the parametric version inference may be inaccurate,
whereas GLMMs for binary response also present inferen-
tial problems (Engel 1998, Fong et al. 2010). Finally, both
Li and Ives (2017) and Ovaskainen et al. (2017) used linear
models without addition of (trait-dependent) quadratic (or
other) terms to allow for basic ecological niche models. In
contrast, Jamil et al. (2014) analyzed trait–environment rela-
tionships in the Bayesian framework starting from the Gaus-
sian response model. Despite the great progress reported in
these papers, the application of these methods to solve the
fourth-corner problem while accounting for both phyloge-
netic and spatial autocorrelation is still far from being
straightforward and easy. The fourth-corner analysis is at

a) b)

FIG. 1. Power study results for standard fourth-corner (blue) and its Moran spectral randomization (MSR) corrected version (green)
according to structural strength (w). Panel a shows results with absence of random noise (scenario ea ↔ ta) and panel b shows results with
presence of random noise (scenario Nea ↔ Nta) on active variables and table L. Rejection rates were based on a 5% significance level. For
each value of w, we simulated 1000 community data sets.
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the simple side of the spectrum of simple to complex meth-
ods. Its computational speed allows extensive randomization
methods to be applied, as we show here. ter Braak et al.
(2017) compared the computational speed of a GLM with
Poisson and negative binomial response in the case of a sin-
gle trait and a single environmental variable and showed
that their performances (power and type I error rates) were
similar to those of the fourth-corner analysis, but that the
computation time was 140 and 1,400 times slower for the
GLM. Inclusion of variance components, i.e., using
GLMMs, would increase computation times even further.
For these reasons, we believe that the fourth-corner is a valid
and applicable solution that allows one to incorporate both
spatial and phylogenetic structure into a comprehensive test-
ing framework.
It should be noted that the fourth-corner analysis deals

only with the case of a single correlation whereas regression-
based approaches allow one to consider multiple traits and
multiple environmental variables in a single analysis. Solu-
tions for such limitation exist. For instance, the fourth-corner
multivariate framework can be extended to multiple traits
and multiple environmental variables giving double con-
strained correspondence analysis (ter Braak et al. 2018). This
multivariate approach, which already exists for a long time
(Lavorel et al. 1998, 1999), has been revived by ter Braak
(2017), who linked the fourth-corner correlation and its multi-
trait multi-environmental variable extension to a GLM frame-
work. The randomization methods of this paper have also
potential application in this extended context. In summary,
our proposed randomization model resolves the issues related
to autocorrelated data and the modified version of the fourth-
corner analysis controls type I error rates in all situations,
including when data are not spatially and phylogenetically
structured. Therefore, we advocate the use of this method
instead of the standard fourth-corner test in all situations.
The disadvantage of using MSR could be the loss of

power in the statistical analyses and our simulation study
did indeed identify a small decrease in power (Fig. 1b). As a
consequence, this may produce more conservative conclu-
sions. However, the power of the analysis was consistently
above acceptable levels (above 80%, Fig. 1).
Our study is the first extension of the MSR method to the

phylogenetic autocorrelation context and our results suggest
that it is a very flexible way of dealing with issues relating to
autocorrelation in various statistical methods. We were able
to manage spatial and phylogenetic autocorrelation in a
common statistical framework, with minimal parameteriza-
tion and made it possible to define null distributions for all
kinds of statistics (Wagner and Dray 2015). It is important
to note that in our simulations we computed MSR using the
phylogenetic proximities and spatial weights matrices that
were used to generate the data. These results may therefore
be overly optimistic compared to real data analysis in which
these matrices are unknown. Further work is required to
evaluate the influence of misspecifications of proximity
matrices in the MSR algorithm, specifically when consider-
ing other trait evolutionary models, such as Ornstein-Uhlen-
beck and Pagel’s k models. As the MSR approach is very
general, it can be extended to other contexts. For instance,

a) 

c) 

b) 

FIG. 2. Type I error rates for standard fourth-corner (blue) and
its MSR corrected version (green) according to structural strength
(w) for scenarios (a) ep ↔ ta, (b) ea ↔ tp and (c) ep ↔ tp. Rejection
rates were based on a 5% significance level (shown by the gray dot-
ted line). For each value of w, we simulated 1000 community data
sets.
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the fourth-corner analysis has been used to understand how
species interact in mutualistic and trophic networks (Dehl-
ing et al. 2014, Spitz et al. 2014). Our framework can help
to properly study interactions taking into account the infor-
mation contained in two phylogenies. However, one current
limitation of MSR is its inability to deal with noncontinuous
data, as the original algorithm is only capable of simulating
quantitative variables (Wagner and Dray 2015). Further
work is required to extend the method to deal with categori-
cal variables, which often occur, especially in trait databases.
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