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ABSTRACT

Aim Concerns over how global change will influence species distributions, in
conjunction with increased emphasis on understanding niche dynamics in evolu-
tionary and community contexts, highlight the growing need for robust methods to
quantify niche differences between or within taxa. We propose a statistical frame-
work to describe and compare environmental niches from occurrence and spatial
environmental data.

Location Europe, North America and South America.

Methods The framework applies kernel smoothers to densities of species occur-
rence in gridded environmental space to calculate metrics of niche overlap and test
hypotheses regarding niche conservatism. We use this framework and simulated
species with pre-defined distributions and amounts of niche overlap to evaluate
several ordination and species distribution modelling techniques for quantifying
niche overlap. We illustrate the approach with data on two well-studied invasive
species.

Results We show that niche overlap can be accurately detected with the frame-
work when variables driving the distributions are known. The method is robust to
known and previously undocumented biases related to the dependence of species
occurrences on the frequency of environmental conditions that occur across geo-
graphical space. The use of a kernel smoother makes the process of moving from
geographical space to multivariate environmental space independent of both sam-
pling effort and arbitrary choice of resolution in environmental space. However, the
use of ordination and species distribution model techniques for selecting, combin-
ing and weighting variables on which niche overlap is calculated provide contrast-
ing results.

Main conclusions The framework meets the increasing need for robust methods
to quantify niche differences. It is appropriate for studying niche differences
between species, subspecies or intra-specific lineages that differ in their geographi-
cal distributions. Alternatively, it can be used to measure the degree to which the
environmental niche of a species or intra-specific lineage has changed over time.
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INTRODUCTION

It is, of course, axiomatic that no two species regularly

established in a single fauna have precisely the same niche

relationships.

(Grinnell, 1917)

An ongoing challenge for ecologists is quantifying species

distributions and determining which factors influence species

range limits (Guisan & Thuiller, 2005; Colwell & Rangel, 2009).

Factors that can constrain species distributions include abiotic

gradients, such as climate, sunlight, topography and soils, and

biotic interactions, such as the identity and abundance of facili-

tators (e.g. pollinators, seed dispersers), predators, parasites and

competitors (Gaston, 2003). The study of how species vary in

their requirements for and tolerance of these factors has

advanced, in part due to the continued conceptual development

and quantification of the ecological niche of species (Chase &

Leibold, 2003; Soberón, 2007). The complementary concepts of

the environmental niche (sensu Grinnell, 1917) and the trophic

niche (sensu Elton, 1927) serve as a basis for assessing the eco-

logical and biogeographical similarities and differences among

species. Toward this end, a variety of measures have been used to

quantify niche characteristics. Historically, such assessments

have focused primarily on differences in local trophic and repro-

ductive habits (reviewed in Chase & Leibold, 2003) and have

asked: How much does resource use by species A overlap with

that of species B? Recent concern over the effects of global

change on species distributions has emphasized the need to

quantify differences among species in their environmental

requirements in a geographical context and at an extent compa-

rable to that of species ranges. Consistent with aspects of the

Grinnellian niche, such assessments pursue questions regarding

similarities and differences in the environmental conditions

associated with species geographical distributions and how they

change over time (Devictor et al., 2010). Despite improvements

in our ability to model species distributions (Guisan & Thuiller,

2005), the development of techniques to quantify overlap of

different environmental niches has received relatively little

attention (but see Warren et al., 2008).

A variety of approaches and metrics have been used to

measure niche overlap (e.g. Horn, 1966; MacArthur & Levins,

1967; Schoener, 1970; Colwell & Futuyma, 1971; May & Arthur,

1972; Pianka, 1980). Generally, these methods date to the period

in which competition was widely believed to be the primary

mechanism structuring ecological communities and measures

of niche overlap were developed to quantify differences due to

competition (Chase & Leibold, 2003). More recently, research

has elucidated how changing environmental conditions could

affect future distributions of native species (e.g. Etterson &

Shaw, 2001; Jump & Peñuelas, 2005) and invasive exotic species

(e.g. Broennimann et al., 2007; Fitzpatrick et al., 2007; Steiner

et al., 2008; Medley, 2010). Further, changes in the climatic tol-

erances and requirements of species accompany the diversifica-

tion of lineages in a variety of taxa (e.g. Silvertown et al., 2001;

Losos et al., 2003; Yesson & Culham, 2006; Evans et al., 2009). A

common theme among these studies is the quantification of

environmental niches, how they change over time and differ

among species. Yet the inadequacy of methods for comparing

species environmental niches has fuelled debate over the validity

of conclusions derived from comparative studies of niche

dynamics (Fitzpatrick et al., 2008; Peterson & Nakazawa, 2008).

Assessing differences in the environmental niches of species

requires identification and consideration of the factors that

influence species distributions. In practice, distributions of

species are often characterized using occurrence records

(Graham et al., 2004). Differences in niches that are quantified

using observed occurrences of species reflect an unknown con-

junction of the environmental niches of the species, the biotic

interactions they experience and the habitats available to species

and colonized by them (Soberón, 2007; Colwell & Rangel, 2009).

Although it has often been assumed that these effects are negli-

gible at broad spatial scales, recent studies indicate that biotic

interactions may play an important role in defining the lower

thermal boundaries of species distributions (e.g. Gotelli et al.,

2010; Sunday et al., 2011). This subset of the environmental

niche that is actually occupied by the species corresponds to the

realized niche (Hutchinson, 1957). The environmental condi-

tions comprising the realized niche are described using a set of

geographically referenced environmental variables. These vari-

ables come from widely used, on-line collections such as World-

Clim (Hijmans et al., 2005), a wealth of other variables of some

physiological and demographic importance (e.g. Zimmermann

et al., 2009), and physical habitat variation as represented by

country and regional land cover as well as land-use classifica-

tions (e.g. Lütolf et al., 2009). Hereafter, the use of geographi-

cally referenced variables is often implicit when we refer to niche

comparison, but the approaches and metrics we present can be

applied to any quantitative niche dimension.

Methods for quantifying the environmental niche and esti-

mating niche differences typically rely on either ordination tech-

niques (e.g. Thuiller et al., 2005a; Hof et al., 2010) or species

distribution models (SDMs; Guisan & Thuiller, 2005) Ordina-

tion techniques allow for direct comparisons of species–

environment relationships in environmental space, and employ

various maximization criteria to construct synthetic axes from

associated environmental variables (Jongman et al., 1995). In

contrast, assessment of niche differences with SDMs involves

calibration (for each species) of statistical or machine-learning

functions that relate environmental variables to georeferenced

data on species occurrence (Guisan & Thuiller, 2005). SDMs can

select and emphasize, via weighting, certain variables associated

with processes that determine the distribution of the species

(through their environmental niches) while down-weighting or

excluding variables that do not help to discriminate between

species presence and absence (Wintle et al., 2003; Guisan &

Thuiller, 2005). Niche overlap is then estimated through the

projection of those functions across a landscape (i.e. the overlap

is calculated in geographical space). Recently, Warren et al.

(2008) developed such a SDM-based method that uses cell-by-

cell comparisons of geographical predictions of occurrences and

randomization tests to quantify niche differences and assess
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their statistical significance. However, niche overlap analyses

using geographical projections of niches derived from SDMs

could prove problematic because the measured niche overlap is

likely to vary depending on the extent and distribution of envi-

ronmental gradients in the study area and potentially because of

unquantified statistical artefacts related to model fitting.

Here, we present a new statistical framework to describe and

compare niches in a gridded environmental space (i.e. where

each cell corresponds to a unique set of environmental condi-

tions). Within this framework, we quantify niche overlap using

several ordination and SDM techniques and evaluate their per-

formance. The framework overcomes some of the shortcomings

of current approaches to quantifying niche differences: (1) it

accounts for biases introduced by spatial resolution (grid size),

(2) makes optimal use of both geographical and environmental

spaces, and (3) corrects observed occurrence densities for each

region in light of the availability of environmental space. Case

studies from nature are unlikely to provide an unbiased assess-

ment of methods used to quantify niche overlap because of

sampling errors and unknown biases. To overcome these issues,

we test the methods using simulated species distributions for

which niche overlap and the constraining environmental gradi-

ents are known without error. Finally, we illustrate our approach

using two invasive species that have native and invaded ranges

on different continents and which have been subjects of recent

studies of niche dynamics (Broennimann et al., 2007; Fitz-

patrick et al., 2007).

METHODS

A framework to compare environmental niches

We present a framework for quantifying niche overlap between

two species (e.g. sister taxa, subspecies, etc.) or two distinct sets

of populations of a same species (e.g. native and invasive popu-

lations of an invasive species, geographically disjunct popula-

tions of the same species, etc.). The framework also applies to

comparisons among the same species but at different times (e.g.

before and after climate change). More broadly, the framework

can be applied to compare any taxonomic, geographical or tem-

poral groups of occurrences (hereafter called ‘entities’). The

framework involves three steps: (1) calculation of the density of

occurrences and of environmental factors along the environ-

mental axes of a multivariate analysis (2) measurement of niche

overlap along the gradients of this multivariate analysis and (3)

statistical tests of niche equivalency and similarity (cf. Warren

et al., 2008). All the analyses are done in R (R Development Core

Team, 2010) and scripts are available online in Appendix S1 in

the Supporting Information.

Calibration of the niche and occurrence density

The environmental space is defined by the axes of the chosen

analysis and is bounded by the minimum and maximum envi-

ronmental values found across the entire study region. In this

application, we consider the first two axes for ordinations such

as principal components analysis (PCA) and one axis for SDMs

(i.e. the output of a SDM comprises a single vector of predicted

probabilities of occurrence derived from complex combinations

of functions of original environmental variables; the overlap of

the two species is analysed along this gradient of predictions).

We recognize that, in principle, niche overlap analyses can con-

sider greater dimensionality than we do here. However, in prac-

tice increased dimensionality brings greater challenges in terms

of interpretation, visualization and additional technical aspects.

Nonetheless, a greater number of dimensions should be consid-

ered in further development of the present approach. The envi-

ronmental space is divided into a grid of r ¥ r cells (or a vector of

r-values when the analysis considers only one axis). For our

analyses we set the resolution r to 100. Each cell corresponds to

a unique vector of environmental conditions vij present at one or

more sites in geographical space, where ‘i’ and ‘j’ refer to the cell

corresponding respectively to the ith and jth bins of the envi-

ronmental variables. The bins are defined by the chosen resolu-

tion r, and the minimum and maximum values present in the

study area along these variables.

Since the number of occurrences is dependent on sampling

strategy, sampled occurrences may not represent the entire dis-

tribution of the species or other taxon nor the entire range of

suitable environmental conditions, resulting in underestimated

densities in some cells and potentially large bias in measured

niche overlap (Fig. S1a). Interestingly, this problem is similar to

the delimitation of the utilization distribution of species in geo-

graphical space. Traditionally, methods such as minimum

convex polygons have been used to delimitate utilization distri-

butions (e.g. Blair, 1940). But, newer developments have shown

that kernel methods provide more informative estimations

(Worton, 1989), and such methods have seen recent application

in modelling species distributions (Ferrier et al., 2007; Hengl

et al., 2009). We thus apply a kernel density function to deter-

mine the ‘smoothed’ density of occurrences in each cell in the

environmental space for each dataset. We use the standard

smoothing parameters used in most density estimation studies

(Gaussian kernel with a standard bandwidth, which corresponds

to 0.9 times the minimum of the standard deviation and the

inter-quartile range of the data divided by 1.34 times the sample

size to the negative one-fifth power; Silverman, 1986). The

smoothed density of occurrence oij for each cell is thus calcu-

lated as

o
n

n
ij

ij

ij

=
( )

( )
δ

max
, (1)

where d(nij) is the kernel density estimation of the number of

occurrences of the entity at sites with environment vij, max(nij) is

the maximum number of occurrences in any one cell, and oij is

a relative abundance index that ranges from 0 for environmental

conditions in which the entity has not been observed, to 1 for

environmental conditions in which the entity was most com-

monly observed. In a similar manner, the smoothed density of

available environments eij is calculated as
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where d(Nij) is the number of sites with environment vij and

max(Nij) is the number of cells with the most common environ-

ment in the study area. Finally, we calculate zij, the occupancy of

the environment vij by the entity, as

z
o e

o e
eij

ij ij
ij=

( )
≠

max
if 0 (3a)

and

z eij ij= =0 0if , (3b)

where zij ranges between 0 and 1 and ensures a direct and unbi-

ased comparison of occurrence densities between different enti-

ties occurring in ranges where environments are not equally

available.

Measurement of niche overlap

The comparison of zij between two entities can be used to

calculate niche overlap using the D metric (Schoener, 1970;

reviewed in Warren et al., 2008) as

D z zij ij

ij

= − −
⎛
⎝⎜

⎞
⎠⎟∑1

1

2
1 2 ,

where z1ij is entity 1 occupancy and z2ij is entity 2 occupancy.

This metric varies between 0 (no overlap) and 1 (complete

overlap). Note that regions of the environmental space that do

not exist in geography have zij set to 0. These regions thus do

not contribute to the measure of the D metric and niche

overlap is measured among real habitats only (see discussion

in Warren et al., 2008). Note also that the use of a kernel

density function when calculating the density is critical for an

unbiased estimate of D. When no kernel density function is

applied, the calculated overlap depends on the resolution r

chosen for the gridded environmental space (Fig. S1a). Using

smoothed densities from a kernel density function ensures that

the measured overlap is independent of the resolution of the

grid (Fig. S1b).

Statistical tests of niche equivalency and similarity

We built from the methodology described in Warren et al.

(2008) to perform niche equivalency and similarity tests. The

niche equivalency test determines whether niches of two entities

in two geographical ranges are equivalent (i.e. whether the niche

overlap is constant when randomly reallocating the occurrences

of both entities among the two ranges). All occurrences are

pooled and randomly split into two datasets, maintaining the

number of occurrences as in the original datasets, and the niche

overlap statistic D is calculated. This process is repeated 100

times (to ensure that the null hypothesis can be rejected with

high confidence) and a histogram of simulated values is con-

structed. If the observed value of D falls within the density of

95% of the simulated values, the null hypothesis of niche

equivalency cannot be rejected.

The niche similarity test differs from the equivalency test

because the former examines whether the overlap between

observed niches in two ranges is different from the overlap

between the observed niche in one range and niches selected at

random from the other range. In other words, the niche simi-

larity test addresses whether the environmental niche occupied

in one range is more similar to the one occupied in the other

range than would be expected by chance. For this test, we ran-

domly shift the entire observed density of occurrences in one

range (the centre of the simulated density of occurrence is ran-

domly picked among available environments) and calculate the

overlap of the simulated niche with the observed niche in the

other range. The test of niche similarity is also based on 100

repetitions. If the observed overlap is greater than 95% of the

simulated values, the entity occupies environments in both of its

ranges that are more similar to each other than expected by

chance. Note that in some instances it may be difficult to define

the extent of the study areas to be compared. When species

occur on different continents, the choice can be straightforward

and should consider the complete gradient of environmental

space that the study species could reasonably encounter, includ-

ing consideration of dispersal ability and major biogeographical

barriers or transitions. When species occur in the same region or

on an island, the environment can be the same for all species and

therefore correcting for differences in the densities of environ-

ments is not necessary.

Testing the framework with virtual entities

A robust test of the framework described above requires entities

that have distributions determined by known environmental

parameters and that exhibit known levels of niche overlap. To

achieve this, we simulated pairs of virtual entities with varying

amounts of niche overlap (Fig. 1, see also Appendix S2 for

details), in a study region comprising all temperate climates in

Europe (EU) and North America (NA) and defined by eight

bioclimatic variables at 10′ resolution that were derived from

raw climatic data from the CRU CL 2.0 dataset (New et al.,

2002). These variables included: ratio of actual and potential

evapotranspiration (aetpet), number of growing degree days

above 5 °C (gdd), annual precipitation (p), potential evapo-

transpiration (pet), number of months with drought (ppi), sea-

sonality in precipitation (stdp), annual mean temperature (t),

annual maximum temperature (tmax), and annual minimum

temperature (tmin). Procedures to calculate aetpet, pet and gdd

from the raw CRU CL 2.0 data are detailed in Thuiller et al.

(2005b).

We first apply the framework to 100 pairs of virtual entities

that differ in niche position and that exhibit decreasing amounts

of niche overlap, from perfect overlap (D = 1, all areas in

common under the normal density curves) to no overlap (D = 0,

no area in common under the normal density curves). We

compare these simulated levels of niche overlap to that mea-
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sured along the p and t gradients (instead of the two first axes of

a multivariate analysis). Since the normal density curves defin-

ing the niches of the virtual entities (Appendix S2) are built

along these two gradients, we postulate that the overlap detected

by the application of the framework should be the same as the

simulated level of niche overlap across the full range of possible

overlaps (0 to 1).

Next, we apply the framework to pairs of virtual entities but

compare the simulated level of niche overlap with the niche

overlap detected along axes calibrated using several ordination

(Table 1) and SDM techniques (Table 2). For methods with

maximization criteria that do not depend on an a priori group-

ing (here EU versus NA, Table 1), we run two sets of simulations,

using information from either EU alone or both EU and NA to

Table 1 Ordination techniques for quantifying niche overlap. In addition to a general description of the technique, an explanation of its
application to the comparison of simulated niches between the European (EU) and North American (NA) continents is provided.
Depending on the type of analysis and whether a priori groups are used or not, the different areas of calibration we tested are specified.

Name Description Areas of calibration

PCA-occ Principal component analysis (Pearson, 1901) transforms a number of correlated variables

into a small number of uncorrelated linear combinations of the original variables

(principal components). These components are the best predictors – in terms of R2 – of

the original variables. In other terms, the first principal component accounts for as much

of the variability in the data as possible, and each following component accounts for as

much of the remaining variability as possible. For the study of niche overlap, the data

used to calibrate the PCA are the climate values associated with the occurrences of the

species. Additional occurrence data can be projected in the same environmental space.

When calibrating the PCA with EU and NA occurrences, differences in position along the

principal components discriminate environmental differences between the two

distributions. When calibrating with EU occurrences only, differences in position along

the principal components maximize the discrimination of differences among the EU

distribution

1. Occ. in EU

2. Occ. in EU+NA

PCA-env Same as PCA-occ but calibrated on the entire environmental space of the two study areas,

including species occurrences. When calibrating PCA-env on EU and NA ranges,

differences in position along the principal components discriminate differences between

the EU and NA environmental spaces whereas a calibration on the EU full environmental

space maximizes the discrimination among this range only

1. EU range

2. EU&NA ranges

BETWEEN-occ and

WITHIN-occ

Between-group and within-group analyses (Dolédec & Chessel, 1987) are two ordination

techniques that rely on a primary analysis (here PCA, but could be CA or MCA) but use a

priori groups to optimize the combination of variable in the principal components. Here

the a priori groups correspond to EU and NA. BETWEEN-occ and WITHIN-occ are

calibrated with EU&NA occurrences, and respectively maximize or minimize the

discrimination of niche differences between EU and NA occurrences

1. Occ. in EU+NA

WITHIN-env Same as WITHIN-occ but calibrated on the entire environmental spaces of the two

continents. WITHIN-env minimizes the discrimination of environmental differences

between EU and NA ranges

1. EU&NA ranges

LDA Linear discriminant analysis (LDA; Fisher, 1936) finds linear combinations of variables

which discriminate the differences between two or more groups. The objective is thus

similar to BETWEEN but uses a different algorithm. Distances between occurrences are

calculated with Mahalanobis distance

1. Occ. in EU+NA

MDS Multidimensional scaling (MDS; Gower, 1966) is a nonparametric generalization of PCA

that allows various choices of measures of associations (not limited to correlation and

covariance as in PCA). Here we use the distance in the Euclidean space. The degree of

correspondence between the distances among points implied by MDS plot and the input

distance structure is measured (inversely) by a stress function. Scores are juggled to reduce

the stress until stress is stabilized

1. Occ. in EU

2. Occ. in EU+NA

ENFA Ecological niche factor analysis (ENFA; Hirzel et al., 2002). ENFA is an ordination technique

that compares environmental variation in the species distribution to the entire area. This

method differs from other ordination techniques in that the principal components have a

direct ecological interpretation. The first component corresponds to a marginality factor:

the axis on which the species niche differs at most from the available conditions in the

entire area. The next components correspond to specialization factors: axes that maximize

the ratio of the variance of the global distribution to that of the species distribution

1. Occ. in EU +
EU range

2. Occ. in EU&NA +
EU&NA ranges

CA, correspondence analysis; MCA, multiple correspondence analysis.

Measuring niche overlap

Global Ecology and Biogeography, ••, ••–••, © 2011 Blackwell Publishing Ltd 5



calibrate the method (‘Areas of Calibration’, Tables 1 & 2). To

compare the outcomes of the methods quantitatively, for each

analysis we first calculate the average absolute difference

between the simulated and measured overlap (Dabs). This differ-

ence indicates the magnitude of the errors (deviation from the

simulated = measured diagonal). To test for biases in the method

(i.e. whether or not scores are centred on the diagonal), we then

perform a Wilcoxon signed-rank test on these differences. A

method that reliably measures simulated levels of niche overlap

should show both small errors (small Dabs) and low bias (non-

significant Wilcoxon test).

Case studies for real species

We also test the framework using two invasive species that have

native and invaded ranges on different continents and which

have been subjects of recent analyses of niche dynamics. The

first case study concerns spotted knapweed (Centaurea stoebe,

Asteraceae), native to Europe and highly invasive in North

America (see Broennimann et al., 2007; Broennimann &

Guisan, 2008 for details). The second case study addresses

the fire ant (Solenopsis invicta), native to South America and

invasive in the USA (see Fitzpatrick et al., 2007, 2008 for

details).

RESULTS

Evaluation of the framework

Before applying ordination and SDM methods to our datasets,

we examined whether we could accurately measure simulated

levels of niche overlap along known gradients. We used 100 pairs

of virtual entities with known levels of niche overlap along p and

t climate gradients. The overlap we detected between each pair

of virtual entities is almost identical to the simulated overlap

(i.e. the shared volume between the two simulated bivariate

normal curves; filled circles, Fig. 1). This is the case for all levels

of overlap except for highly overlapping distributions (> 0.8)

where the actual overlap is slightly underestimated, and where

the effects of sampling are likely to be most evident. Because

detected overlap cannot be larger than 1, any error in the mea-

surement of highly overlapping distribution must necessarily

result in underestimation. This underestimation is, however,

very small (Dabs:m = 0.024) and does not alter interpretation.

Note that when overlap is measured using virtual entities that

follow a univariate normal distribution along a precipitation

gradient, no underestimation was observed (Fig. S2). When we

leave differences in environmental availability uncorrected,

niche overlap is consistently underestimated (open circles,

Table 2 Species distribution modelling (SDM) techniques for quantifying niche overlap. GLM, GBM and RF were fitted with species
presence–absence as the response variable and environmental variables as predictors (i.e. explanatory variables) using the BIOMOD
package in R (Thuiller et al., 2009, R-Forge.R-project.org) and default settings. MaxEnt was fitted using the dismo package in R with default
settings. For all techniques, we use pseudo-absences that were generated randomly throughout the area of calibration. Two sets of models
were created using two areas of calibration: one using presence–absence data in Europe (EU) only and a second using presence-absence
data in both EU and North America (NA). The resulting predictions of occurrence of the species (ranging between 0 and 1) are used as
environmental axes in the niche overlap framework.

Name Description

GLM Generalized linear models (GLM; McCullagh & Nelder, 1989) constitute a flexible family of regression models, which allow

several distributions for the response variable and non-constant variance functions to be modelled. Here we use binomial

(presence–absence) response variables with a logistic link function (logistic regression) and allow linear and quadratic

relationship between the response and explanatory variables. A stepwise procedure in both directions was used for predictor

selection, based on the Akaike information criterion (AIC; Akaike, 1974).

MaxEnt MaxEnt (Phillips et al., 2006) is a machine learning algorithm that estimates the probability of occurrence of a species in contrast

to the background environmental conditions. MaxEnt estimates species distributions by finding the distribution of maximum

entropy (i.e. that is most spread out, or closest to uniform) subject to the constraint that the expected value for each

environmental variable under this estimated distribution matches its empirical average. MaxEnt begins with a uniform

distribution then uses an iterative approach to increase the probability value over locations with conditions similar to samples.

The probability increases iteration by iteration, until the change from one iteration to the next falls below the convergence

threshold. MaxEnt uses L – 1 regularization as an alternative to stepwise model selection to find parsimonious models

GBM The gradient boosting machine (GBM; Friedman, 2001) is an iterative computer learning algorithm. In GBM, model fitting

occurs not in parameter space but instead in function space. The GBM iteratively fits shallow regression trees, updating a base

function with additional regression tree models. A randomly chosen part of the training data is used for function fitting,

leaving the other part for estimating the optimal number of trees to use during prediction with the model (out-of-bag

estimate)

RF Random forests (RF; Breiman, 2001). Random forests grows many classification trees. To classify the species observations (i.e.

presences and absences) from the environmental variables, RFs puts the variables down each of the trees in the forest. Each tree

gives a classification, and the tree ‘votes’ for that class. The forest chooses the classification having the most votes (over all the

trees in the forest). Random forests is designed to avoid overfitting
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Fig. 2), except for niches with low overlap (< 0.3). This bias is on

average five times larger than that of the corrected measure.

Niche overlap detected by ordination and
SDM methods

Simulated entities

Ordination and SDM techniques vary in their ability to measure

simulated niche overlap (Figs 3–5). Among methods with maxi-

mization criteria that do not depend on a priori grouping

(Fig. 3), PCA-env calibrated on both EU and NA ranges most

accurately measures simulated niche overlap (Dabs:m = 0.054,

Wilcoxon P > 0.05; Fig. 3b). Note, however, that highly overlap-

ping distributions are somewhat underestimated but the signifi-

cance of the Wilcoxon test is unaffected. The only other

predominantly unbiased method in this category is ecological

niche factor analysis (ENFA), also calibrated on environmental

data from both ranges. However, errors generated by ENFA are

comparatively high (Dabs:m = 0.156, Wilcoxon P > 0.05; Fig. 3d).

Scores of PCA-occ and MDS are significantly biased, with the

measured overlap consistently lower than the simulated one

(Fig. 3a, b), especially in the ordination of data combined from

both EU and NA ranges.

Among methods with maximization criteria based on a priori

grouping (Fig. 4), WITHIN-env provides the lowest errors of

measured overlap. However, WITHIN-env significantly under-

estimates the simulated overlap (Dabs:m = 0.084, Wilcoxon P <
0.001; Fig. 4b), though the amount of underestimation is small.

By contrast, WITHIN-occ overestimates simulated overlap

(Dabs:m = 0.195, Wilcoxon P < 0.001; Fig. 4a). Predictably,

techniques that maximize discrimination between groups

(BETWEEN-occ and LDA; Fig. 4c, d) fail to measure simulated

levels of niche overlap adequately. Both methods provide similar

results in which overlap is underestimated across all simulated

levels.

Compared with ordinations, SDM methods show different

patterns when measuring overlap (Fig. 5). When calibrated on

both ranges, all SDM methods report high levels of overlap

(0.6–1), regardless of simulated overlap. SDMs apparently cali-
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Figure 1 Example of virtual species following a bivariate normal density along precipitation (p) and temperature (t) gradients with 50%
overlap between the European and North American niche in environmental space. The red to blue colour scale shows the projection of the
normal densities in the geographical space from low to high probabilities (i.e. 0 to 1). Black dots show random occurrences.

Measuring niche overlap

Global Ecology and Biogeography, ••, ••–••, © 2011 Blackwell Publishing Ltd 7



brate bimodal curves that tightly fit the two distributions as a

whole. However, when calibrated on the EU range only, all SDM

methods report increasing levels of overlap along the gradient of

simulated overlap. MaxEnt achieves the best results (Dabs:m =
0.111, Wilcoxon P > 0.05; Fig. 5b), followed by the gradient

boosting machine (GBM) (Dabs:m = 0.134, Wilcoxon P < 0.05;

Fig. 5c). MaxEnt is the only SDM method providing non-

significant bias. Generalized linear modelling (GLM) exhibits a

similar amount of error as GBM, but with lower reported

overlap (Dabs:m = 0.147, Wilcoxon P < 0.001; Fig. 5a). Random

forests (RF) provides very poor results in term of both error and

bias (Dabs:m = 0.393, Wilcoxon P < 0.001; Fig. 5d).

Case studies

Analyses of spotted knapweed and fire ant occurrences using

PCA-env, the most accurate method in terms of niche overlap

detection, show that for both species the niche in the native and

invaded ranges overlap little (0.25 and 0.28 respectively, Figs 6 &

7). For spotted knapweed, the invaded niche exhibits both shift

and expansion (Fig. 6a, b) relative to its native range. Interest-

ingly, two regions of dense occurrence in NA indicate two

known areas of invasion in western and eastern NA. In contrast,

the fire ant exhibits a shift from high density in warm and wet

environments in South America towards occupying cooler and

drier environments in NA (Fig. 7a, b). For both species, niche

equivalency is rejected, indicating that the two species have

undergone significant alteration of their environmental niche

during the invasion process (Figs 6d & 7d). However, for both

species, niche overlap falls within the 95% confidence limits of

the null distributions, leading to non-rejection of the hypothesis

of retained niche similarity (Figs 6e & 7e).

DISCUSSION

The framework we have presented helps meet the increasing

need for robust methods to quantify niche differences between

or within taxa (Wiens & Graham, 2005; Pearman et al., 2008a).

By using simulated entities with known amounts of niche

overlap, our results show that niche overlap can be accurately

detected within this framework (Fig. 2). Our method is appro-

priate for the study of between-species differences of niches (e.g.

Thuiller et al., 2005a; Hof et al., 2010), as well as to compare

subspecies or distinct populations of the same species that differ

in their geographical distributions and which are therefore likely

to experience different climatic conditions (e.g. Broennimann

et al., 2007; Fitzpatrick et al., 2007; Steiner et al., 2008; Medley,

2010). Alternatively, when a record of the distribution of the

taxa (and corresponding environment) through time exists, our

approach can be used to answer the question of whether and to

what degree environmental niches have changed through time

(e.g. Pearman et al., 2008b; Varela et al., 2010).

This framework presents two main advantages over methods

developed previously. First, it disentangles the dependence of

species occurrences from the frequency of different climatic

conditions that occur across a region. This is accomplished by

dividing the number of times a species occurs in a given envi-

ronment by the frequency of locations in the region that have

those environmental conditions, thereby correcting for differ-

ences in the relative availability of environments. Without this

correction, the measured amount of niche overlap between two

entities is systematically underestimated (Fig. 2). For example,

in the approach of Warren et al. (2008), who used an SDM-

based method using comparisons of geographical predictions of

occurrences, projections depend on a given study area. Mea-

sured differences between niches could represent differences in

the environmental characteristics of the study area rather than

real differences between species. Second, application of a kernel

smoother to standardized species densities makes moving from

geographical space, where the species occur, to the multivariate

environmental space, where analyses are performed, indepen-

dent of both sampling effort and of the resolution in environ-

mental space (Fig. S1). This is a critical consideration, because it

is unlikely that species occurrences and environmental datasets

from different geographical regions or times always present the

same spatial resolution. Without accounting for these differ-

ences, measured niche overlap will partially be a function of data

resolution.

Although niche overlap can be detected accurately when vari-

ables driving the distribution are known (e.g. with niches
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defined along precipitation and temperature gradients, Fig. 1),

the use of ordination and SDM techniques for selecting, com-

bining and weighting variables on which the overlap is calcu-

lated provide contrasting results. The causes of the differences in

performance among techniques remain unclear, but several

factors might be responsible. Among the important factors are:

(1) how the environment varies in relation to species occur-

rences versus the study region (or time period) as a whole, (2)

how techniques select variables based on this variation, and (3)

the level of collinearity that exists between variables within each

area/time and whether it remains constant among areas/times.

Hereafter we discuss the performance of the techniques we

tested in the light of these factors.

Ordinations versus SDMs

Ordinations and SDMs use contrasting approaches to reduce

the dimensions of an environmental dataset. While ordinations

find orthogonal and linear combinations of original predictors

that maximize a particular ratio of environmental variance in
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the dataset, SDMs fit nonlinear response curves, attributing dif-

ferent weights to variables according to their capacity to dis-

criminate presences from absences (or pseudo-absences). When

using both study regions for the calibration, SDMs consistently

overestimate the simulated level of niche overlap (Fig. 5, black

circles). It is likely that SDMs fit bimodal response curves that

tightly match the data and artificially predict occurrences in

both ranges (i.e. SDMs model the range of each entity as a single

complex, albeit overfitted, niche). As a result, prediction values

for occurrences are high for both ranges. Since the overlap is

measured on the gradient of predicted values, measured overlap

is inevitably high. In contrast, ordinations calibrated on both

areas provide a simpler environmental space (i.e. a linear com-

bination of original predictors), in which niche differences are

conserved. As a result, ordinations usually show a monotonic

relationship between detected and simulated overlap (Figs 3 & 4,

black circles).

When calibrating SDMs using only one study area and sub-

sequently projecting the model to another area, estimated

overlap increases with simulated overlap (Fig. 5, crosses).

However, the pattern of detected overlap using SDMs is irregu-

lar (i.e. Dabs:m is high), again probably because of overfitting. Bias

in detected overlap may also arise from the differing spatial

structure of environments between study areas. Unlike ordina-
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Figure 4 Sensitivity analysis of simulated versus detected niche overlap for ordinations using a priori grouping factor. The axes of
the analyses on which the overlap is measured correspond to (a, b) within-group analyses (a, WITHIN-occ; b, WITHIN-env), (c)
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tions, which remove collinearity between variables by finding

orthogonal axes, the variable selection procedure of SDMs is

sensitive to collinearity. A variable that is not important for the

biology of the species, but correlated to one that is, might be

given a high weight in the model (e.g. as in the case of micro-

climatic decoupling of macroclimatic conditions; Scherrer &

Körner, 2010). Projection of the model to another area (or con-

tinent in the present case) could then be inconsistent with the

actual requirements of the species and lead to spurious patterns

of detected overlap. In contrast, ordination techniques cali-

brated on only one study area show a more stable pattern of

detected overlap (i.e. monotonic increase, low Dabs:m). In general,

no SDM method exceeded the performance of the best ordina-

tion method.

Based on our results, ordinations seem to be more appro-

priate than SDMs for investigating niche overlap. However,

unlike ordination techniques, SDMs are able to select and rank

variables according to their importance in delimiting the

niche. SDMs thus could be used to identify variables that are

closely related to the processes driving the distribution of the

species, while excluding variables that do not discriminate

presence and absence. It remains to be tested whether the use
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Figure 5 Sensitivity analysis of simulated versus detected niche overlap for different species distribution model (SDM) algorithms. The
axes of the analyses on which the overlap is measured correspond to (a) generalized linear models (GLM), (b) MaxEnt, (c) gradient
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of simpler SDM models with more proximal variables (i.e.

thus reducing the potential influence of model overfitting and

variable collinearity; Guisan & Thuiller, 2005) would improve

the accuracy of estimated niche overlap. The best practice is to

use variables thought to be crucial (i.e. eco-physiologically

meaningful) for the biology of the species (Guisan & Thuiller,

2005). Often, uncertainties surrounding the biology of focal

species leave us to select variables relevant to the eco-

physiology of the higher taxonomic group to which it belongs

(e.g. all vascular plants).

Figure 6 Niche of spotted knapweed in climatic space – example of a principal component analysis (PCA-env). Panels (a) and (b)
represent the niche of the species along the two first axes of the PCA in the European native (EU) and North American invaded range
(NA), respectively. Grey shading shows the density of the occurrences of the species by cell. The solid and dashed contour lines illustrate,
respectively, 100% and 50% of the available (background) environment. The arrows represent how the centre of the niche has changed
between EU and NA. (c) The contribution of the climatic variables on the two axes of the PCA and the percentage of inertia explained by
the two axes. Histograms (d)–(f) show the observed niche overlap D between the two ranges (bars with a diamond) and simulated niche
overlaps (grey bars) on which tests of niche equivalency (d), niche similarity of NA to EU (e), and niche similarity of EU to NA (f) are
calculated from 100 iterations. The significance of the tests is shown (ns, non-significant; ***P < 0.001).

O. Broennimann et al.

Global Ecology and Biogeography, ••, ••–••, © 2011 Blackwell Publishing Ltd12



Differences in overlap detection among ordinations

Of the ordination techniques we considered, PCA-env most

accurately quantified the simulated level of niche overlap and

did so without substantial bias. Unlike PCA-occ, PCA-env sum-

marizes the entire range of climatic variability found in the

study area and it is in this multivariate space that occurrences of

the species are then projected. Thus, PCA-env is less prone to

artificial maximization of ecologically irrelevant differences

between distributions of the species. However, the possibility

remains that superior performance of PCA-env might be partly

attributable to the fact that our study areas (i.e. Europe and

Figure 7 Niche of the imported fire ant in climatic space – example of a principal component analysis (PCA-env). Panels (a) and b)
represent the niche of the species along the two first axes of the PCA in the European native (EU) and North American invaded range
(NA), respectively. Grey shading shows the density of the occurrences of the species by cell. The solid and dashed contour lines illustrate,
respectively, 100% and 50% of the available (background) environment. The arrows represent how the centre of the niche has changed
between EU and NA. (c) The contribution of the climatic variables on the two axes of the PCA and the percentage of inertia explained by
the two axes. Histograms (d)–(f) show the observed niche overlap D between the two ranges (bars with a diamond) and simulated niche
overlaps (grey bars) on which tests of niche equivalency (d), niche similarity of NA to EU (e), and niche similarity of EU to NA (f) are
calculated from 100 iterations. The significance of the tests is shown (ns, non-significant; ***P < 0.001).
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North America) have relatively similar precipitation and tem-

perature gradients that explain most of the environmental varia-

tion. The highest performance of PCA-env is likely in situations

where species respond to gradients that also account for most of

the environmental variation throughout the study region as a

whole (i.e. the maximization of the variation of the environ-

ment in the study area also maximizes the variation in the niche

of the species). Moreover, if this environmental setting prevails

in both study areas, issues regarding changes in the correlation

structure of variables may be minimal.

PCA-occ, in contrast, uses environmental values at species

occurrences only and selects variables that vary most among

occurrences. The resulting principal components are calibrated

to discriminate even the slightest differences in the correlation

of variables at each occurrence. A variable that differs little

among locations where the species occurs, but exhibits substan-

tial variation across the study region, probably represents mean-

ingful ecological constraint. Therefore, depending on the

environment of the study region (which PCA-occ does not con-

sider), these variables may have undetected ecological relevance

(Calenge et al., 2008). If the noise (e.g. climatic variation

between regions) is large relative to the signal (i.e. differences in

niches between species), the degree of niche overlap could be

underestimated (Fig. 3a).

LDA and BETWEEN-occ analyses calibrated using occur-

rences alone tend to underestimate the simulated level of niche

overlap. Both of these methods attempt to discriminate a priori

chosen groups along environmental gradients. Therefore, these

methods will give a higher weight to variables that discriminate

the two niches in terms of average positions. For example, in the

case of a perfect overlap between the niches on temperature (t)

and precipitation (p) variables, these methods will ignore envi-

ronmental variables most correlated with t and p, and will

instead select variables that discriminate the niches, no matter

their ecological relevance. Therefore, these methods will tend to

erroneously suggest that niches differ more than they actually

do. If such group discriminant analyses show high overlap, there

is no difference in the average position of the niches along any

variable. However, if they show low overlap, one should be aware

of the ecological relevance of the components along which the

niche average positions differ.

WITHIN-env was the second most reliable method for

quantifying niche overlap. This method aims to first remove

differences between the two environments and subsequently

focuses on differences between the niches in a common mul-

tivariate environmental space. All information that is not

shared by the two environments is not retained. This approach

is more conservative and therefore may be more robust in

analyses where two areas (or times) widely differ regarding

some variables. A niche shift detected after removing the effect

of the different environments is unlikely to be a statistical arte-

fact and therefore probably represents a true difference or

change in the ecology of the species. That said, the superior

performance of WITHIN-env in our study is probably related

to the manner in which distributions were simulated (equal

variance, but different means) and this approach may not

perform well if the excluded variables (i.e. the gradients

showing largest differences between the two areas) are relevant

with respect to niche quantification and, thus, niche overlap

between the two distributions. In such cases, only limited con-

clusions regarding niche differences are possible, although the

retained variables may actually be important determinants of

the species’ niche. In contrast, the WITHIN-occ method (i.e.

calibrated on occurrences only) significantly overestimated the

simulated degree of overlap. This was expected since the

method removes most of the environmental differences found

between the two sets of occurrences before comparing the

niches. For this reason, we anticipated even greater overesti-

mation of niche overlap.

In the case of ENFA, information is also lost because the two

selected axes do not maximize the explained variation. Instead,

ENFA constructs the niche using a model with a priori ecologi-

cal hypotheses that are based on the concepts of marginality and

specificity (Hirzel et al., 2002). Therefore, ENFA tends to suggest

niches are more similar than they actually are.

Despite differences between ordination methods, all were

consistent in one aspect. When calibrated on both the EU and

NA ranges, the measured niche overlap (filled circles, Fig. 3)

was generally lower than the simulated level and also lower

than the measured values when calibrated on EU alone

(crosses, Fig. 3). When only one range is used in the cali-

bration process, less climatic variation is depicted in the

environmental space, thus increasing the overlap between

distributions.

Reanalysis of case studies

In the cases of spotted knapweed, Centaurea stoebe (Broenni-

mann et al., 2007), and the fire ant, Solenopsis invicta (Fitz-

patrick et al., 2007, 2008), niche overlap was originally assessed

through the use of a BETWEEN-occ analysis and the calculation

of the between-class ratio of inertia that does not correct for

environmental availability (spotted knapweed 0.32; fire ant

0.40). Although our framework produced different values of

niche overlap with PCA-env (spotted knapweed and fire ant 0.25

and 0.28, respectively; Figs 6 & 7), the conclusions in the original

papers do not change. Namely, this reanalysis confirms earlier

findings that both spotted knapweed and the fire ant experi-

enced measurable changes in environmental niche occupancy as

they invaded North America. The application of our framework

to these species results in rejection of the niche equivalency

hypothesis. Despite claims to the contrary (e.g. Peterson &

Nakazawa, 2008), our analyses confirm that any attempt to

predict the niche characteristics from one range to another is

inadequate for these species. The results also show that, as would

be expected, the invasive niches tend to be more similar to the

native niche than random and, thus, niche similarity could not

be rejected. In the perspective of niche conservatism we thus

conclude that, as invasive species, spotted knapweed and the fire

ant did not significantly retain their environmental niche char-

acteristics from their native ranges.
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Perspectives

We developed and tested our framework using only one set of

study areas comprising all environments present in EU and NA.

Virtual entities were created by varying niche positions along

environmental gradients but with constant niche breadths. We

used this setting, which obviously is a subset of situations

encountered in nature, because of computational limitations

and to simplify the interpretation of the results. Though we

believe that this setting provides robust insights to develop best

practices for quantification of niche overlap, other situations

should be investigated. To explore differences between ordina-

tion and SDM techniques more fully, one would need to simu-

late species distributions with low to high variance of the

environment in the study region as a factor that is crossed with

low/high variance of the environmental conditions at species

occurrences. We cannot exclude that some modelling technique

(i.e. such as MaxEnt, the only SDM method which provided

irregular, but non-significantly biased results) could be more

robust when differences between environments are important.

The framework we illustrate here measures niche overlap

using the metric D (Schoener, 1970). Different metrics exist to

measure niche overlap (e.g. MacArthur & Levins, 1967; Colwell

& Futuyma, 1971; Warren et al., 2008) and since we provide a

description of the niche in a gridded environmental space, these

additional measures or metrics could be easily implemented.

However we feel that the metric D is the easiest to interpret. This

measure indicates an overall match between two niches over the

whole climatic space and determines whether we can infer the

niche characteristics of one species (subspecies, population)

from the other. We argue that SDMs can be reasonably projected

outside the calibration area only if the niche overlap is high

(D ª 1) and if the test of niche equivalency could not be rejected.

The metric D (as most overlap metrics) does not indicate the

directionality or type of niche difference and alone cannot tell us

whether the niche has expanded, shrunk or remained

unchanged. In a similar vein, because D is symmetrical, the

amount of overlap is the same for both entities being compared,

even though it is unlikely that the niches of two entities are of

the same size. Moreover, D provides no quantitative indication

concerning the position and the breadth of the niches (but does

provide a visual indication). These additional measures of the

directionality of niche change could be easily implemented in

our framework in the future.

CONCLUSIONS

How the environmental niches of taxa change across space and

time is fundamental to our understanding of many issues in

ecology and evolution. We anticipate that such knowledge will

have practical importance as ecologists are increasingly asked to

forecast biological invasions, changes in species distributions

under climatic change or extinction risks. To date, our ability to

rigorously investigate intra- or inter-specific niche overlap has

been plagued by methodological limitations coupled with a lack

of clarity in the hypotheses being tested. The result has been

ambiguity in interpretation and inability to decipher biological

signals from statistical artefacts. The framework we present

allows niche quantification through ordination and SDM tech-

niques while taking into account the availability of environ-

ments in the study area. As in Warren et al. (2008), our

framework allows statistical tests of niche hypotheses (i.e. niche

similarity and equivalency), but under our framework these

tests are performed directly in environmental space, thereby

allowing correction of bias associated with geographical dimen-

sion. Our comparative analysis of virtual entities with known

amounts of niche overlap shows that such ordination techniques

quantify niche overlap more accurately than SDMs. However, we

show that the choice of technique, depending on the structure of

the data and the hypotheses to test, remains critical for an accu-

rate assessment of niche overlap. Focusing on rates of change of

species niches and a search for consistent patterns of niche labil-

ity and/or stability across many taxa will most readily comple-

ment the synthesis of ecological and evolutionary analyses

already firmly under way.
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