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Abstract
Aim: Although much has been said on the spatial distribution of taxonomic and phy‐
logenetic diversity of vertebrates, how this diversity interacts in food webs and how 
these interactions change across space are largely unknown. Here, we analysed the 
spatial distribution of tetrapod food webs and asked whether the variation in local food 
web structure is driven by random processes or by natural and anthropogenic factors.
Location: Europe.
Time period: Present.
Major taxa studied: Tetrapods.
Methods: We combined an expert‐based food web (1,140 species and 70,601 links) 
of all European tetrapods with their respective spatial distributions. We mapped 17 
different food web metrics representing complexity, chain length, vertical diversity 
and diet strategy across Europe and tested whether their distribution reflects the 
spatial structure of species richness using a null model of food web structure. To 
avoid multicollinearity issues, we defined composite descriptors of food web struc‐
ture that we related to a set of environmental layers summarizing both natural and 
anthropogenic influences and tested their relative importance in explaining the spa‐
tial distribution of European terrestrial vertebrate food webs.
Results: Of the 17 metrics, 10 showed a non‐random spatial distribution across 
Europe and could be summarized along two major axes of variation in food web struc‐
ture. The first was related to species richness, mean trophic level and the proportion 
of intermediate species, whereas the second was related to the connectance and 
proximity of species within the web. Both descriptors varied with latitudinal gradi‐
ent. The best descriptors of food web structure were mean annual temperature and 
seasonality (negatively correlated with the first axis), and human footprint (positively 
correlated with the second axis).
Main conclusions: We demonstrate the importance of climate and anthropogenic 
pressure in shaping the spatial structure of European tetrapod food webs.
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1  | INTRODUC TION

Documenting large‐scale biodiversity distribution and understand‐
ing what drives variation between or within different regions of the 
world has long fascinated naturalists (Wallace, 1876). The recent 
and ever‐increasing rise of large‐scale distribution databases (e.g., 
IUCN, BirdLife, Map of Life) has led to new comprehensive analy‐
ses of biodiversity distribution. Thanks to available data on species 
traits and phylogenetic relatedness, global and regional distributions 
of species, functional and phylogenetic diversities are now well 
documented for tetrapods (Jetz & Fine, 2012; Jetz, Thomas, Joy, 
Hartmann, & Mooers, 2012; Mazel et al., 2014, 2017).

Such measurements of biodiversity (taxonomic, functional and 
phylogenetic diversity) focus on a group of species co‐occurring in a 
certain area or region, which are subsequently compared with mea‐
surements of other areas to identify localities with higher or lower 
biodiversity (e.g., hotspots versus coldspots; Mazel et al., 2014). 
However, species assemblages are not merely the sum of species co‐
occurring in an area; they share a myriad of biotic interactions (e.g., 
predation, competition, facilitation) that originate a variety of eco‐
logical networks through space. Although biogeographical studies 
have investigated how species or functional diversity vary in space 
and the underlying role of the environment (e.g., Davies, Buckley, 
Grenyer, & Gittleman, 2011; Mazel et al., 2017; Safi et al., 2011), 
we know little about the spatial distribution of ecological networks 
(Pellissier et al., 2018).

Food webs are representations of the trophic interactions of 
communities, where each node in the network represents a spe‐
cies and each edge is a directional feeding interaction from a prey 
to a predator. Food web ecology has focused on the trophic rela‐
tionships between species within discrete communities, with the 
goal of inferring the underlying processes acting upon them, such 
as the relationship between species diversity and food web struc‐
ture, community assembly processes and even robustness of those 
communities to species extinctions (Montoya, Pimm, & Solé, 2006). 
However, since the pioneering work of Kitching (2000) on latitudi‐
nal gradients of aquatic food web structure, food web ecology has 
shifted from finding food web structural generalities across distinct 
communities to searching for large‐scale spatial distribution of eco‐
logical networks, such as latitudinal gradients, and relationships with 
climate and resource availability (Kortsch, Primicerio, Fossheim, 
Dolgov, & Aschan, 2015; Montoya & Galiana, 2017; Pellissier et al., 
2018; Poisot, Guéveneux‐Julien, Fortin, Gravel, & Legendre, 2017; 
Post, 2002; Roslin et al., 2017; Wood, Russell, Hanson, Williams, & 
Dunne, 2015).

Large‐scale spatial distribution of food web structure may 
be driven by multiple factors. First, food web structure follows 
both species richness and compositional gradients (Baiser, Gotelli, 
Buckley, Miller, & Ellison, 2012; Riede et al., 2010), and any process 
acting upon these features of biodiversity, such as environmental 
sorting of species, will cause food webs to be spatially structured 
(Pellissier et al., 2018). Second, food web topology may reflect com‐
munity adaptations to environmental stability. The latitude–niche 

breadth hypothesis, for instance, postulates that species have more 
specialized diets in the tropics and become more generalist towards 
the poles, because higher environmental stability and amount of 
energy in the tropics allow for greater species packing (MacArthur, 
1955; Schleuning et al., 2012). Nevertheless, this hypothesis does 
not seem to be verified across different systems (Cirtwill, Stouffer, 
& Romanuk, 2015) and lacks testing across large spatial scales. 
Third, resource availability in conjunction with disturbances and 
environmental variability may also affect food web topology. Low 
resource availability for primary consumers limits species richness 
and food chain length, whereas disturbances and ecosystem size 
drive food chain length at intermediate levels of resource availability 
(Kaunzinger & Morin, 1998; Post, 2002). Again, such observations 
are not ubiquitous (Zanden & Fetzer, 2007). This hypothesis has yet 
to be tested across large environmental gradients and for complex 
(i.e., species‐rich) food webs.

Here, motivated by these hypotheses, we built the first compre‐
hensive food web of European tetrapod species. For this, we used 
a combination of expert knowledge and literature and mapped the 
food web structure of all vertebrate assemblages naturally occurring 
in Europe, western Russia and Turkey, using a uniform spatial grid at 
10 km resolution. Given that the above‐mentioned hypotheses focus 
on different facets of food web topology, we analysed a large set of 
food web properties, such as complexity metrics (species richness, 
connectance and number of trophic interactions), vertical diversity 
metrics (proportion of basal, intermediate and top predator species), 
feeding strategy metrics (generality, vulnerability and omnivory) and 
trophic level metrics. We compared local observations of food web 
metrics with a constrained null model to reveal significant associa‐
tions with environmental variables.

Most network metrics cannot be dissociated from each other 
because they covary with either the number of species or connec‐
tance (Baiser et al., 2012; Poisot & Gravel, 2014; Riede et al., 2010; 
Vermaat, Dunne, & Gilbert, 2009). Hence, to comprehend and sum‐
marize European food web spatial diversity, we applied a principal 
components analysis (PCA) to decompose the food web structure 
into two composite descriptors (Pellissier et al., 2018) and investi‐
gated how the environment, landscape and anthropogenic pressure 
influenced their spatial distribution.

We expected annual temperature and precipitation to be good 
predictors of food web spatial structure because they are major 
drivers of species sorting and community assembly over large spatial 
scales (Currie, 1991; Ledger, Brown, Edwards, Milner, & Woodward, 
2012; Riede et al., 2010; Vázquez & Stevens, 2004). Likewise, highly 
productive sites should provide more resources for consumers, 
therefore supporting higher trophic levels (Post, 2002; Wright, 
1983). Thus, we expected higher trophic levels in areas with high 
productivity. We also anticipated that habitat fragmentation and 
human disturbance would shape European food webs. High levels 
of fragmentation might reduce the strength of interactions between 
species or even prevent species from interacting, ultimately leading 
to simpler networks with shorter chain lengths and more generalist 
species (Hagen et al., 2012).
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2  | MATERIAL S AND METHODS

2.1 | Study area and species distributions

The study area included Europe (excluding Macaronesia region 
and Iceland) and western regions of Turkey and Russia (hereafter 
referred to as “Europe”). We extracted species ranges for tetra‐
pods naturally occurring within the study area from Maiorano et al. 
(2013). In total, our analyses focused on 510 bird, 288 mammal, 239 
reptile and 103 amphibian species (for the full species list, see Table 
S1.1 in Appendix S1 of Supporting Information). Species range data 
followed a regular grid of 300 m resolution (WGS84), where cells 
took values of zero for unsuitable habitat, one for secondary habitat 
and two for primary habitat (Maiorano et al., 2013). We treated sec‐
ondary and primary habitat equally as “suitable habitat”. All species 
range maps were up‐scaled to a 10 km × 10 km equal‐size area grid 
(ETRS89; total of 78,873 cells). We considered species potentially 
present in a 10 km × 10 km cell (hereafter referred to as local as‐
semblage) when they had least one 300 m suitable habitat cell within 
it. In the Appendix S2 in Supporting Information, we show that the 
proportion of suitable habitat needed for a species to be present in 
each cell did not affect the spatial distribution of species richness or 
connectance, and thus did not influence the spatial distribution of 
local food web structure (see below section 2.2).

2.2 | European tetrapod metaweb and local food 
web structure

A trophic metaweb compiles all predator–prey interactions between 
species of a given regional species pool (Pascual & Dunne, 2006). 
Here, we designed the most complete metaweb of European tet‐
rapods from expert knowledge, published information and field 
guides. As in previous studies (e.g., Lurgi, Lopez, & Montoya, 2012), 
all tetrapod species whose diet did not include another species of 
the metaweb (such as herbivores, insectivores, piscivores and detri‐
tivores) were defined as basal species. Then, we searched for trophic 
interactions between species that fed upon other tetrapod species 
(and omnivores) from an exhaustive literature review. We defined a 
trophic interaction as predation on any life stage of a species (e.g., 
egg and larval when applicable, juvenile or adult). Trophic interac‐
tions between a predator and a prey were identified from published 
accounts of their observation, morphological similarities between 
potential prey and literature‐referenced prey and, in the absence 
of this information, the diet of the sister species of the predator. 
Twelve general diet categories (i.e., basal resources) were added 
to the metaweb, which included detritus, coprophagy, mushrooms, 
mosses and lichens, algae, fruits, grains, other plant parts, inverte‐
brates, fish, domestic animals and carrion.

The metaweb comprised 70,601 trophic interactions distributed 
across 1,140 terrestrial vertebrate species (66% of basal species, of 
which 10% were herbivores and 56% non‐herbivore basal species, 
33% were intermediate species and <1% were top predator species) 
and a connectance of .05. On average, species had 62 interactions 

(including prey and predator interactions) and were two interactions 
away from each other.

We defined local food webs by intersecting the metaweb with local 
community composition (Gravel et al., 2019). In the few cases where a 
given species was present in a cell but had no available prey or did not 
share a common habitat type with any of its prey, the species was con‐
sidered absent in that particular location (i.e., assuming a false positive 
in the distribution data; Gravel, Massol, Canard, Mouillot, & Mouquet, 
2011). We assumed that diet categories are widely distributed across 
the landscape and therefore that basal species always have a resource.

For each local food web, we calculated 17 food web properties 
pertaining to four groups: complexity, strategy, vertical diversity and 
trophic level. Complexity metrics included species richness, con‐
nectance, clustering coefficient, characteristic path length and link 
density (average distance between species and average number of in‐
teractions per species, respectively). Strategy metrics refer to dietary 
niche properties of species and included the proportion of omnivore 
species, average trophic similarity between species, the average 
generality (number of prey per consumer species) and vulnerability 
(number of predators per resource species). We measure two other 
strategy metrics, normalized standard deviations of generality and 
vulnerability, both normalized by link density (Williams & Martinez, 
2000). Vertical diversity metrics quantify the proportion of species 
along three major trophic levels: basal, intermediate and top level. 
Note that we defined basal species as non‐autotroph species without 
terrestrial vertebrate prey. Trophic level metrics refer to the vertical 
trophic position of species within a food web and included the mean 
trophic level and the maximum trophic level. See Table 1 for the list 
of metrics and their definitions. Food web metrics were calculated 
using the “igraph” and “cheddar” R packages (Csardi & Nepusz, 2006; 
Hudson et al., 2013) in R v.3.4.1 (R Development Core Team, 2011).

2.3 | Climatic, energetic and habitat variables

We extracted four climatic variables from the WorldClim database 
(Hijmans, Cameron, Parra, Jones, & Jarvis, 2005) at 30° resolution: 
annual mean temperature, temperature seasonality (SD of monthly 
mean temperature), total annual precipitation and coefficient of 
variation of precipitation. We chose these variables because they 
are correlated with tetrapod ranges (Boucher‐Lalonde, Morin, & 
Currie, 2014). We approximated the amount of resources available 
to the primary consumers in each cell with estimates of net primary 
productivity (in grams of carbon per year at 0.25 decimal degrees 
spatial resolution; Imhoff et al., 2004). We also represented the 
anthropogenic influence on natural landscapes using the human 
footprint index from the Last of the Wild database v.2 (1 km spatial 
resolution; Wildlife Conservation Society, Center for International 
Earth Science Information Network & Columbia University, 2005). 
We resampled all climatic variables, primary productivity and human 
footprint data by averaging at each 10 km × 10 km cell. We also 
measured habitat diversity and heterogeneity using, respectively, 
the Shannon–Weiner and evenness indices applied to the GlobCover 
v.2.2 habitat classification at 300 m cell resolution. See the Appendix 
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S3 in Supporting Information for more information about the spatial 
distribution of the climatic, energetic and habitat variables.

2.4 | Statistical analyses

Our analyses consisted of three sequential steps. First, we checked 
whether the spatial distribution of each local metric was different 
from random using a null model and selected the metrics that dif‐
fered from null expectations for subsequent analyses. Second, we re‐
duced the complexity of the retained metrics by applying a PCA and 
selecting the first two axes of variation. Third, we related these two 
axes of variation to climate, resource availability, habitat diversity 
and human disturbance using generalized additive models (GAMs).

2.4.1 | Is the spatial distribution of food web 
properties random?

Food web structure may vary with species richness independently 
of any other constraints acting upon it (e.g., environment). We 

thus built a null model to test whether European local food webs 
and their associated properties could result from a draw from the 
European species pool, irrespective of their interactions. The null 
hypothesis is that a given local food web metric is not different from 
one measured from a random assemblage of species of equal rich‐
ness. This implies that species are randomly distributed in space, 
independently of the local environment and of their position in the 
metaweb, thus breaking any spatial sorting of species patterns. 
The null model consisted of randomly drawing species from the 
metaweb and then extracting the corresponding local food webs. 
We applied three constraints to the null model: (a) species richness 
was the same as observed (from 10 to 305 species); (b) the ob‐
served proportion of reptiles, birds, mammals and amphibians; and 
(c) species needed at least one prey item to be included in the food 
web (Gravel et al., 2011). We randomly drew and kept food webs 
that met all three conditions, until we had 999 food webs for each 
value of species richness. We then recalculated the 17 food web 
metrics to obtain a distribution of metrics under the null hypoth‐
esis (Table 1). For each cell, we compared the observed food web 

TA B L E  1   Food web properties, respective means, standard deviations (SD) and null rejection rates across Europe

Food web property Definition Mean (SD) Rejection rate

Species richness Number of species 194.8 (40.14) Not applicable

Connectance Proportion of realized links that occur in 
a web

.084 (.01) .99

Link density Average number of links per species 17.33 (3.26) .99

Clustering coefficient Probability of linkage of two species, given 
that both are linked to a third species

.28 (.03) .99

Characteristic path length The mean shortest food chain length 
between species pairs

1.83 (.03) .99

Vulnerability Mean number of predators per resource 
species

16.78 (3.22) .99

SD of vulnerability Normalized SD of number of predators per 
resource species

.72 (.08) 0

Generality Mean number of prey per consumer 
species

38.38 (6.70) .94

SD of generality Normalized SD of number of prey per 
consumer species

1.88 (1.16) .89

Maximum trophic similarity Mean maximum number of links (in‐ and 
outward) shared between all pairs of 
species

.75 (.02) .77

Proportion of basal species Non‐herbivores Proportion of species that prey on non‐
plant diet categories

.53 (.03) .53

Herbivores Proportion of species that prey exclusively 
on plant diet categories

.04 (.01) .47

Proportion of intermediate species Proportion of species with prey and 
predators

.42 (.03) .97

Proportion of top predator species Proportion of species without any 
predators

.01 (.01) 0

Proportion of omnivores Proportion of species that feed on more 
than one trophic level

.43 (.03) .96

Mean trophic level Mean prey average trophic level 2.35 (.08) .96

Maximum trophic level Maximum prey average trophic level 3.58 (0.14) 0

Note: Rejection rates in bold highlight variables (rejection rate > 90%) that were retained in the subsequent analyses. 
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metrics with their corresponding null distributions and computed 
the associated p‐value. We adjusted p‐values for multiple compar‐
isons using a false discovery rate method based on Benjamini and 
Hochberg (1995), available in the function p.adjust in the “stats” R 
package. We retained food web metrics that had a rejection rate 
of 90% (i.e., 90% of all local observed values were significantly 
different from ones in random assemblages). Considering that we 
computed one test per cell (total of 78,873 cells), a food web met‐
ric should be significantly different from random in c. 71,000 cells 
in order to be kept in our analysis. For a more detailed description 
of the null model, see the Appendix S4 in Supporting Information.

2.4.2 | How to reduce the dimensionality in local 
food web properties?

Many food web metrics are correlated (Vermaat et al., 2009) either 
because of their mathematical formulation or because of combina‐
tory constraints (Poisot & Gravel, 2014). We applied a PCA on the 
ten retained variables over the 78,873 cells of Europe (Table 1) 
to analyse the most insightful axes of variations between these 
metrics. This allowed us not only to understand how food web 
metrics covary with each other, but also to summarize the food 
web structure of European assemblages (as a whole) into a set 
of meaningful axes. We emphasize that the correlation structure 
among the metrics we analysed is driven not only by the funda‐
mental constraints linking metrics mentioned above, but also by 
the effect of spatial variation in food web composition. From the 
PCA, we kept only the axes that each explained ≥20% of the total 
variance, hereafter referred to as food web structural composite 
descriptors. This analysis was performed in R using the “ade4” 
package (Dray & Dufour, 2007).

2.4.3 | How to statistically relate food web 
structural descriptors to environmental predictors?

We related positions on the PCA axes to spatial drivers (climate, 
energetic and habitat variables) using GAMs. Generalized additive 
models are more flexible than generalized linear models, which are 
more appropriate given that we had no a priori expectations re‐
garding the shape of the relationships between response and pre‐
dictor variables. To avoid fitting overly complex relationships, we 
constrained the GAMs with a maximum smoothing degree of three 
(i.e., polynomial of degree two, maximum). All models were fitted 
using the function gam present in the “mgcv” R package (Wood, 
2017).

Is noteworthy that both the environmental variables and food 
web topological metrics inevitably show some level of spatial auto‐
correlation. To account for spatial dependency unexplained by the 
spatial drivers, we built an autocovariate variable for each of the 
composite descriptors to estimate how much the response variable 
for any site reflects the values of the neighbouring sites (Dormann et 
al., 2007; function autocov_dist in “spdep” R package). However, given 
that this autocovariate was unconditional to environmental variation 

(i.e., the response variable could show a spatial autocorrelation be‐
cause the environment itself is autocorrelated), we modelled each 
autocovariate variable (for each structural composite descriptor) to 
the set of environmental variables using a bootstrap aggregating 
model (random forest function in “randomForest” R package; Liaw 
& Wiener, 2002). We then extracted the residuals of the model and 
used them as spatial variables independent of the spatial predictors 
in the GAMs. Hereafter, these variables will be referred as spatial 
residuals variables.

We used the permutation accuracy importance method (Strobl, 
Boulesteix, Zeileis, & Hothorn, 2007; Strobl, Malley, & Tutz, 2009) 
to estimate the importance of each predictor variable on the spatial 
distribution of local food web metrics. The predictor under test is 
randomized so that its original association with the response variable 
is broken. Then, the randomized variable (by means of permutations) 
and the remaining unchanged predictors are used to predict the re‐
sponse. A variable importance score is then measured as the Pearson 
correlation coefficient (ρ) between the original prediction and the 
prediction after permutation of the selected predictor (Strobl et al., 
2009). The lower the correlation, the more important the variable. 
This whole procedure was repeated 1,000 times. To facilitate the in‐
terpretation of results, we reported the average 1 − ρ. Values close to 
1 reflected high importance, values close to 0, no importance.

In Appendix S6 of the Supporting Information, we show that 
using single food web metrics or the composite descriptors from the 
PCA yields equivalent results and relationships with the predictors. 
Hence, we opt to PCA axes because they summarize the main di‐
mensions of food web structure.

3  | RESULTS

3.1 | Local food web structure

Most of the 17 food web metrics showed a strong spatial structure 
(for a selection of six metrics, see Figure 1; for descriptive statis‐
tics, see Table 1; for all other metrics, see Supporting Information 
Appendix S5, Figure S5.4). Assemblages in northern latitudes 
(United Kingdom, Denmark and Scandinavian Peninsula) and in 
mountain ranges (such as the Alps and Carpathians) had fewer spe‐
cies, with shorter food chains and a higher proportion of basal spe‐
cies than in the rest of Europe. Food webs in central and eastern 
Europe were more species rich and with longer food chains and 
larger diet breadths (i.e., higher generality) on average. Within these 
food webs, species were more evenly distributed between basal and 
intermediate species, with top predator species always representing 
<5% of the community. In southern Europe, along the Mediterranean 
basin, food webs were the most species rich and had the highest 
link densities and clustering coefficients. In this region, food chains 
lengths were as high as for continental food webs, and connectance 
in the Anatolian region (Turkey) and southeast of Spain was as high 
as in near arctic assemblages. In other words, assemblages across 
the Mediterranean basin were the most species rich and highly 
interacting.
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F I G U R E  1   Spatial distribution of six metrics of the European tetrapod food webs: species richness, connectance, link 
density, characteristic path length, proportion of intermediate species and proportion of omnivore species. For a detailed description of 
these metrics, see Table 1. The distribution of the 17 food web metrics is provided in the Supporting Information (Appendix S5, Figure S5.4) 
[Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2 | Deviation of local food web structure from 
random assembly

Deviations of local food webs from the null expectation varied be‐
tween the different metrics and across the species richness gradi‐
ent (Table 1; see Appendix S4, Figure S4.3). We observed that only 
nine food web metrics differed ≥90% of the time from what could be 
expected from random draws from the metaweb (link density, con‐
nectance, proportion of intermediate and omnivore species, mean 
trophic level, generality, vulnerability, characteristic path length and 
cluster coefficient). However, at low levels of species richness, most 
of these metrics do not differ from a random assembly (see Appendix 
S4, Figure S4.3). The remaining food web properties consistently fell 
within the random intervals irrespective of species richness (e.g., SD 
of vulnerability and generality, maximum trophic level and maximum 
trophic similarity; Table 1). In other words, the spatial distribution of 
these metrics could be explained purely by their correlation with the 
distribution of species richness and its spatial drivers.

3.3 | Composite descriptors of the local realized 
food webs

Two main axes of variation, explaining c. 76.28% of the total vari‐
ance, summarized the covariation of 10 food web properties (species 
richness, link density, connectance, proportion of intermediate and 
omnivore species, mean trophic level, vulnerability, generality, char‐
acteristic path length and cluster coefficient; Table 2; Figure 2). The 
first axis, hereafter called the richness composite descriptor, explained 
53.66% of structural variation and was negatively related to species 
richness, link density (average number of interactions), proportion of 
intermediate species, vulnerability, generality and omnivore species 
and mean trophic level (Table 2; Figure 2). This result indicates that 
food webs with more species have more links per species, a higher 
proportion of intermediate species (i.e., proportion of species having 
both prey and predators in local food webs), have on average more 
prey and predators, and species occupy higher trophic levels.

The second descriptor, hereafter named the connectance com‐
posite descriptor, explained 22.62% of the total variance and was 
mainly related to food web complexity, through connectance, clus‐
tering coefficient and characteristic path length (Table 2; Figure 2). 
Along this descriptor, connectance and clustering coefficient were 
both negatively correlated with characteristic path length, suggest‐
ing that food webs with lower connectance were less clustered and 
had proportionally longer paths between species.

3.4 | Environmental drivers of local food web 
descriptors

Environmental drivers explained a significant proportion of the vari‐
ance of the two composite descriptors (74.4% of richness and 43.9% of 
connectance; Table 3). The richness composite descriptor had a strong, 
linear and negative relationship with temperature variables (mean an‐
nual temperature and temperature seasonality; Figure 3a), with sites 

TA B L E  2   Correlation between 10 food web properties and the 
two major principal components axes of the principal components 
analysis (richness and connectance composite descriptors)

Topological metric
Richness compos‐
ite descriptor

Connectance com‐
posite descriptor

Species richness −.39 .19

Connectance .05 −.65

Link density −.42 −.10

Characteristic path 
length

−.16 .51

Generality −.36 −.11

Vulnerability −.42 −.10

Cluster coefficient −.09 −.49

Proportion of inter‐
mediate species

−.30 −.07

Proportion of omni‐
vore species

−.27 0

Mean trophic level −.41 −.01

Note: In total, both composite descriptors explained 76.28% of food 
web spatial variance (measured by these 10 variables). 

F I G U R E  2   Principal components analysis of European food 
web metrics. Red arrows represent the direction and value of 
correlations between individual topological metrics and each 
of the structural food web descriptors. The first component 
(PC 1; richness structural composite descriptor) was negatively 
correlated with species richness (Sp rich.), link density (Link dens.), 
the proportion of intermediate (Prop. int.) and omnivore (Prop. 
omn.) species, mean trophic level (Mean TL), generality (Gen) and 
vulnerability (Vul). The second component (PC 2; connectance 
composite descriptor) was highly correlated with connectance 
(Connect.), characteristic path length (Char. path length) and 
cluster coefficient (Cluster coef.). The four food webs represent the 
general topology of food webs in each quadrant and were drawn 
from the closest point to the centroid of each quadrant [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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that had high temperatures and seasonality supporting richer as‐
semblages, with more intermediate species, higher link densities and 
trophic levels. Net primary productivity had a weaker importance rela‐
tive to temperature variables, but had a negative correlation with the 
richness composite descriptor. We observed a nonlinear increase in 
species richness, generality, vulnerability and link density from lower to 
highly productive areas, where the contribution of net primary produc‐
tivity to food web structure was stronger in areas of lower to interme‐
diate productivity (Figure 3a). Human footprint had the least important 
effect on the richness composite descriptor, which seemed to increase 
slightly above intermediate levels of human footprint (Table 3).

Conversely, the variation in the connectance composite descrip‐
tor was mostly affected by mean annual temperature and human 
footprint (Table 3). This descriptor had a negative relationship with 
annual average temperature, suggesting that food webs had higher 
connectance and more closely interacting species as annual average 
temperatures increased. On the contrary, human footprint had a pos‐
itive correlation with the connectance composite descriptor up to in‐
termediate values, after which its effect was near zero. This indicates 
that food webs became less connected, less clustered and with longer 
paths from low to intermediate regions of human footprint (Figure 3b). 
Finally, total annual precipitation was correlated positively with the 
connectance composite descriptor at low to intermediate precipita‐
tion, but negatively at higher levels of precipitation (Figure 3b).

Spatial residuals variables were relevant only for the connectance 
composite descriptor, indicating that other spatial variables not con‐
sidered here might be affecting the spatial distribution of food web 
structure.

4  | DISCUSSION

The large‐scale variation of food web structure is still mostly un‐
known in terrestrial systems. Thanks to the compilation of a large 

dataset comprising pairwise trophic interactions between European 
tetrapods, their geographical distributions and habitat preferences, 
we extracted local food webs and successfully explored how they 
vary across Europe.

Here, we focused on terrestrial vertebrate species; consequently, 
by definition our local food webs were incomplete. To address this 
issue, we included nodes of general diet categories, such as inverte‐
brates, plants and fish, to represent absent trophic information from 
the non‐vertebrate components of the food webs. More than 70% of 
our species had their diet composed (entirely or partly) of diet cate‐
gories, thus we are likely to be missing a large part of food web com‐
plexity and structure associated with the non‐vertebrate portion of 
our food webs. In addition, given that diet categories represented 
more than one trophic level (primary producers, but also consumers 
such as fish and invertebrates), our analysis overestimated the pro‐
portion of basal species, particularly of non‐herbivore basal species. 
Nevertheless, the generality of the hypotheses explored here should 
still be applicable. The positive effect of resource availability should 
reverberate from lower to higher trophic levels (Post, 2002), thus 
being reflected on purely vertebrate webs that are composed of spe‐
cies generally at high trophic levels. Moreover, resource availability 
has been shown to impact taxonomic diversity positively across the 
taxa represented in our food webs, and at similar scales (Waide et 
al., 1999). Therefore, we are confident that the patterns we observe 
reflect the structuring effects of the environment, landscape and re‐
source availability on European terrestrial food webs.

The latitudinal gradient of diversity is one of the most conspic‐
uous patterns of biogeography. Not only do we revisit this relation‐
ship for European tetrapod species (Figure 1), but we also show that 
it influences food web spatial structure. Food web metrics related 
to the variability of feeding strategies, vertical diversity and maxi‐
mum trophic level did not differ from what would be expected under 
random assemblages of species, indicating that species richness was 
the key driver of their variation, especially at species‐poor locations. 

 Richness composite descriptor
Connectance com‐
posite descriptor

Spatial residuals .12 .32

Average annual temperature .43 .24

Temperature seasonality .47 .10

Precipitation .01 .05

Coefficient of variation for 
precipitation

.01 .04

Shannon index .08 .09

Habitat evenness .03 0

Primary productivity .18 .13

Human footprint .01 .30

Note: In the richness composite descriptor model, temperature variables (annual average and 
seasonality) were the most important variables, whereas in the connectance composite descriptor 
model, spatial residuals were the most important variable, suggesting that other spatial processes 
are acting on this composite descriptor, not accounted for by the other variables. The richness 
descriptor model explained 74.4% of the variance, whereas the connectance composite descriptor 
model explained 43.9%. 

TA B L E  3   Variable importance for each 
structural composite descriptor model 
based on the “permutation accuracy 
importance” method
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Nevertheless, species richness failed to explain the spatial distribu‐
tion of other important features of food web structure, such as mean 
trophic level, link density, connectance and species niche breadth 
sizes. This reveals that even at large spatial scales and resolutions, 
the fingerprint of species interactions is visible on biodiversity distri‐
bution but cannot be summarized by species richness alone.

The description of ecological networks with reduced dimensions 
can provide understanding on how different food web properties 
covary. The reduction analysis of food web metrics revealed two 
major axes of structural variation, one related mainly to species rich‐
ness and the other to connectance. We expected species richness 
and connectance to behave independently from each other and 
form the two major axes of variation in food web structure (Dunne 
et al., 2013; Martinez, 1994; Riede et al., 2010). Indeed, Vermaat et 
al. (2009) showed a similar correlation structure among food web 
metrics for 14 empirical food webs, and a similar decomposition was 
also observed by Baiser et al. (2012) for North American aquatic 
food webs. Furthermore, the constant connectance hypothesis 
(Martinez, 1992) poses that the proportion of realized interactions 
within a food web (i.e., connectance) is independent of species 
richness if link density increases proportionally with the number of 
species. Our analyses confirmed these two major dimensions for ter‐
restrial vertebrate food webs.

Climatic gradients, namely temperature and precipitation, have 
long been observed as drivers of biodiversity at both local and global 
scales (Evans, Warren, & Gaston, 2005). Climate can affect food web 
structure in several ways. First, it acts as a filter on species assem‐
bly (Keddy, 1992), which may affect the functional composition of 
communities and therefore food web structure (Blanchard, 2015; 
Lurgi et al., 2012). Second, climatic variability may directly affect 
food web structure. A more stable climate may allow for longer food 
web chains and narrower diet niches (Cirtwill et al., 2015; Menge & 
Sutherland, 1987; Vázquez & Stevens, 2004). Interannual tempera‐
ture variability has also been shown to be negatively correlated with 
modularity (Welti & Joern, 2015). Our results show that European 
variation in food web structure, summarized by two composite de‐
scriptors, is mostly related to the annual average temperature and 
its seasonality. Although environmental constancy, particularly in 
climatic conditions, is believed to lead to more species‐rich com‐
munities, we find the opposite here, where climatic variability was 
positively associated with species‐rich food webs and longer food 
chains. There could be several reasons for our observations. On 
the one hand, our measure of climatic variability was calculated be‐
tween 1970 and 2000, which is likely not to be representative of 
the past climatic history to which European tetrapods were exposed. 
Environmental constancy at larger temporal scales might be a more 
important driver of species richness and food web complexity than 
seasonal variability. For instance, Dalsgaard et al. (2013) found a link 
between historical climate change (throughout the last 21,000 years) 
and present‐day pollinator network structure at the global scale. On 
the other hand, the observed gradient in temperature seasonality 
coincides with important processes that shaped vertebrate distri‐
bution across Europe. Baquero and Tellería (2001) suggest that the F
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decreasing mammalian richness from East‐central Europe outwards 
is related to a decrease in available land area (peninsular effect on 
species distributions), but also to environmental harshness to the 
north, loss of suitable habitats and population bottlenecks during 
glacial periods to the west, and human pressure since Neolithic times 
to the south; regions that coincide with lower temperature season‐
ality and lower water availability (Hawkins et al., 2003). This is not 
to be confounded with endemism, which is higher in southern re‐
gions of Europe (Baquero & Tellería 2001). Mouchet et al. (2015) also 
noted that species richness across terrestrial vertebrates was more 
driven by land‐use covariates than climate covariates towards south 
and southwestern Europe. Hence, although human footprint did not 
stand out among the important drivers in our models, the combina‐
tion of long‐term and present human intervention and ancient cli‐
matic fluctuations, which coincide with the temperature seasonality 
gradient, could be driving the observed relationship between spe‐
cies richness, trophic food chain length and seasonality.

Support for the latitudinal niche breadth gradient has so far 
been mixed (e.g., Cirtwill et al., 2015; Krasnov, Shenbrot, Khokhlova, 
Mouillot, & Poulin, 2008). We found a strong relationship (through 
the richness composite descriptor) between species richness and 
more variable climates, which generally agrees with the well‐known 
relationship between species richness and latitude. Although gen‐
erality and vulnerability are known to scale with species richness 
(Riede et al., 2010), here, we also showed that vulnerability and 
generality increase more than can be explained by species richness 
alone (Supporting Information Appendix S4, Figure S4.3), meaning 
that for a given number of species, we observed relatively more 
predators and prey than would be expected under a random assem‐
blage of an equal number of species. This finding adds some support 
to the hypothesis that species might have wider niche breadth (both 
generality and vulnerability) in more seasonal climates (MacArthur, 
1955; but see Vázquez & Stevens, 2004).

Productivity has been hypothesized to drive the latitudinal gra‐
dient of species richness and chain length, because greater amounts 
of energy available to primary consumers should support more di‐
verse communities (Hurlbert & Haskell, 2003; Young et al., 2013). 
However, this has been debated, with some suggesting an opposite 
effect (Ward & McCann, 2017) or other factors coming into play, 
such as ecosystem size (Post & Takimoto, 2007; Takimoto & Post, 
2013; Tunney, McCann, Lester, & Shuter, 2012) and productive 
space (Schoener, 1989). Most of this research has been focused on 
freshwater systems, where ecosystem boundaries are more easily 
defined and relatable to their respective food web structure. Our 
study design (study area divided into regular grid) did not allow us 
to test the ecosystem size and productive space hypotheses. Our 
landscape was divided with no regard for ecosystem boundaries, 
and in terrestrial environments these boundaries are not as clearly 
definable. Furthermore, in a tropical terrestrial island system, Young 
et al. (2013) showed a linear relationship between productivity and 
food chain length, but no effect of ecosystem size (area of the isles) 
or productivity space (product of productivity and ecosystem size). 
We show that the overall effect of productivity was weaker than that 
of climate, yet we found a relationship with the richness composite 

descriptor at limiting levels of productivity (from low to intermediate 
primary productivity). Unproductive locations were associated with 
species‐poor networks that had lower trophic levels and lower link 
density (both via the richness composite descriptor and by the mean 
trophic level model, as shown in Appendix S6). Previous empirical 
studies have shown similar relationships, with food web structure in 
terms of trophic level, omnivory and the proportion of top predators 
covarying positively with primary productivity (Vermaat et al., 2009). 
Hence, our results support the theoretical expectation that higher 
resource availability at lower trophic levels should propagate up the 
food web, promoting richer species assemblages with longer trophic 
chains and higher trophic levels, and that this resource availability re‐
lationship should be stronger in the least productive environments 
(Jenkins, Kitching, & Pimm, 1992; Post, 2002; Young et al., 2013).

Human presence may lead to changes in land use, habitat frag‐
mentation and pollution, which in turn can negatively affect biodi‐
versity (Barnosky et al., 2011; Cardinale et al., 2012) and food web 
structure (Evans, Pocock, & Memmott, 2013). Accordingly, human 
footprint was among the most important predictors of vertebrate 
food web structure. It was strongly related to the connectance com‐
posite descriptor, with a negative relationship to the proportion of 
realized links and species proximity in the web (Figure 3b; Table 3). 
However, in this case we cannot assume this to be a cause–effect re‐
lationship, because the effect of human footprint was noticeable only 
below intermediate levels and because there is a strong spatial coin‐
cidence between human footprint and climate. Climatic conditions 
and resource availability may affect the spatial distribution of human 
density and species diversity alike, which would explain why the two 
composite descriptors are positively correlated with human popula‐
tion densities (Araújo, 2003). Indeed, despite the weak importance 
of human footprint on the richness composite descriptor (Table 3), 
we observed a positive relationship at low to intermediate levels of 
human disturbance (Figure 3a). Also, although species richness and 
connectance metrics were nearly orthogonal in our ordination space 
(Figure 2), they were negatively correlated at low to intermediate val‐
ues of richness. The highest connectance was found in northeastern 
Europe, where both human presence and species richness were low‐
est (Figure 1; see also Appendix S3, Figure S3.2). In these areas, ver‐
tebrate assemblages were mostly composed by lower trophic level 
species and comprised a few highly generalist predators, leading to 
highly dense foods webs. Hence, the negative relationship between 
the connectance composite descriptor and human footprint is more 
likely to be attributable to low values of species richness.

The importance of the spatial residuals variable in the connectance 
composite descriptor model suggested the presence of other import‐
ant spatial variables. Given that we used species distributions to de‐
sign European vertebrate assemblages, biogeographical processes, 
such as barriers to species dispersal, island sizes, the presence of pen‐
insulas or even other biotic factors, could lead to spatial similarities 
and/or dissimilarities in food web structure not explained solely by 
climate and primary productivity, but rather through compositional 
turnover (Kortsch et al., 2019). Further work is needed to include 
such processes under a spatial analysis framework of food web struc‐
tural turnover (Poisot, Canard, Mouillot, Mouquet, & Gravel, 2012).



1646  |     BRAGA et Al.

Two limitations to our design are the even contribution of each 
prey to the diet of a predator and the fact that trophic interactions 
were constant in space (i.e., if two species interacted in the metaweb, 
they always interacted across their intercepted geographical range). 
The former implied that we did not account for biomass or energetic 
requirements (in contrast, weighted food webs interactions may be 
defined by biomass relationships), and as consequence, we might 
have inflated omnivory and connectance. The latter implied that 
adaptability in the diets and behaviours of species was not taken into 
account (e.g., predator diet shift owing to the presence of competi‐
tors or prey behavioural changes as a function of predator presence; 
Poisot et al., 2012; Preisser et al., 2005; Van Dijk et al., 2008), and as 
a consequence, our webs might have an inflated number of trophic 
interactions. Furthermore, environmental conditions might also in‐
fluence the realization of interactions, which would affect the spatial 
distribution of food web structure. In addition, trophic interactions 
in our metaweb were defined based not only on empirical studies, 
but also on a potential array of prey for each predator species, which 
might lead to inflated generality and vulnerability. More work is nec‐
essary to quantify the level of uncertainty related to how metaweb 
and local food webs were defined. For instance, this could be done 
by using highly resolved empirical food webs and quantifying how 
their topological properties differ, relative to food webs obtained 
using the methodology described here.

Exploration of the food web structure of assemblages over con‐
tinental scales offers a new facet for biodiversity that is still largely 
uncharted. Inherently, food web structure contains more infor‐
mation on species assemblages than mere species diversity alone. 
Although food web structure is correlated with species diversity, 
we show that other important large‐scale covariates of biodiversity, 
such as climate, productivity and anthropogenic pressure are also 
linked to the spatial diversity of European food webs. We hope that 
this pioneering work serves as an example for future biogeographi‐
cal food web studies that seek to understand and predict biodiver‐
sity patterns.
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