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Abstract

Species distribution modelling has been widely applied in order to assess the potential
impacts of climate change on biodiversity. Many methodological decisions, taken during
the modelling process and forecasts, may, however, lead to a large variability in the
assessment of future impacts. Using measures of species range change and turnover, the
potential impacts of climate change on French stream fish species and assemblages were
evaluated. Our main focus was to quantify the uncertainty in the projections of these
impacts arising from four sources of uncertainty: initial datasets (Data), statistical
methods [species distribution models (SDM)], general circulation models (GCM), and
gas emission scenarios (GES). Several modalities of the aforementioned uncertainty
sources were combined in an ensemble forecasting framework resulting in 8400 different
projections. The variance explained by each source was then extracted from this whole
ensemble of projections. Overall, SDM contributed to the largest variation in projections,
followed by GCM, whose contribution increased over time equalling almost the
proportion of variance explained by SDM in 2080. Data and GES had little influence
on the variability in projections. Future projections of range change were more consistent
for species with a large geographical extent (i.e., distribution along latitudinal or stream
gradients) or with restricted environmental requirements (i.e., small thermal or elevation
ranges). Variability in projections of turnover was spatially structured at the scale of
France, indicating that certain particular geographical areas should be considered with
care when projecting the potential impacts of climate change. The results of this study,
therefore, emphasized that particular attention should be paid to the use of predictions
ensembles resulting from the application of several statistical methods and climate
models. Moreover, forecasted impacts of climate change should always be provided with
an assessment of their uncertainty, so that management and conservation decisions can
be taken in the full knowledge of their reliability.
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Introduction

Recent advances in computing, and the development of
large databases, have made species distribution model-
ling easier, faster, and more widely used in both basic
and applied ecology. Species distribution models (SDM)
have become increasingly popular in recent years for
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predicting the suitability of the current habitat (Guisan
& Zimmermann, 2000), evaluating the potential for the
establishment and spread of invasive species (e.g.,
Hartley et al., 2006; Ficetola et al., 2007; Mika et al.,
2008; Roura-Pascual et al., 2009) or assessing the mag-
nitude of biological responses to environmental
changes such as climate change (e.g., Erasmus et al.,
2002; Peterson et al., 2002; Thuiller, 2003; Bomhard et al.,
2005; Thuiller et al., 2005; Araujo et al., 2006).
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To date, many statistical methods are available and
applied routinely. Facing this wide range of methods,
several studies have focused on comparing model per-
formances and ecological predictions. These studies
have found that SDM do not perform equally in pre-
dicting current species distribution (e.g., Segurado &
Araujo, 2004; Elith et al., 2006; Lawler et al., 2006;
Pearson et al., 2006; Guisan et al., 2007; Heikkinen
et al., 2007) and that SDM give contrasted predictions
of habitat suitability (e.g., Elith et al., 2006; Guisan et al.,
2007; Evangelista et al., 2008; Roura-Pascual et al., 2009).
Predictions have also been shown to be sensitive to
diverse steps of the modelling process such as model
parameterization or model selection criteria (Araujo &
Guisan, 2006; Elith et al., 2006; Heikkinen et al., 2006;
Dormann et al., 2008). Some data characteristics, such as
sample size, errors in sampling both species distribu-
tion and environmental variables, or correlations be-
tween environmental descriptors, have also been
revealed as important sources of variability (Barry &
Elith, 2006; Guisan et al., 2006; Heikkinen et al., 2006;
Dormann et al., 2008; Graham ef al., 2008).

A growing concern has recently emerged for ensem-
ble forecasting approaches, which fit a number of alter-
native models (i.e., various initial conditions combined
with several statistical methods) and explore the range
of resulting projections (Araujo & New, 2007). Most
studies that have explored several models in ensemble
framework have mainly attempted (i) to identify the
‘best’ model (i.e., the model with the best predictive
performance) among extensive model comparisons
(e.g., Segurado & Araujo, 2004; Elith et al., 2006; Lawler
et al., 2006; Sharma & Jackson, 2008), or (ii) to use a
consensus approach that summarizes the variability
within the ensemble of predictions (e.g., Thuiller,
2004; Araujo et al., 2005b, 2006; Crossman & Bass,
2008; Barbet-Massin et al., 2009; Lawler et al., 2009;
Marmion et al., 2009b). Variability in projections of such
ensembles, however, has rarely been considered itself
(but see Hartley et al., 2006, for a special case of one
model with several parameterizations), although calls
have arisen to improve knowledge of the uncertainty
factors that may decrease the reliability of predictions
(Thuiller, 2004; Araujo et al., 2005b; Barry & Elith, 2006;
Guisan et al., 2006; Heikkinen et al., 2006).

In the context of climate change, uncertainty in pro-
jections becomes even more worrying as additional
sources of variability arise at two levels with the use
of future climate scenarios (Heikkinen et al., 2006;
Araujo & New, 2007; Beaumont et al., 2008; Dormann
et al., 2008). Firstly, a large number of general circulation
models (GCM) have been developed simultaneously, by
several meteorological research centres, to represent
physical processes in the atmosphere, ocean, cryo-

sphere, and land surface, allowing to simulate the
response of the global climate system to increasing
greenhouse gas concentrations. Secondly, four story-
lines, which are alternative images of how the future
might unfold assuming a certain level of future green-
house gas emissions, have been defined (Special Report
on Emission Scenarios, Nakicenovic & Swart, 2000).
These greenhouse gas emission scenarios (GES) are
derived from a complex interplay between demo-
graphic and socio-economic developments, as well as
technological changes. The outputs of all GCM x GES
combinations, therefore, cover a large range of potential
future climate conditions, thus increasingly emphasiz-
ing the need of ensemble forecasting approaches when
assessing uncertainties in future species distributions.

While dozens of previous ecological studies have
long demonstrated and widely discussed the influence
of SDM on future species distributions (e.g., Thuiller,
2003, 2004; Araujo et al., 2005b, Lawler et al., 2006;
Pearson et al., 2006), studies exploring a range of climate
scenarios have more recently been undertaken, but
comparisons between different GES are now commonly
addressed (e.g., Peterson et al., 2002; Thuiller, 2004;
Thuiller et al., 2005; Araujo et al., 2006; Broennimann
et al., 2006; Mika et al., 2008; Barbet-Massin et al., 2009;
Lawler et al., 2009). Such comparisons between different
GCM, however, are less frequent (but see Tuck et al.,
2006; Mika et al., 2008; Barbet-Massin et al., 2009; Brad-
ley, 2009; Durner et al., 2009; Lawler et al., 2009) and as
yet remain to be thoroughly considered (Beaumont
et al., 2008).

Very little attention has been focused on quantifying (i)
the variability between the projections obtained from
ensembles combining several sources of uncertainty
(but see Hartley et al., 2006), and (ii) the relative con-
tribution to projections of each of these uncertainty
components (but see Dormann et al., 2008). As potential
impacts of climate change on species distribution should
be predicted with an assessment of their uncertainty, so
that management and conservation decisions can be
taken with full knowledge of the predictions’ reliability
(Hartley et al., 2006), quantifying the effects of the
different sources of uncertainty appears a crucial issue.

In this context, this study was designed to quantify
the uncertainty in projections of the impact of climate
change on 35 fish species in French streams. We focused
on the variability in future projections of climate change
impacts on fish species and assemblages due to four
uncertainty components: initial dataset, SDM, GCM,
and GES. After measuring the variability’s extent, we
evaluated the relative contribution of each of the four
uncertainty components to this variability. Then, we
tested whether the magnitude of variability between
future projections of species distribution was related to
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some species’ biological attributes. Finally, the potential
occurrence of spatial patterns in the distribution of the
uncertainty at the scale of France was analysed.

Materials and methods

Biotic and abiotic data

Fish data. Fish data were provided by the Office National
de I'Eau et des Milieux Aquatiques (ONEMA), which is
the national fisheries organization in charge of the
protection and conservation of freshwater ecosystems
in France. A standard electrofishing protocol is
conducted yearly during low-flow periods by the
ONEMA to collect information on fish assemblages
present in a large number of French stream sections
(hereafter referred to as ‘sites’). We extracted a set of 1110
sites within French boundaries from the ONEMA
database. For statistical reasons, the current study was
limited to the 35 most common stream fish species (i.e.,
occurring in >25 out of 1110 sites) among a total
number of 55 collected species. Species presence-
absence were used.

Climate data. Three variables, related to fish ecological
requirements, were used to describe climate conditions:
mean annual precipitation, mean annual air
temperature (TAN, °C), and annual air temperature
range (TAM, °C) derived from the difference between
mean air temperature of the warmest month (MTW, °C)
and mean air temperature of the coldest month (MTC,
°C). These values were extracted from the CRU CL 2.0
(Climatic Research Unit Climatology version 2.0) dataset
(New et al., 2002) at a resolution of 10’ x 10/, and then
averaged for the period 1961-1990 to describe the
current climate.

Future climate predictions were averaged for three
30-year periods ending in 2020, 2050, and 2080 (referred
to as 2020, 2050, and 2080 scenarios, respectively). They
were derived from three GCM, namely CGCM2
(Canadian Centre for Climate Modelling and Analysis),
CSIRO2 (Australia’s Commonwealth Scientific and
Industrial Research Organization), and HadCM3
(Hadley Centre for Climate Prediction and Research’s
General Circulation Model). These three GCM were
selected as they have been commonly used in recent
studies dealing with the impacts of climate change on
biodiversity (e.g., Thuiller, 2004; Araujo et al., 2006; Tuck
et al., 2006; Mika et al., 2008). For each GCM, four GES
were examined: A1FI, A2, B1, and B2 (IPCC SRES,
Nakicenovic & Swart, 2000). These GES were chosen to
capture a range of greenhouse gas emission levels
predicted for the 2Ist century. A1FI was the most
pessimistic GES, A2 and B2 were intermediate and Bl

was the most moderate one. For each of the 1110 sites,
values of the three climatic variables studied were
extracted for all GCM x GES combinations, thus
providing 12 different projections of future climate
conditions for each time period.

Environmental data. In addition to climate descriptors, six
environmental variables were used to describe the 1110
sites studied: surface area of the drainage basin above the
sampling site (SDB, km?), distance from the headwater
source (DS, km), mean stream width (WID, m), mean
water depth (DEP, m), river slope (SLO, %), and elevation
(ELE, m). Five of these six variables were grouped into
two synthetic descriptors: (i) a longitudinal gradient G
derived from the first axis of a principal component
analysis (PCA) on DS and SDB describing the position
of the sites along the upstream—dowstream gradient; and
(i) a local water velocity index V summarizing WID, DEP
and SLO. Generalized additive models were then fitted
between each of the three environmental variables (.e., G,
V, ELE) and climate because of strong correlations.
Residuals from these three models were collected and
used as individual predictors independent of climate (see
Buisson et al., 2008, for details).

Species biological attributes

For each species, five biological attributes were evalu-
ated from fish, climate, and environmental datasets.
Firstly, species prevalence was calculated as the number
of sites where the species occurred relative to the total
number of sites (1110). Secondly, species latitudinal range
was described as the difference between the average
latitude of the 10% northernmost and southernmost sites
where species occurred in the fish dataset. Then, to
define species thermal range, a PCA was conducted on
the three thermal variables TAN, MTC, and MTW. The
first axis of this PCA, accounting for 90% of the total
variability, was kept as a synthetic variable describing
thermal conditions. Species thermal range was calcu-
lated as the difference between the average of the 10%
highest and lowest values along this axis where species
was observed. Finally, both longitudinal gradient (here-
after called ‘stream gradient’) range and elevation range
were described as the differences between the average
position along the stream gradient/elevation of the 10%
most upstream/highest and downstream/lowest sites
where species occurred, respectively.

Ensemble forecasting of species distribution modelling

Fish species presence—absence was related individually
to the six environmental and climate variables
using seven different statistical methods based on
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presence-absence input data, which are widely applied
to model species distribution (see Heikkinen et al., 2006,
for a review; Thuiller et al., 2009). These seven SDM
included three regression methods [generalized linear
models (GLM), generalized additive models (GAM),
multivariate adaptive regression spines], two machine-
learning methods [random forests (RF), boosted regres-
sion trees (BRT)] and two classification methods [linear
discriminant analysis, classification tree analysis]. De-
pending on the statistical methods, different modelling
parameters have been selected (e.g., second-order poly-
nomial in GLM, number of smoothing splines in GAM,
number of trees to fit in BRT or RF).

For each of the 35 species, the seven SDM were built
using a subset of data containing 70% of the sites
selected at random. The remaining 30% of the data
was used to evaluate the current predictive perfor-
mance of the models. This split-sample procedure was
repeated 100 times, and thus, 700 different statistical
models were calibrated for each species.

Then, current predictions of probability of occurrence
of each species were calculated from the calibrated mod-
els for the 1110 sites. They were converted into presence—
absence using a threshold maximizing the sum of two
measures: sensitivity (i.e.,, the percentage of presence
correctly predicted), and specificity (i.e., the percentage
of absence correctly predicted) (Fielding & Bell, 1997).

Calibrated models were then used to generate projec-
tions of future potential distributions under each 12
GCM x GES combinations for 2020, 2050, and 2080
scenarios. These future probabilities of occurrence were
transformed into presence-absence values by using the
same threshold value as for current predictions.

This procedure led to a full factorial design cross-
ing 100 calibration datasets (Data), seven statistical
methods (SDM), three GCM, and four GES, thus result-
ing in 8400 different projections of future distribution
for each species and each of the three time periods.
This projections ensemble represented possible states of
species distribution in the future.

Assessment of the potential impacts of climate change

For each of the 8400 projections, a species range change
(SRC) was calculated for each of the 35 species as the
difference between the number of sites gained by the
species (i.e., sites where the species could be present in
the future but where it is absent at the moment) and the
number of sites lost (i.e., sites where the species could
be absent in the future but where it is currently present)
relative to the number of sites currently occupied (e.g.,
Erasmus et al., 2002; Thuiller et al., 2005; Broennimann
et al., 2006). In this paper, we assumed that species had
unlimited dispersal capacity.

To describe local fish assemblages, the projections for
the 35 species were combined for current and future
periods, respectively. A species turnover rate was mea-
sured at each site for each 8400 projections:

SG +SL

Species T =100 X ——=
pecies Turnover X SR ek

(1)
where SG is the number of species predicted to appear
in a site (species gain), SL the number of species
predicted to no longer be present in the future (species
loss), and SR the current species richness (Peterson et al.,
2002). Species turnover indicated the amount of change
in the fish assemblages’ composition (see Buisson et al.,
2008, for details).

Evaluating the relative contribution of uncertainty
components in projections

The 8400 values of SRC (for each species separately) and
turnover (for each site separately) for 2020, 2050, and 2080
were related to the four uncertainty factors (Data, SDM,
GCM, and GES) using a generalized linear model. Un-
certainty factors were considered as categorical predictors
coded in 100, seven, three, and four modalities, respec-
tively. SRC were normally distributed and a Gaussian
distribution of errors was thus assumed. As turnover
rates ranged between 0 and 1, a binomial distribution of
errors and a logistic link function were applied.

Then, we partitioned out the variability in projections
due to each uncertainty component using the ratio
between the deviance explained by one factor and the
null deviance. The proportion of deviance explained by
each uncertainty component was measured separately
for each species, each site, and each time period.

Measuring the uncertainty in future projections

The variability of both SRC and turnover, between pro-
jections, was measured by calculating the standard devia-
tion across the 8400 projections for each species and site,
respectively. We also examined the variability of SRC and
turnover due to each uncertainty component by calculat-
ing the standard deviation across the modalities of one
factor after averaging the projections resulting from all
the modalities of the three other factors.

Linking uncertainty in projections of species range change
to species biological attributes

Closely related species often share many similar charac-
teristics compared with more distantly related species.
Therefore, species cannot be considered as independent
points in statistical analyses comparing multiple species
(Paradis & Claude, 2002). We thus tested whether species
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biological attributes significantly influenced the variabil-
ity in projections of SRC after accounting for phylogenetic
relatedness among fish species.

The first step was to build the phylogeny of the 35
studied fish species. We used molecular data to recon-
struct phylogenetic relationships based on three mito-
chondrial genes (cytochrome b, cytochrome oxidase I,
and ribosomial 16S subunit). Sequence data were ob-
tained from GenBank and phylogeny was reconstructed
using the Bayesian method under the TVM +1+G
substitution model. We implemented the phylogeny
estimation with MRBAYES and PAUP softwares (see Sup-
porting Information Appendix S1).

Second, we applied generalized estimation equations
(GEEs) as implemented in the ape package (Paradis
et al., 2004) in the R statistical environment (R Develop-
ment Core Team, 2007, R: A language and environment
for statistical computing, R Foundation for Statistical
Computing, Vienna, Austria) to relate the variability in
projections of SRC to species biological attributes. This
approach takes into account the phylogenetic related-
ness among fish species by constructing a species-to-
species correlation matrix derived from the built phy-
logenetic tree. GEEs also permit to include covariates in
a model to control for the effects of other factors that are
likely to have an impact on the dependent variable. As
species prevalence was expected to be strongly related
to the value of SRC, and thus to its standard deviation
by a statistical artefact, it was included as a covariate in
the GEEs. Therefore, we tested separately the effects of
each species’ biological attribute on the standard devia-
tion of SRC while accounting for both the effect of
prevalence and phylogenetic relatedness.

Spatial patterns in uncertainty of fish assemblages’
projections

To localize geographical areas of high variability between
projections, standard deviations of species turnover pro-
jections were mapped at the scale of France. Then, to
highlight potential spatial patterns in the distribution of
uncertainty, two matrices of site-pair distances were
computed using normalized Euclidean distance, relating
to (i) geographical distance and (ii) dissimilarities in
standard deviation of species turnover between each pair
of site. Mantel correlograms (Oden & Sokal, 1986; Sokal,
1986) were computed to describe the spatial structure of
variability in turnover. The geographical distance matrix
was divided into 20 distance classes using Sturge’s rule to
set the range of pairwise distances in each class (Legendre
& Legendre, 1998). Monte Carlo permutations were used
to test if the observed values of the Mantel-test statistic
(rvp) differed from those expected under the null hypoth-
esis (ie, no spatial arrangement). We evaluated the

significance of ry values at each distance class by com-
paring it with the distribution of 10 000 random permuta-
tion values obtained under the null hypothesis (Manly,
1994) using a Bonferroni correction to correct for multiple
significance tests.

Results

Both projected SRC and turnover were highly variable
depending on the Data x SDM x GCM x GES combina-
tions (Fig. 1). Overall, SRC increased from 19.4 & 12.7%
across the 8400 projections in 2020 to 48.9 & 24.4% in
2050 and 51.8 £33.7% in 2080 (Fig. 1la). A similar
increase was observed for turnover projections, which
averaged 26.9 + 7.3% in 2020, 44.4 &+ 9.0% in 2050, and
50.3 £9.8% in 2080 (Fig. 1b). SRC projections varied
more in 2050 and 2080 than in 2020 whereas variability
in turnover projections was more stable over time.

Quantifying the relative contribution of uncertainty
components to projections

Overall, the four uncertainty components studied ex-
plained an important part of the total variability for
both SRC and turnover projections whatever the time
period. The proportion of explained deviance decreased
from 70.5% in 2020 to 58.1% in 2080 for SRC projections,
and it increased from 51.5% to 61.7% over time for
turnover projections.

For both SRC and turnover values, SDM explained the
largest part of variability in future projections for the
three time periods studied (Fig. 2). On average, the
relative contribution of SDM decreased from 51.2% in
2020 to 28.9% in 2080 for SRC projections, but remained
stable at around 40-45% for turnover projections. Varia-
bility in projections of SRC and turnover was secondly
explained by GCM. As the time horizon increased, the
relative contribution of GCM also increased, ranging on
average from 12.6% and 2.7% in 2020 to 19.2% and 10.6%
in 2080 for projections of SRC and turnover, respectively
(Fig. 2a and b). The proportion of variability in projec-
tions explained by Data and GES was small and rarely
exceeded 10% for both SRC and turnover (Fig. 2). The
effect of Data was relatively stable over time while GES
explained a slightly increasing part of variability as the
time horizon increased, especially for turnover projec-
tions (from 0.1% in 2020 to 5.4% in 2080).

The effects of species biological attributes on uncertainty
in projections of species range change

After accounting for the effects of prevalence and
phylogenetic relatedness, all four biological attributes
exhibited a significant relationship with the total
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Fig. 1 Probability density functions for (a) species range change and (b) turnover projections based on the 8400
Data x SDM x GCM x GES combinations for 2020 (dashed), 2050 (grey), and 2080 (black) scenarios. The mean value of SRC across
the 35 species and the mean value of turnover across the 1110 sites were first calculated for each of the 8400 projections, and their
distributions are shown. SDM, species distribution model; GCM, general circulation model; GES, gas emission scenario; SRC, species
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Fig. 2 Percentage of deviance explained by each uncertainty
component (Data, SDM, GCM and GES) using a GLM relating
the 8400 (a) species range change (35 species), and (b) species
turnover (1110 sites) projections to the four uncertainty compo-
nents for the three time periods: 2020 (white), 2050 (light grey),
and 2080 (dark grey). SDM, species distribution model; GCM,
general circulation model; GES, gas emission scenario; GLM,
generalized linear model.

variability in SRC (Table 1). Standard deviation of SRC
was negatively related to species latitudinal and stream
gradient ranges and positively related to thermal and
elevation ranges. Thus, the whole projections ensemble

of SRC was more consistent for fish species with a large
geographical extent, small thermal range or small ele-
vation range.

When separating the variability in SRC due to each
uncertainty component, similar results were found
(Table 1) except for the standard deviations across
GCM, which were positively related to the four envir-
onmental ranges studied.

Spatial patterns in uncertainty of fish assemblages’
projections

The variability in projections of turnover depended on
the assemblages’ location (Fig. 3). Standard deviation
for the whole ensemble of projections ranged from 6.6%
to 38.4% and half of the assemblages had standard
deviations >16.2%. The highest values were observed
in mountainous and south-western areas, whereas less
variability was projected for many assemblages located
in the north-eastern France (Fig. 3a). The Mantel corre-
logram exhibited positive autocorrelation for the smal-
lest distant classes, and negative autocorrelation among
the largest distant classes, hence revealing gradual
changes in standard deviation values (Fig. 4a).

When separating the variability due to each uncer-
tainty component, spatial patterns were contrasted de-
pending on the considered component. Standard
deviations of turnover values due to Data and GES
were small (on average 3.3% and 4.1%, respectively)
and consistent throughout France (Fig. 3b and e). Only
the Mantel correlogram for GES indicated a slight
spatial structure of variability (Fig. 4e). For variability
due to SDM and GCM, although both Mantel correlo-
grams highlighted a spatially structured variability in
projections (Fig. 4c and d), divergent patterns were
found. Standard deviation values due to SDM, globally

© 2009 Blackwell Publishing Ltd, Global Change Biology, 16, 1145-1157
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Table 1 Relationships between the variability of species range change (standard deviations) projected for 2080, and species
biological attributes according to generalized estimation equations (GEEs)

Uncertainty sources

Total Data SDM GCM GES
Latitudinal range —0.001*** —0.001*** —0.001*** 0.001* —0.001***
Thermal range 0.407*** 0.668** 0.188** 0.455*** 0.718***
Stream gradient range —0.185** —0.292** —0.287*** 0.327** —0.299*
Elevation range 0.002%** 0.003*** 0.001*** 0.001*** 0.003***

SDM, species distribution model; GCM, general circulation model; GES, gas emission scenario.

Given are estimates of coefficients and significance: ***P <0.001, **P <0.01, *P <0.05.

I .
0 100 200 300 400

Fig. 3 Standard deviations of turnover values (%) in 2080 calculated across (a) 8400 projections, and (b) Data, (c) SDM, (d) GCM,
(e) GES modalities projections. SDM, species distribution model; GCM, general circulation model; GES, gas emission scenario.
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Fig. 4 Mantel correlograms for spatial autocorrelation of standard deviations of turnover values in 2080 calculated across (a) 8400
projections, and (b) Data, (c) SDM, (d) GCM, (e) GES modalities projections. Dark circles indicate significant correlations (assessed using
a Bonferroni correction) between site dissimilarity and geographical distance (upper class limit in km). SDM, species distribution model;

GCM, general circulation model; GES, gas emission scenario.

high, showed a strong gradient pattern and were posi-
tively autocorrelated for assemblages as far as 350 km
apart (Fig. 4c). The highest variability occurred below a
straight line joining north-western France to south-east-
ern France (Fig. 3c). Standard deviation of turnover
values due to GCM displayed a patchy spatial structure
(Fig. 4d): patches of high variability were located in
mountainous areas whereas the distribution of lowest
values was more homogeneous (Fig. 3d).

Discussion

In the present study, we evaluated the variability in
projections of climate change impacts on fish species
and assemblages. Large divergences in magnitude of
species range change and turnover projections were
highlighted, especially at long-term, arguing strongly
for displaying the full range of projections in climate

change impact studies. These results thus strengthen
the need for ensemble forecasting framework combin-
ing the outputs of several sources of uncertainty in
order to enhance reliability of projected future impacts
(Araujo & New, 2007). Advances in computing and the
development of platforms or tools such as BIOMOD
(Thuiller et al., 2009) or NEURALENSEMBLES (O’Hanley,
2009) will undoubtedly facilitate such approaches.

What are the main drivers of uncertainty in future
projections?

Partitioning out the different sources of uncertainty
might help in deciding where to focus future research
to reduce variability in projections (Guisan et al., 2006).
Our results suggested that the choice of the statistical
method may strongly determine values of projections
because SDMs introduced the largest part of variability
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in the short-, medium-, and long-term compared with
the other three sources of uncertainty tested in this
study. Between one-third and half of the total variability
in future projections could be due to the statistical
method. This result thus corroborates the recent study
by Dormann et al. (2008) who found that the different
modelling steps, especially the model type, caused far
greater variation in projected change of the Great Grey
Shrike distribution than differences between climate
change scenarios. Their results thus suggested that the
methodological uncertainty due to statistical techniques
could hide the effects of using different future climate
scenarios. Similar trends have been highlighted by
other studies although they did not strictly quantify
the relative contribution of each uncertainty component
(Thuiller, 2004; Araujo et al., 2006).

The important contribution of statistical method was
in accordance with the large number of studies, which
have compared projections of species distribution using
a variety of modelling techniques and found contrasted
patterns depending on the method selected (Thuiller,
2003; Lawler et al., 2006; Pearson et al., 2006; Roura-
Pascual et al., 2009). Although SDM are all based on a
correlative approach, they use different assumptions,
mathematical algorithms, and parameterizations. They
may vary in how they model the shape, nature, and
complexity of species’ response, select predictor vari-
ables, weight variable contributions, or allow for inter-
actions (Guisan & Zimmermann, 2000; Elith et al., 2006;
Austin, 2007). Species ecological niche may therefore be
modelled with great discrepancies depending on the
statistical method applied. Moreover, all techniques
behave differently when extrapolating projections be-
yond the sampled values of data (Pearson et al., 2006;
Elith & Graham, 2009) and may also be a cause of
variability in future projections.

In this study, GCM were another important driver of
the uncertainty in projections. Unlike SDM, the use of
multiple GCM has only recently been considered in
climate change impact studies (e.g., Thuiller, 2004;
Araujo et al., 2006; Mika et al., 2008; Durner ef al.,
2009; Lawler et al., 2009), whereas 23 GCM from 18
modelling centres are included in the fourth assessment
report of the IPCC. These GCM are very complex
systems derived from fundamental physical laws, then
subjected to physical and mathematical approximations
and able to simulate current climate conditions (Randall
et al., 2007). GCM basically differ in initial conditions
and mathematical models from which they are built. In
addition, at each step of the modelling process, varia-
bility is introduced by the way to represent Earth
system process (e.g., clouds, water vapour), the number
of climate feedback mechanisms operating, the spatial
and vertical resolution or the internal climate variability

(Meehl et al., 2007; Beaumont et al., 2008). These climate
models may consequently drive to contrasted forecasts
of future climate change, and their impacts on species
distribution may thus be highly variable (e.g., Tuck
et al., 2006; Mika et al., 2008; Barbet-Massin et al., 2009;
Bradley, 2009; Durner et al., 2009).

Here, it was also found that GCM introduced
increasing variation in future projections as the time
horizon increased reaching almost 20% of the total
variability of species range change projections in 2080.
Uncertainty due to GCM could therefore be as large as
uncertainty due to SDM at the end of the 21st century.
At a lesser extent, a similar increasing trend was high-
lighted for the emission scenarios that had no effect on
the variability in projections for the first half of the 21st
century while they could explain approximately 5% of
the variability in turnover at the end of the century.
These results thus suggest that the choice of emission
scenarios has little effect when projecting future species
distribution for the first few decades of the 21st century.
This was not surprising as Stott & Kettleborough (2002)
have found that there is remarkably little difference
between climate predictions from a representative
range of emission scenarios until 2040. The relevance
of studies comparing future impacts of climate change
on biodiversity under several emission scenarios in the
short-term thus deserves to be questioned. More atten-
tion should rather be paid to the use of different climate
models that mainly drive variations in climate projec-
tions in the first half of the 21st century. However, as
both climate models and emission scenarios are ex-
pected to increase their divergences over the 21st cen-
tury (Stott & Kettleborough, 2002; Meehl et al., 2007), the
inclusion of several GCM and GES is particularly
relevant for long-term projections in order to sample a
sufficient fraction of the uncertainty in future conditions
(Beaumont et al., 2008).

For which species are projections of range change the most
consistent?

Species’ ecological characteristics may affect the out-
puts of SDMs by influencing the quality of available
data or by making it difficult to statistically capture the
relationship between the species distribution and
environmental conditions (McPherson & Jetz, 2007).
Here, we focused on the variability in species range
change projections as an indicator of the amount of
reliability that could be placed in those projections.
Outputs of the GEEs suggested that projections of range
change were more consistent for species with a large
geographical extent (i.e., large distribution along latitu-
dinal or upstream-downstream gradients), or with
small thermal or elevation ranges. Greater confidence
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should thus be given to the projections of climate
change future impacts for species with strict thermal
or elevation requirements, which can be coarsely de-
fined as ‘specialist’ species. On the contrary, projections
for species with a large thermal tolerance or a large
elevation tolerance or a small geographical extent
should be treated with care for conservation purposes.

Recently, an extensive number of studies have inves-
tigated the relationship between the performances of
SDM at predicting present-day distribution and species
ecological characteristics (e.g., Segurado & Araujo, 2004;
Luoto et al., 2005; Seoane et al., 2005; Elith et al., 2006;
Guisan et al., 2007; McPherson & Jetz, 2007; Evangelista
et al., 2008; Poyry et al., 2008; Marmion et al., 2009a).
Overall, it appeared that species with limited geogra-
phical extent or specialist species with strict ecological
requirements yielded models with higher accuracy than
generalist species or species with a wide geographical
range. Reasons mentioned to explain such findings are
diverse, but are mainly based on the ecological niche
complexity. It would actually be easier to discriminate
suitable from unsuitable habitat for habitat specialist,
and thus to best describe their current ecological niche.
In the context of climate change, evaluating which
species distributions will be projected accurately in
the future is more difficult as there are no possible
comparisons given that these events have not yet oc-
curred (Araujo et al., 2005a). To date, a few studies have
attempted to highlight which species” biological attri-
butes could explain the sensitivity of species to climate
modifications (e.g., Thuiller ef al., 2005; Broennimann
et al., 2006; Poyry et al., 2009). However, no studies have
focused on the species” ecological characteristics, which
could influence the uncertainty in future projections. A
crucial issue would therefore be to test whether species,
whose current distribution is predicted with the great-
est accuracy, would also be species projected with the
greatest consistency in the future. Given our promising
finding that specialist species would be more consis-
tently projected than generalists, this hypothesis de-
serves to be thoroughly tested.

Where are projections of species turnover the most
consistent?

To date, studies that have used multiple statistical
models or climate scenarios to predict habitat suitability
or climate change impacts have identified areas of
consistency or areas of divergences by comparing maps
of projections (e.g., Elith et al., 2006; Crossman & Bass,
2008; Bradley, 2009). However, maps of uncertainty
(e.g., confidence intervals around predictions, standard
errors) have rarely been provided (Roura-Pascual et al.,
2009), whereas they could allow management decisions

to be taken with greater certainty than would be possi-
ble from mean predictions alone (Hartley et al., 2006).
For instance, it could be informative for a nature reserve
manager to learn that 90% of the models project that one
particular species will disappear from the reserve
boundaries under climate change, whereas only 50%
of the models predict the extinction of a second species.
Confidence given to these forecasts will probably drive
to different priorities in terms of conservation. More-
over, maps of uncertainty could allow the classification
of geographical areas as ‘certain’ or ‘uncertain’ for
predicting the potential impacts of climate change,
and thus help to identify areas where every effort
should be focused to achieve a better understanding
of the future impacts of climate change.

Here, we statistically demonstrated that variability in
turnover projections was not randomly distributed and
even that uncertainty due to SDM and GCM was
spatially structured. We were not surprised that no
spatial structure was highlighted in variability due to
Data and GES, because these factors entered little
variation in projections. Overall, maps of standard
deviations indicated that projections of species turnover
were not consistent for assemblages located below a
straight line joining north-western France to south-east-
ern France. Within this large area, some patches of
highest variability were projected especially in moun-
tainous areas and in south-western France. Understand-
ing the causes of such spatial patterns in uncertainty
between projections could be very helpful for future
research. For instance, although many features of the
simulated climate change are qualitatively consistent
among climate models for the majority of Europe,
substantial divergences actually remain especially on
the magnitude and geographical details of precipitation
change (Christensen et al., 2007). Moreover, Giorgi ef al.
(2001) showed that a number of consistent patterns of
regional climate change across GCM and scenarios are
now emerging, but cases of inconsistency occur in some
geographical areas of the world. Thus, it could be
interesting to consider the geographical variability in
climate data between GCM and GES and its potential
link with the uncertainty in turnover projections.
Another point would be to look in more details at the
composition of assemblages located in the areas of high
uncertainty since they probably include species whose
future distribution is predicted inconsistently. Errors of
prediction of the current species distribution have been
shown to be spatially structured (Pineda & Lobo, 2009).
Thus, combining the projections of several individual
species into turnover values could provide spatially
structured patterns of turnover variability. Since the
agreement between predictions is expected to be lower
for intermediate values of probability of occurrence (i.e.,
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at the edge of species distribution area), we could
expect that the geographical areas of high uncertainty
could also correspond to the environmental range mar-
gins of several species. Nevertheless, while these spatial
patterns will not be clarified, projections of climate
change future impacts in the ‘uncertain’ geographical
areas should be considered with care and further stu-
dies conducted to reduce the risk of those projected
impacts being misused.

Conclusion

Given the rate at which studies using SDM expand, and
the importance of their potential implications in terms
of conservation and management of biodiversity, a
better knowledge of the uncertainty associated with
the outputs of these models will be one of the main
challenges of forthcoming research. Proliferation of
distribution modelling studies will be fruitless while
uncertainty arising from different steps of the model-
ling process is not strictly assessed and quantified.
Ensemble forecasting approaches appear to be a pro-
mising tool to capture a wide range of the variability
generated by the modelling procedure. Nevertheless,
fundamental research aiming at understanding why
outputs of SDM differ should be conducted simulta-
neously (Elith & Graham, 2009).

To conclude, we recommend paying more attention to
the following points when evaluating the impacts of
climate change on biodiversity: (i) using several statis-
tical methods in an ensemble forecasting framework,
(ii) using climate projections from different GCM to
assess impacts in the short- and long-term, (iii) using
different climate scenarios only for impacts in the long-
term, (iv) always providing maps of uncertainty in
conjunction with maps of projected impacts, and (v)
taking into account species biological attributes when
combining responses of individual species to assess
impacts on assemblages. Following these recommenda-
tions, efforts could be made to achieve a more realistic
understanding of the future impacts of climate change
on biodiversity, allowing management and conserva-
tion decisions to be taken with awareness of the inher-
ent uncertainty in those impacts.
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