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Abstract
Aim: Environmental	DNA	 (eDNA)	 is	 increasingly	used	 for	 analysing	 and	modelling	
all-inclusive	biodiversity	patterns.	However,	the	reliability	of	eDNA-based	diversity	
estimates	 is	 commonly	 compromised	 by	 arbitrary	 decisions	 for	 curating	 the	 data	
from	molecular	artefacts.	Here,	we	test	the	sensitivity	of	common	ecological	analy-
ses	to	these	curation	steps,	and	identify	the	crucial	ones	to	draw	sound	ecological	
conclusions.
Location: Valloire,	French	Alps.
Taxon: Vascular	plants	and	fungi.
Methods: Using	soil	eDNA	metabarcoding	data	for	plants	and	fungi	 from	20	plots	
sampled	along	a	1000-m	elevational	gradient,	we	tested	how	the	conclusions	from	
three	types	of	ecological	analyses:	(a)	the	spatial	partitioning	of	diversity,	(b)	the	di-
versity–environment	relationship,	and	(c)	the	distance–decay	relationship,	are	robust	
to	 data	 curation	 steps.	 Since	 eDNA	metabarcoding	 data	 also	 comprise	 erroneous	
sequences	with	 low	frequencies,	diversity	estimates	were	 further	calculated	using	
abundance-based	Hill	numbers,	which	penalize	rare	sequences	through	a	scaling	pa-
rameter,	namely	the	order	of	diversity	q	(Richness	with	q	=	0,	Shannon	diversity	with	
q	~	1,	Simpson	diversity	with	q	=	2).
Results: We	 showed	 that	 results	 from	 different	 ecological	 analyses	 had	 varying	
degrees	of	sensitivity	to	data	curation	strategies	and	that	the	use	of	Shannon	and	
Simpson	diversities	led	to	more	reliable	results.	We	demonstrated	that	molecular	op-
erational	taxonomic	unit	clustering,	removal	of	polymerase	chain	reaction	errors	and	
of	cross-sample	contaminations	had	major	impacts	on	ecological	analyses.
Main conclusions: In	the	Era	of	Big	Data,	eDNA	metabarcoding	is	going	to	be	one	
of	 the	major	 tools	 to	 describe,	model	 and	 predict	 biodiversity	 in	 space	 and	 time.	
However,	ignoring	crucial	data	curation	steps	will	impede	the	robustness	of	several	
ecological	conclusions.	Here,	we	propose	a	roadmap	of	crucial	curation	steps	for	dif-
ferent	types	of	ecological	analyses.
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1  | INTRODUC TION

Understanding	 the	 structure	 and	 distribution	 of	 biodiversity	
across	 space	 and	 time	 is	 a	 critical	 goal	 in	 ecology.	 The	develop-
ment	 of	 environmental	DNA	 (eDNA)	metabarcoding	 approaches	
now	facilitate	the	monitoring	of	species	at	biogeographical	scales	
and	across	the	whole	tree	of	life	(Drummond	et	al.,	2015;	Taberlet,	
Coissac,	Pompanon,	Brochmann,	&	Willerslev,	2012).	It	is	now	pos-
sible	to	tackle	unresolved	questions	that	could	not	be	addressed	
with	 traditional	 biodiversity	 surveys	 so	 far.	 For	example,	 eDNA-
based	biodiversity	studies	have	enabled	the	spatial	partitioning	of	
diversity	 (i.e.	 gamma,	 alpha	 and	 beta	 diversity)	 of	 so	 far	 elusive	
taxa	 in	both	 terrestrial	and	marine	environments	 (e.g.	marine	vi-
ruses	and	protists,	soil	fungi	and	bacteria),	thereby	improving	our	
understanding	 of	 their	 community	 assembly	 processes	 and	 of	
their	role	in	structuring	communities	and	networks	at	global	scales	
(e.g.	 Lima-Mendez	et	 al.,	 2015;	Tedersoo	et	 al.,	 2014).	However,	
while	 the	 eDNA	 metabarcoding	 approach	 promises	 substantial	
advances	 in	macroecology	 and	multi-taxa	 studies,	 it	 requires	 an	
appropriate	and	careful	processing	of	the	tremendous	amount	of	
sequences	generated	to	draw	robust	and	ecologically	meaningful	
conclusions.

Indeed,	the	analyses	of	diversity	patterns	(e.g.	alpha-	and	beta-
diversity;	Whittaker,	1960)	across	space	and	of	the	processes	gener-
ating	these	patterns	are	traditionally	based	on	community	matrices	
representing	the	presence/abundance	of	species	across	samples.	In	
eDNA	metabarcoding	surveys,	the	data	consist	of	hundreds	to	mil-
lions	of	DNA	sequencing	reads	from	the	hundreds	to	thousands	of	
species	 co-occurring	 within	 samples.	 Using	 bioinformatics,	 these	
data	are	then	transformed	in	community	matrices,	but	with	species	
replaced	by	DNA	sequences,	and	species	abundance	replaced	by	a	
number	of	sequencing	reads.	While,	in	an	ideal	world,	one	sequence	
should	correspond	to	a	single	species,	in	practice,	it	can	correspond	
to	 several	 species	 if	 the	DNA	 region	has	 a	 low	 taxonomic	 resolu-
tion,	and	more	critically,	one	species	can	be	represented	by	tens	to	
thousands	of	variant	sequences.	Amongst	those	variants,	a	few	are	
biologically	meaningful	 (e.g.	 intraspecific	 variability),	 but	 the	 large	
majority	of	them	are	technical	errors	produced	at	the	different	stages	
of	 the	 laboratory	 treatments,	 from	DNA	extraction	 to	 sequencing	
(see	Table	1	and	Appendix	S1;	Bálint	et	 al.,	2016;	Taberlet,	Bonin,	
Zinger,	&	Coissac,	2018).	These	errors	can	represent	more	than	70%	
of	the	sequences	 in	raw	metabarcoding	datasets,	and	have	usually	
low	frequencies	(e.g.	singletons;	Brown,	Veach,	et	al.,	2015).	If	inter-
preted	as	genuine,	these	sequences	can,	therefore,	inflate	diversity	
by	several	orders	of	magnitude	and	lead	to	flawed	ecological	inter-
pretations	 (Kunin,	 Engelbrektson,	 Ochman,	 &	 Hugenholtz,	 2010).	
Molecular	protocols	are	thus	applied	to	reduce	and/or	control	spe-
cific	 technical	 errors	accumulated	during	 the	data	production.	For	
example,	 replicated	polymerase	chain	 reaction	 (PCR)	amplification	
and	use	of	negative	controls	allow	identifying	artefactual	sequences	
resulting	 from	 random	 errors	 introduced	 by	DNA	 polymerases	 or	
sequencers,	as	well	as	reagent	contaminants	(de	Barba	et	al.,	2014).	
However,	 error	 rates	 remain	 high	 even	 with	 the	 most	 stringent	

molecular	protocols	(Bálint	et	al.,	2016;	Taberlet	et	al.,	2018),	which	
has	 led	 to	 the	development	of	bioinformatics	algorithms	aiming	at	
detecting	errors	known	to	occur	during	data	generation	(e.g.	PCR	er-
rors	or	chimeric	sequences).	Also,	most	of	these	tools	require	spec-
ifying	thresholds	and	parameter	values,	which	are	usually	based	on	
arbitrary	decisions	and	visual	assessments.	An	example	is	the	clas-
sification	of	sequence	variants	into	MOTUs	(Molecular	Operational	
Taxonomic	Units)	based	on	 the	similarity	of	 sequences.	While	 this	
step	 is	 critical	because	MOTUs	are	used	as	 a	proxy	 for	 species	 in	
the	majority	of	DNA	metabarcoding	studies	(Appendix	S1),	MOTUs	
are	 commonly	 defined	using	 a	 97%	 sequence	 similarity	 threshold,	
a	value	historically	defined	as	the	similarity	level	of	full-length	16S	
rRNA	barcodes	below	which	bacterial	strains	necessarily	belong	to	
different	species	(Stackebrandt	&	Goebel,	1994).	However,	the	opti-
mal	threshold	value	to	define	MOTUs	depends	on	the	focal	taxa	and	
polymorphism/length	of	the	DNA	marker	used	 (e.g.	Brown,	Chain,	
Crease,	MacIsaac,	&	Cristescu,	2015;	Kunin	et	al.,	2010).	It	also	de-
pends	on	the	PCR/sequencing	error	rate,	which	varies	across	molec-
ular	protocols,	and	depends	on	the	amount	of	target	DNA:	when	it	
is	low,	each	genuine	DNA	fragment	has	a	higher	probability	of	being	
amplified	at	each	PCR	cycle	(Taberlet	et	al.,	2018).

Hence,	 using	 DNA	 metabarcoding	 requires	 making	 several	
methodological	choices.	Beyond	those	related	to	molecular	proto-
cols	and	bioinformatics	software,	one	of	the	most	critical	choice	is	
to	decide	which	data	curation	steps	to	include	in	the	curation	pro-
cedure.	 Indeed,	 each	 step	 directly	 affects	 the	 community	 matrix	
obtained,	 by	 influencing	 the	 final	 list	 of	MOTUs	 and/or	 their	 fre-
quencies	within	samples.	Previous	methodological	studies	have	thus	
underlined	the	 importance	of	data	curation	steps	on	the	reliability	
of	 ecological	 analyses	 and	 provided	 guidelines	 for	 bioinformatics	
decision-making	(e.g.	Alberdi,	Aizpurua,	Gilbert,	&	Bohmann,	2018;	
Schloss,	2010).	However,	most	of	these	studies	tested	the	influence	
of	data	curation	procedures	on	a	single	metric	or	ecological	ques-
tion.	However,	questions	related	to	local	community	richness	can	be	
very	sensitive	to	errors	(Flynn,	Brown,	Chain,	MacIsaac,	&	Cristescu,	
2015),	while	comparisons	of	communities’	composition	might	be	less	
affected	(Leray	&	Knowlton,	2015;	Taberlet	et	al.,	2018).	In	addition,	
most	 studies	 have	 focused	 on	microbial	 communities	 (bacteria	 or	
fungi),	and	few	have	addressed	such	questions	to	macro-organisms.	
Finally,	most	published	tests	have	so	far	relied	on	mock	communities	
(i.e.	positive	controls)	usually	made	of	DNA	extracts	for	few	known	
species.	While	mock	communities	are	useful	to	 identify	errors	and	
estimate	error	rates,	the	conclusions	cannot	easily	be	translated	to	
realistic	environments	with	rich	and	complex	communities	(Alberdi	
et	al.,	2018).

Here,	 we	 address	 how	 methodological	 choices	 related	 to	 the	
DNA	 metabarcoding	 data	 curation	 strategy	 influence	 the	 results	
for	different	types	of	ecological	analyses	and	their	related	diversity	
metrics.	We	used	soil	eDNA	data	from	an	elevational	gradient	in	the	
French	Alps,	and	focused	on	plants	and	soil	fungi	to	represent	both	
macro-	and	microorganisms,	as	well	as	DNA	markers	with	different	
length	 (Table	2).	Patterns	of	plant	diversity	have	been	extensively	
studied	 in	 this	 area	 (e.g.	 Chalmandrier,	Münkemüller,	 Lavergne,	 &	
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Thuiller,	2015)	and	serve	as	a	good	reference	to	evaluate	the	results	
estimated	from	eDNA	metabarcoding	data.	We	subjected	these	data	
to	 256	 different	 data	 curation	 strategies,	which	 correspond	 to	 all	
possible	combinations	of	seven	critical	data	curation	steps.	We	then	
tested	how	the	curation	strategies	 influence	the	 inferences	drawn	
from	 three	 different	 ecological	 analyses:	 (a)	 a	 spatial	 partitioning	
of	diversity	(i.e.	gamma,	alpha	and	beta	diversities)	to	estimate	the	
regional	and	local	diversity	of	the	gradient,	(b)	a	diversity–environ-
ment	 relationship,	 to	analyse	 the	 influence	of	environment	on	 the	
local	community	diversity	(alpha),	and	(c)	a	distance–decay	analysis,	
to	evaluate	if	similarities	between	communities	(beta)	decrease	with	
increasing	geographic	distances.	To	this	end,	we	first	checked	the	ac-
curacy	of	eDNA	metabarcoding	data	in	detecting	ecological	patterns	

by	comparing	the	eDNA-based	diversity	patterns	with	the	expected	
values	based	on	mock	communities	and	traditional	botanical	surveys	
(only	available	for	plants).	Second,	we	did	an	overall	sensitivity	anal-
ysis	to	test	the	sensitivity	of	ecological	results	to	the	data	curation	
strategy.	Finally,	with	a	variance	partitioning	analysis	we	identified	
the	crucial	curation	steps	(i.e.	those	that	introduced	more	variance	to	
the	results)	to	include	or	consider	in	the	curation	procedure.

To	achieve	these	objectives,	we	built	on	Hill	numbers	(Hill,	1973)	
to	estimate	diversity,	which	unifies	mathematically	the	best	known	
diversity	measures	 in	 ecology	 through	 a	 unique	 parameter	 q	 (i.e.	
Richness	at	q	=	0,	the	exponential	of	Shannon	entropy	at	q	~	1	and	
the	inverse	of	Simpson	at	q	=	2).	In	this	framework,	the	weight	of	the	
rare	species	decreases	when	increasing	the	value	of	the	parameter	

TA B L E  1  Brief	description	of	classical	technical	errors	occurring	in	DNA	metabarcoding	data,	the	associated	data	curation	steps	tested	in	
the	present	study	and	the	curation	methodology

Target error Definition Curation step (abbreviation) and methodology

Mixed Common	obvious	molecular/sequencing	
errors	such	as	mispaired	reads,	sequences	
with	ambiguous	bases,	that	are	too	short	or	
singletons.

Common	basic	filtering:
Removal	of	sequences	meeting	these	criteria.	This	step	is	not	tested	
here	and	has	been	applied	systematically.

PCR	error Base	misincorporation	by	the	DNA	polymerase	
during	the	PCR	amplification.

PCR	errors	removal	(PCR	error):
Identification	of	PCR	errors	using	a	model-based	classification	of	
sequences	based	on	their	similarities	and	abundances.	The	model	
reflects	the	accumulation	of	base	misincorporation	across	PCR	
cycles,	where	genuine	sequences	remain	more	abundant	than	their	
respective	errors.

Highly	spurious	
sequences

Chimeras	from	multiple	parents,	primers	di-
mers,	etc.	or	sequences	from	highly	degraded	
DNA	fragments	that	largely	differ	from	any	
known	sequence.

Highly	spurious	sequences	removal	(spurious):
Removal	of	sequences	of	whose	similarity	with	their	closest	match	
in	public	reference	databases	is	below	70%	(plants)	or	50%	(fungi).

Chimeras Sequences	obtained	from	the	recombination	
of	two	or	more	parent	sequences

Chimera	detection	and	removal	(chimeras):
Removal	of	sequences	that	have	a	high	probability	to	be	a	subse-
quence	from	other,	more	abundant	sequences	in	the	dataset.

Remaining	PCR	errors/
Biological	variation

Sequences	from	the	same	species	either	
resulting	from	a	PCR	error	that	could	not	be	
filtered	above,	or	from	intraspecific	variability

MOTU	clustering	(clustering):
Clustering	of	sequences	into	MOTUs	on	the	basis	of	their	pairwise	
similarity.	Here	done	at	different	sequence	similarity	thresholds.

External	contaminants DNA	coming	from	an	external	source	other	
than	the	biological	sample

Reagent	contaminants	cleaning	(reagent):
Removal	of	sequences	that	are	more	abundant	in	negative	controls	
relative	to	biological	samples	because	of	the	absence	of	other	com-
peting	DNA	fragments	during	the	amplification	process.

Cross-contaminations	
or	tag-jumps

Genuine	sequences	present	in	a	sample	where	
actually	absent,	either	due	to	cross-contami-
nations	at	the	bench,	or	due	to	tag-jumps	oc-
curring	during	the	library	preparation	or	the	
sequencing,	that	is,	switches	of	nucleotidic	
labels	used	to	assign	the	sequencing	reads	
to	their	samples.	These	contaminants	are	
usually	of	much	lower	abundance	than	their	
sample	of	origin.

Cross-sample	contamination	curation	(cross):
If	the	abundance	of	a	given	MOTU	in	a	given	sample	is	below	0.03%	
of	the	total	MOTU	abundance	in	the	entire	dataset,	it	is	considered	
as	absent	in	this	sample.

Dysfunctional	PCRs PCRs	that	are	too	different	in	comparison	with	
their	technical	replicates.

Dysfunctional	PCR	removal	(DysPCR):
Removal	of	PCR	replicates	from	a	single	biological	sample	that	are	
more	dissimilar	to	each	other	in	MOTUs	composition	and	structure	
than	are	the	PCR	obtained	from	other	biological	sample.

Abbreviations:	MOTU,	molecular	operational	taxonomic	unit;	PCR,	polymerase	chain	reaction. 
Note: Target	errors	make	reference	to	the	errors	described	further	in	Appendix	S1.	See	also	Table	S2.4	for	more	details	on	the	curation	steps	used	in	
this	study.
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q.	This	feature	is	particularly	relevant	for	DNA	metabarcoding	data,	
since	artefactual	sequences	are	usually	rare	compared	to	the	genu-
ine	ones	(Bálint	et	al.,	2016;	Taberlet	et	al.,	2018).	Hill	numbers	can	
thus	penalize	these	rare	sequences	at	different	degrees:	q	=	1	is	the	
order	of	diversity	that	levels	the	MOTUs	exactly	according	to	their	
relative	abundances,	while	q	<	1	overweigh	rare	MOTUs	and	q	>	1	
overweight	abundant	MOTUs.	As	a	result,	we	could	expect	that	di-
versity	measures	 that	give	 less	 importance	 to	 rare	 sequences	 (i.e.	
q	>	0)	are	less	sensitive	to	the	data	curation	strategy,	because	they	
penalize	the	artefactual	sequences	targeted	by	the	curation	steps.

2  | MATERIAL S AND METHODS

2.1 | Sample data

Soil	 cores	were	sampled	at	10	different	elevations	equally	distrib-
uted	 across	 an	 elevational	 gradient	 in	 the	 northern	 French	 Alps	
(from	 1,748	 m	 to	 2,725	 m	 a.s.l.)	 in	 2012.	 At	 each	 elevation,	 two	
10	m	×	10	m	plots	were	 selected	 (20	 plots	 in	 total).	 In	 each	 plot,	
21	soil	cores	distributed	along	the	two	diagonals	were	sampled.	Soil	
corers	were	cleaned	and	sterilized	between	each	sample	collection.	
Extracellular	DNA	was	then	extracted	twice,	from	15	g	as	described	
in	Taberlet,	Prud’homme,	et	al.	(2012).	Aboveground	plant	commu-
nity	information	(hereafter	observed	plant	diversity)	was	obtained	in	
each	plot	with	a	botanical	survey	conducted	during	the	annual	pro-
ductivity	peak	(mid-July)	using	the	Braun-Blanquet	cover-abundance	
scale	(Braun-Blanquet,	1946).

2.2 | Molecular analyses

eDNA-based	plant	diversity	was	estimated	by	targeting	a	vascu-
lar	plant-specific	marker	 (P6	 loop	of	chloroplast	 trnL,	Table	2).	 It	
targets	highly	conserved	priming	sites	across	vascular	plants	and	
amplifies	a	short	region,	which	is	desired	when	working	with	de-
graded	DNA.	eDNA-based	fungal	diversity	was	assessed	using	the	
nuclear	 ribosomal	 Internal	 Transcribed	 Spacer	 1	 (ITS1;	 Table	 2).	
For	each	DNA	extract,	PCRs	were	run	in	duplicate	leading	to	four	
technical	 replicates	per	core	sample	and	DNA	marker.	PCR	ther-
mocycling	 conditions	 and	 mixture	 composition	 and	 purification	
can	be	found	in	Table	S2.1	in	Appendix	S2.	To	control	for	poten-
tial	 contaminants,	 extraction	 and	 PCR	 blank	 controls	 were	 in-
cluded	in	the	experiment.	To	control	for	false	positives	caused	by	

tag-switching	events,	we	also	defined	“sequencing	blank	controls”,	
that	is,	tag	combinations	not	used	in	our	experimental	design,	but	
that	 could	 be	 formed	 at	 the	 library	 preparation	 or	 sequencing	
stage	(See	Appendix	S1).	We	also	included	positive	controls	in	this	
experiment,	which	consisted	of	a	mix	of	DNA	extracted	from	16	
plant	species.	For	this,	genomic	DNA	was	extracted	from	leaf	tis-
sue	using	the	DNeasy	Plant	Kit	(Qiagen	GmbH),	quantified,	diluted	
at	 different	 concentrations	 for	 each	 species	 and	mixed	 to	 form	
a	mock	community	 (species	 composition	provided	 in	Table	S2.2,	
Appendix	S2).	Positive	controls	allow	for	quantification	of	techni-
cal	biases	introduced	by	PCR	and	sequencing.	Illumina	sequencing	
was	performed	on	a	HiSeq	platform	(2	×	100	bp	paired-end	reads)	
for	plant	amplicons	and	on	a	MiSeq	(2	×	250	bp	paired-end	reads)	
for	fungi	amplicons,	both	using	the	paired-end	technology.

2.3 | Bioinformatics analyses

The	Illumina	sequencing	paired-end	reads	 (Table	S2.3)	were	pre-
processed	for	each	marker	with	three	procedures:	 (a)	assembling	
forward	and	reverse	paired-end	reads	based	on	their	overlapping	
3’-end	sequences,	(b)	assigning	each	read	to	its	respective	sample	
(demultiplexing)	and	(c)	combining	strictly	identical	sequences	into	
unique	DNA	sequences	while	keeping	information	on	their	abun-
dance	(number	of	sequencing	reads)	in	each	sample	(dereplication).	
Then	we	systematically	processed	the	dereplicated	sequences	fol-
lowing	 common	data	 curation	procedures	 that	 included	 removal	
of	 sequences	with	 low	 paired-end	 alignment	 scores,	 removal	 of	
singletons,	removal	of	short	sequences	and	removal	of	sequences	
containing	ambiguous	bases	(not	to	be	confounded	with	a	phred-
quality	 filtering;	 Figure	 1a;	 Table	 1;	 Table	 S2.4).	 Singletons	 are	
sequences	 that	 occur	 only	 once	 in	 the	whole	 dataset	 and	many	
studies	agree	that	their	removal	is	necessary	to	reduce	data	com-
plexity/computational	 time	and	because	 they	mostly	correspond	
to	molecular	artefacts	that	may	inflate	disproportionately	diversity	
indices	(Brown,	Veach,	et	al.,	2015;	Kunin	et	al.,	2010).	In	our	data,	
they	represented	70%–80%	of	the	total	number	of	sequences	but	
only	1%–15%	of	the	total	number	of	sequencing	reads	for	plants	
and	fungi	respectively	(Table	S2.3	in	Appendix	S2).	We	finally	as-
signed	 each	 remaining	 sequence	 to	 a	 taxonomic	 clade	 with	 the	
ecotag	 command	 from	 the	 OBITools	 software	 package	 (Boyer	 
et	al.,	2016)	that	uses	a	lowest	common	ancestor	algorithm	for	the	
assignment,	and	the	EMBL	database	version	133	as	a	reference.

TA B L E  2  Characteristics	of	the	DNA	markers	used	to	estimate	eDNA-based	diversity	in	this	study

DNA Marker
Target 
taxa Forward primer (5ʹ−3ʹ) Reverse primer (5ʹ−3ʹ)

Length [range] 
(bp) References

P6	loop	of	the	chloroplast	
trnL	intron

Vascular	
plants

g:GGGCAATCCTGAGCCAA h:	CCATTGAGTCTCTG 
CACCTATC

48 [10–220] Taberlet	et	al.,	2007

Nuclear	ribosomal	DNA	
Internal	Transcribed	
Spacer	1	(ITS1)

Fungi ITS5:	GGAAGTAAAAGTCG 
TAACAAGG

Fung02:CCAAGAGATC 
CGTTGYTGAAAGTK

226 [68–919] White,	Bruns,	Lee,	
&	Taylor,	1990;	
Taberlet	et	al.,	
2018
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Next,	data	from	each	marker	were	processed	following	a	range	
of	different	data	curation	strategies	to	test	the	sensitivity	of	eco-
logical	 analyses	 to	 different	 methodological	 choices	 (Figure	 1b).	
To	do	so,	we	selected	seven	 important	steps:	 (a)	 removal	of	PCR	
errors,	 (b)	 filtering	 of	 highly	 spurious	 sequences,	 (c)	 removal	 of	

chimeras,	(d)	sequence	classification	into	MOTUs	(MOTU	cluster-
ing),	(e)	removal	of	reagent	contaminants,	(f)	cross-sample	contam-
ination	cleaning	and	(g)	dysfunctional	PCRs	filtering	(see	Table	1;	
Appendix	S1;	Table	S2.4	in	Appendix	S2	for	target	errors	and	step	
descriptions).	 Curation	 steps	 were	 either	 kept	 or	 excluded,	 and	

F I G U R E  1  Workflow	of	the	sensitivity	analysis.	(a)	Raw	data	are	curated	with	basic	filtering	steps	for	each	DNA	marker	(plants:	trnL-P6	
loop,	fungi:	internal	transcribed	spacer	1).	(b)	Filtered	data	are	processed	using	seven	curation	steps	that	were	varied	or	removed	in	each	
data	curation	strategy	making	a	total	of	256	possible	combinations.	As	a	result,	256	community	matrices	are	obtained	per	DNA	marker	
and	used	to	(c)	conduct	three	types	of	ecological	analyses.	The	range	of	values	obtained	for	each	ecological	analysis	and	diversity	metric	
represents	the	variance	due	to	the	data	curation	strategy
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were	 always	 performed	 in	 the	 same	 order	 in	 each	 data	 curation	
strategy.	For	the	MOTU	clustering	step,	when	kept,	three	cluster-
ing	thresholds	were	tested	(1,	2	or	3	mismatches	allowed	between	
pairwise	aligned	sequences).	We	used	here	raw	mismatches	rather	
than	percentages	of	dissimilarities	because	the	DNA	markers	used	
are	short	(<	100	bp)	and/or	highly	polymorphic	in	length.	Using	the	
percentages	of	dissimilarity	in	this	case	would	penalize	more	little	
differences	when	alignments	are	short	than	when	they	are	long.

All	different	possible	combinations	of	these	curation	strategies	
were	 implemented	 (Figure	 1b).	 Most	 of	 the	 curation	 steps	 were	
done	 using	 the	 software	 OBITools	 (Boyer	 et	 al.,	 2016).	 Chimera	
detection	 was	 performed	 with	UCHIME	 (Edgar,	 Haas,	 Clemente,	
Quince,	 &	 Knight,	 2011)	 and	we	 used	 SUMaClUst	 (Mercier,	 Boyer,	
Bonin,	&	Coissac,	2013)	 for	MOTU	clustering	due	 to	 its	 ability	 in	
handling	large	datasets	and	its	flexibility	for	defining	the	clustering	
threshold	(see	Table	S2.4	for	more	details	on	the	algorithm).	After	
data	 curation,	 PCR	 replicates	were	 summed	 and	 standardized	 by	
the	 total	 number	 of	 reads	 in	 each	 core	 sample.	We	 then	 pooled	
the	samples	for	each	of	the	20	plots	to	obtain	a	single	community	
per	plot.	For	this,	MOTUs	abundance	(already	standardized	by	the	
number	of	 reads)	were	 summed	and	 standardized	by	 the	number	
of	 samples	 in	each	plot.	 For	each	of	 the	data	 curation	 strategies,	
we	obtained	a	community	matrix	with	rows	representing	plots	and	
columns	representing	all	the	MOTUs	obtained	after	curation,	which	
we	used	here	as	a	proxy	for	species.	Therefore,	our	sensitivity	anal-
ysis	was	conducted	on	a	total	of	256	matrices	for	each	DNA	marker	
(Figure	1c).

2.4 | Ecological questions

We	tested	the	sensitivity	of	the	results	for	three	common	ecologi-
cal	analyses	to	the	above-mentioned	data	curation	strategies	using	
MOTUs	as	equivalent	of	species:

2.4.1 | Spatial partitioning of diversity

We	 used	 the	 multiplicative	 diversity	 partitioning	 approach	
(Whittaker,	 1960)	 to	 analyse	 gamma	 (here	 the	 diversity	 across	
the	 entire	 gradient),	 alpha	 (diversity	 of	 local	 communities)	 and	
beta	diversity	(diversity	between	communities).	In	the	Hill	num-
bers	framework,	gamma	diversity	is	the	effective	number	of	spe-
cies	 in	 the	 pooled	meta-community	 (i.e.	 across	 all	 plots),	 alpha	
diversity	 is	 the	effective	number	of	species	per	community	 (i.e.	
plot)	and	beta	diversity	is	the	effective	number	of	communities,	
calculated	as	the	ratio	of	gamma	diversity	to	alpha	diversity.	We	
followed	Chao,	Chiu,	and	Jost,	(2014)’s	definition	where	beta	di-
versity	is	independent	of	alpha	and	ranges	from	1	(all	communi-
ties	 are	 identical)	 to	 the	 total	 number	 of	 communities	N	 (when	
N	 =	 20	 all	 communities	 are	 different).	We	 limited	 our	 study	 to	
taxonomic	 diversity,	 because	 the	 DNA	 markers	 we	 used	 here	
are	rather	short	(Table	2)	and	are	highly	variable	in	length,	which	
make	them	not	suitable	for	inferring	accurate	phylogenetic	rela-
tionships	at	the	scale	of	the	community.

2.4.2 | Diversity–environment relationship 
(alpha ~ soil organic matter content)

Diversity	is	often	linked	to	abiotic	drivers,	and	a	common	ecological	
research	question	is	how	alpha	diversity	changes	along	an	environ-
mental	gradient.	Here,	we	fitted	a	linear	model	to	determine	changes	
in	 alpha	 diversity	 along	 a	 gradient	 of	 soil	 organic	 matter	 content	
(SOM	content),	known	to	be	a	strong	predictor	of	diversity	changes	
in	the	study	site	(Ohlmann	et	al.,	2018).

2.4.3 | Distance–decay relationship 
(similarity ~ geographic distance)

Species’	 distributions	 and	 resulting	 diversity	 patterns	 are	 con-
trolled	by	both	 species	dispersal	 abilities	 and	 spatial	 turnover	of	
environmental	 conditions	 (Tuomisto,	 2003).	 One	 hypothesis	 is	
thus	 that	 spatially	 distant	 communities	 are	 more	 different	 than	
close	communities	(“distance-decay”,	Green	et	al.,	2004;	Tuomisto,	
2003).	We	 used	 the	 Jaccard-type	 overlap	 (UqN)	 as	 a	measure	 of	
similarity	(Chao	et	al.,	2014)	and	we	fitted	a	linear	model	using	the	
log	transformation	of	similarity	against	the	geographic	distance	to	
evaluate	 the	 distance–decay.	 The	 geographic	 distance	 between	
plots	was	calculated	with	Euclidean	distances	using	the	elevation	
values	of	the	plots.

For	 each	 DNA	 marker	 (plant	 and	 fungi),	 we	 calculated	 the	
gamma,	alpha	and	beta	diversities	 (spatial	partitioning	of	diversity)	
for	each	of	the	256	community	matrices	obtained	from	the	differ-
ent	metabarcoding	data	curation	strategies	using	Hill	numbers	with	
values	of	q	=	{0,0.5,1,2}.	For	the	diversity–environment	and	the	dis-
tance–decay	relationships,	we	fitted	our	models	to	each	community	
matrix	and	extracted	 the	slopes	and	 the	R-squares	of	 the	models.	
Alpha	diversity	and	community	similarity	were	calculated	using	Hill	
numbers	with	values	of	q	=	{0,1,2}.

2.5 | Sensitivity analyses

2.5.1 | Detectability of ecological patterns

To	 test	 the	 ability	 of	 eDNA	metabarcoding	 data	 and	 of	 the	 dif-
ferent	 data	 curation	 strategies	 to	 detect	 ecological	 patterns	we	
(a)	evaluated	the	completeness	of	the	sampling	unit	(plot),	and	(b)	
used	 the	observed	plant	diversity	and	positive	controls	as	 refer-
ences	 to	evaluate	 the	accuracy	of	 the	ecological	 results.	We	ac-
knowledge	 that	 eDNA-based	 diversity	 is	 expected	 to	 slightly	
diverge	from	observed	diversity	 (see	discussion)	but	they	should	
follow	similar	trends	(Hiiesalu	et	al.,	2012;	Träger,	Öpik,	Vasar,	&	
Wilson,	2019;	Yoccoz	et	al.,	2012).	The	sampling	completeness	of	
each	plot	was	evaluated	with	rarefaction	curves	for	the	different	
orders	of	diversity	q	=	{0,1,2}	and	for	three	data	curation	strate-
gies	with	varying	filtering	stringency:	a	“no	data	curation”	strategy	
with	no	curation	step	at	all;	a	 “basic	curation”	strategy	 including	
only	 the	 chimera	 removal	 and	 a	 traditional	 clustering	 threshold	
allowing	 three	mismatches	 between	 clustered	 sequences	 and,	 a	
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“rigorous	curation”	strategy,	 including	all	 the	curation	steps	con-
sidered	here	and	a	clustering	threshold	allowing	two	mismatches.

2.5.2 | Overall sensitivity analyses

To	test	the	sensitivity	of	the	results	for	the	different	ecological	anal-
yses	and	their	related	diversity	metrics	to	the	data	curation	strategy,	
we	used	the	variance	of	each	diversity	estimate,	obtained	across	the	
256	 community	matrices	 and	 for	 each	marker	 (Figure	1c).	 For	 the	
diversity–environment	 and	 the	 distance–decay	 relationships,	 we	
looked	at	 the	variance	 in	 the	 slope	and	 the	R-square	of	 the	 linear	

regression	across	the	256	models	 for	each	marker.	 In	addition,	we	
used	 “the	 rigorous”	 and	 “the	 basic”	 curation	 strategies	 explained	
above,	 that	 correspond	 to	 commonly	 used	 pipelines,	 to	 exemplify	
how	results	can	differ	between	studies.

2.5.3 | Identifying the crucial steps of the 
curation procedure

To	identify	the	crucial	steps	we	did	a	variance	partitioning	analysis	
for	each	diversity	metric.	For	the	spatial	partitioning	of	diversity,	the	
diversity	metrics	 (gamma,	alpha	and	beta	diversities)	were	used	as	

F I G U R E  2  Estimated	values	of	the	spatial	partitioning	of	diversity	components	(a-f),	of	the	regression	parameters	from	the	diversity–
environment	(g-j),	and	of	distance–decay	(k-n)	relationships	across	the	256	curation	strategies	for	different	diversity	metrics	(Hill	numbers,	
q	=	{0,0.5,1,2}).	The	top	row	(a-c,	g,	h,	k,	and	l)	corresponds	to	the	plant	DNA	marker	(trnL-P6	loop)	and	bottom	row	(d-f,	i,	j,	m,	and	n)	to	the	
fungi	DNA	marker	(internal	transcribed	spacer	1).	Size	of	each	box	(including	whiskers)	represents	the	sensitivity	of	the	diversity	metrics	or	the	
model	parameters	to	the	data	curation	strategy.	The	circle	and	the	triangle	symbols	indicate	the	values	obtained	from	a	rigorous	and	a	basic	
curation	strategy	respectively.	The	star	symbol	indicates	the	values	calculated	from	botanical	survey	(only	represented	for	plants,	top	row)



8  |     CALDERÓN‐SANOU Et AL.

the	response	variable	in	function	of	the	curation	steps.	For	the	di-
versity–environment	and	the	distance–decay	relationships	we	used	
the	slope	and	the	R-square	of	the	models	as	the	response	variable	in	
function	of	the	curation	steps.	Variance	partitioning	analyses	were	
done	with	the	R	package	rElaIMpo	(Grömping,	2006).

3  | RESULTS

3.1 | Detectability of ecological patterns with eDNA 
metabarcoding data

3.1.1 | Sampling completeness of the plots

For	both	markers/taxa,	the	total	diversity	was	well	represented	by	
the	number	of	reads	sequenced,	when	considering	the	diversity	at	
q	=	{1,2}	(Figure	S2.1	and	S2.2	in	Appendix	S2).	At	q	=	{0},	the	rarefac-
tion	curve	rarely	saturated,	but	we	obtained	more	asymptotic	curves	
when	increasing	the	stringency	of	the	data	curation	strategy.

3.1.2 | Spatial partitioning of diversity

Overall,	we	 found	 that	 alpha	diversity	 estimates	 at	q	=	 {1,2}	were	
closer	to	the	observed	plant	diversity	(Figure	2b)	and	to	the	positive	
controls	composition	(Figure	3)	than	at	q	=	{0,0.5}.	However,	diver-
sity	at	q	=	 {1}	slightly	underestimated	gamma	 (Figure	2a)	and	beta	
(Figure	2c)	while	all	diversity	components	were	underestimated	for	
most	curation	strategies	at	q	=	{2}	(Figure	2a-c).	Richness	(q	=	0)	was	
always	overestimated.	While	we	obtained	very	accurate	results	for	
diversity	at	q	=	{0.5}	when	using	a	rigorous	pipeline,	a	basic	pipeline	
led	to	a	substantial	overestimation.

3.1.3 | Diversity–environment relationship

While	 the	 expected	 positive	 slope	 was	 in	 most	 cases	 detected	
(Figure	2g)	and	its	value	was	on	average	very	similar	to	the	one	ob-
tained	for	observed	plant	diversity,	especially	when	using	a	rigorous	
pipeline,	it	was	highly	overestimated	for	some	data	curation	strate-
gies	at	q	=	{0,1}.

3.1.4 | Distance–decay relationship

The	expected	negative	 slope	of	 the	distance–decay	 curve	was	 al-
ways	detected	(Figure	2k).	However,	independently	of	the	data	cura-
tion	strategy,	the	slope	was	always	underestimated	compared	to	the	
curve	calculated	with	observed	plant	diversity.	Also,	the	R-square	of	
the	distance–decay	relationship	was	reduced	at	q	=	{2}	(Figure	2l).

3.2 | Overall sensitivity of ecological questions and 
diversity metrics

The	results	of	different	ecological	questions	had	varying	degrees	
of	sensitivity	to	the	data	curation	strategies.	While	the	estimates	in	
all	ecological	questions	were	highly	sensitive	(width	of	the	boxplots	

in	Figure	2),	the	main	signal	of	the	diversity–environment	and	the	
distance–decay	relationships	was	consistent	across	most	curation	
strategies.

3.2.1 | Spatial partitioning of diversity

Sensitivity	of	 gamma,	 alpha	and	beta	diversity	decreased	 for	higher	
values	of	q,	that	is,	weighing	down	rare	MOTUs	(Figure	2a-f).	Diversity	
estimates	at	q	=	{0}	were	the	most	sensitive,	with	more	than	two	or-
ders	of	magnitude	for	both	gamma	and	alpha	(Figure	2a,b)	diversities	
of	plants.	Likewise,	the	rigorous	and	basic	curation	strategies	(circles	
and	triangles	in	Figure	2)	exhibited	a	steep	difference	at	q	=	{0},	which	
decreased	when	using	higher	values	of	q	in	the	majority	of	cases.

3.2.2 | Diversity–environment relationship

The	 interpretation	 of	 the	 alpha-SOM	 content	 relationship	 could	
change	 depending	 on	 the	 data	 curation	 strategy	 used.	 However,	

F I G U R E  3  Mean	diversity	estimated	in	positive	controls	across	
the	256	data	curation	strategies	for	different	diversity	metrics	
(Hill	numbers,	q	=	{0,0.5,1,2}).	Size	of	each	box	(including	whiskers)	
represents	the	sensitivity	of	the	diversity	metrics	to	the	data	
curation	strategy.	The	star	symbol	indicates	the	values	calculated	
from	the	known	species	composition	in	positive	controls,	the	other	
symbols	are	as	in	Figure	2
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the	 alpha-SOM	 content	 relationship	was	more	 robust	when	 using	
q	=	{1,2},	that	is,	a	positive	relation	between	alpha	diversity	and	SOM	
content	was	detected	 independently	of	 the	data	curation	strategy	
used	 (Figure	 2g,h).	 Patterns	 in	 fungi	 diversity	 were	 more	 robust,	
that	 is,	no	 relation	between	 fungi	diversity	and	SOM	content	was	
detected	across	the	different	pipelines.	A	very	weak	positive	rela-
tion	 between	 fungi	 diversity	 and	 SOM	 content	 was	 observed	 for	
q	=	 {1,2}.	 The	 rigorous	 and	 the	basic	 strategies	 led	 to	 very	 similar	
results	for	both	DNA	markers/taxa.

3.2.3 | Distance–decay relationship

In	contrast,	a	significant	distance–decay	relationship	was	always	de-
tected	 from	eDNA	metabarcoding	data	 independently	of	 the	data	
curation	 strategy,	 but	 the	 rate	 at	which	 similarity	 decays	with	 in-
creasing	distance	between	plots	(i.e.	slope)	slightly	changed	across	
strategies.	 While	 very	 similar	 results	 were	 found	 between	 the	

rigorous	 and	 the	 basic	 strategies	 for	 the	 distance–decay	 curve	 of	
plants,	the	slope	of	the	distance–decay	curve	for	fungi	was	very	low	
when	using	a	basic	instead	of	a	rigorous	strategy.

3.3 | Crucial steps of the curation procedure

Overall,	 we	 found	 that	 two	 curation	 steps,	 the	 removal	 of	 PCR	
error	 and	 the	 clustering	 to	 define	 MOTUs,	 explained	 most	 of	
the	 variation	 in	 diversity	 estimates	 across	 data	 curation	 strate-
gies	(more	than	15%	each	and	usually	more	than	40%	in	total)	for	
most	 of	 the	 diversity	metrics	 in	 the	 ecological	 analyses	 and	 for	
both	markers/taxa	(Figure	4	and	Figure	S2.3	in	Appendix	S2).	Also,	
cross-sample	contamination	removal	explained	large	parts	of	the	
variance	 of	 beta	 diversity	 in	 the	 spatial	 partitioning	 of	 diversity	
analyses	 (Figure	 4a,b)	 and	 of	 R-squares	 and	 slopes	 in	 the	 diver-
sity–environment	 (Figure	 4c,d)	 and	 distance–decay	 (Figure	 4e,f)	
relationships	analyses.

F I G U R E  4  Relative	importance	(%	of	variance	explained)	of	the	data	curation	steps	on	the	variability	of	estimated	values	of	the	
spatial	partitioning	of	diversity	components	(a,	b)	and	of	the	parameters	from	the	diversity–environment	(c,	d)	and	distance–decay	(e,	f)	
relationships,	using	Hill	numbers	at	q	=	{1}	(see	Figure	S2.3	for	the	other	q	values).	The	top	row	(a,	c,	and	e)	corresponds	to	the	plant	DNA	
marker	(trnL-P6	loop)	and	bottom	row	(b,	d,	and	f)	to	the	fungi	DNA	marker	(internal	transcribed	spacer	1).	A	model	was	fitted	independently	
for	each	diversity	component	(a,	b)	or	model	parameter	(c-f)	as	response	variable,	with	curation	steps	as	main	effects
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4  | DISCUSSION

Ecologists	 do	 now	 increasingly	 rely	 on	 DNA	metabarcoding	 to	
measure	 biodiversity	 as	 this	 approach	 holds	 the	 promise	 of	 al-
lowing	 testing	 long-standing	 hypotheses	 at	 spatial,	 temporal	
and	taxonomic	scales	that	were	hitherto	inaccessible	with	tradi-
tional	 approaches.	However,	 the	 technique	 is	 still	 hampered	by	
a	 substantial	 amount	of	 technical	 errors	 (Table	1;	Appendix	S1;	 
Bálint	 et	 al.,	 2016;	 Taberlet	 et	 al.,	 2018).	 Here,	 we	 sought	 at	
testing	 the	 sensitivity	 of	 the	 conclusions	 drawn	 from	 different	
ecological	analyses	and	diversity	metrics	to	the	steps	commonly	
used	 to	 curate	DNA	metabarcoding	 data	 from	 such	 errors.	We	
show	 that	 ecological	 conclusions	 had	 varying	degrees	of	 sensi-
tivity	to	the	data	curation	strategies	and	that	the	use	of	metrics	
that	are	 less	sensitive	to	rare	species/MOTUs	(i.e.	Shannon	and	
Simpson	diversity)	leads	to	more	robust	diversity	estimates.	Also,	
we	demonstrated	that	MOTU	clustering,	 removal	of	PCR	errors	

and	removal	of	cross-sample	contaminations	have	a	major	influ-
ence	on	ecological	results,	and	must	always	be	carefully	included	
when	curating	DNA	metabarcoding	data.

The	breadth	of	our	study	makes	our	findings	generalizable	to	
other	systems.	Indeed,	we	found	similar	trends	in	the	sensitivity	
of	 gamma	 and	 alpha	 diversity	 estimates	 for	 both	 our	 observed	
plant	diversity	 and	 the	mock	community	 (Figure	2	vs	Figure	3).	
Second,	our	study	focuses	on	both	plants	and	fungi,	that	widely	
differ	in	their	ecological	properties	and	the	length	of	their	mark-
ers	(on	average	50	bp	for	plants	vs	225	bp	for	fungi).	Still,	while	
they	 do	 not	 share	 the	 same	diversity	 patterns,	 their	 sensitivity	
to	 data	 curation	 strategies	 were	 comparable.	 Furthermore,	 we	
expect	 that	 our	 study	 and	 the	 experimental	 testing	 design	 we	
developed	will	stimulate	further	methodological	studies	(e.g.	for	
tropical	or	aquatic	systems	and	other	markers/taxa)	and	that	they	
will	serve	as	a	guide	to	prioritize	some	curation	steps	when	de-
ciding	for	a	curation	strategy.

F I G U R E  5  Guidelines	to	improve	the	reliability	of	ecological	results	when	analysing	environmental	DNA	metabarcoding	data
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4.1 | Linking methodological choices with 
ecological questions

The	ecological	question(s)	underlying	a	study	should	lead	the	pri-
oritization	of	the	curation	steps	to	be	included	in	the	data	curation	
procedure,	as	well	as	the	selection	of	appropriate	diversity	metrics	
(Figure	5).	 If	the	aim	of	the	study	is	to	estimate	the	spatial	parti-
tioning	of	diversity	(Figure	5a),	it	is	important	to	keep	in	mind	that	
all	 diversity	 components	 are	 biased	 by	 the	 data	 curation	 steps.	
Richness	is	highly	sensitive	to	error	accumulation,	and	was	hence	
the	metric	responding	the	strongest	to	the	data	curation	strategy.	
Consequently,	 if	measuring	richness	 is	crucial	 for	the	study,	and,	
thus,	rare	species	are	important,	the	reliability	of	the	results	must	
be	confirmed	with	additional	analyses.	For	example,	a	more	con-
servative	strategy	(i.e.	keeping	only	MOTUs	present	in	more	than	
a	certain	number	of	PCR	replicates)	can	improve	the	reliability	of	
final	 results,	but	with	 the	 risk	of	missing	species	 represented	by	
few	sequences	in	only	a	few	samples	due	to	the	sampling	process	
occurring	when	preparing	aliquots	of	one	DNA	extract	(Alberdi	et	
al.,	2018).	Verifying	the	pertinence	of	species	detected	by	looking	
in	detail	into	the	taxonomic	assignments	can	also	improve	the	reli-
ability	of	results,	even	though	this	could	be	problematic	for	poorly	
known	 taxa	 with	 incomplete	 reference	 databases	 (Cristescu,	
2014).	Also,	positive	controls	(with	mock	communities)	and	numer-
ous	negative	controls	(extraction,	PCR)	must	be	included	in	all	the	
phases	 of	 sequence	 generations	 to	 ensure	 the	 accuracy	 of	 rich-
ness	estimates	(Bálint	et	al.,	2016).	In	any	cases,	a	certain	degree	
of	 uncertainty	 will	 always	 remain	 because	 of	 the	 complexity	 of	
deciding	objectively	which	sequences	are	genuine	and	which	are	
artefactual.

We	 corroborated	 that	 richness	 is	 a	 very	 sensitive	metric	 and	
is	 always	 overestimated	 (Figure	 2a-c).	 The	 intrinsic	 properties	 of	
eDNA	 can	 inflate	 the	 diversity	 compared	 to	 traditional	 surveys	
because	eDNA	can	persist	 in	 the	environment	or	be	 transported	
through	 space	 depending	 on	 the	 abiotic	 conditions	 (e.g.	 water	
transport,	temperature,	UV,	or	microbial	activity;	Barnes	&	Turner,	
2016).	This	means	that	the	diversity	eDNA	estimates	not	only	en-
compass	 local	 and	current	 species,	but	 also	 species	 that	 are	dor-
mant	 (Hiiesalu	et	 al.,	 2012),	 that	were	present	 in	 the	 recent	past	
(Yoccoz	et	al.,	2012)	or	that	are	present	in	the	vicinity	of	the	studied	
area	(Taberlet	et	al.,	2018).	In	other	words,	the	spatio-temporal	win-
dow	captured	by	local	eDNA	diversity	estimates	may	be	larger	than	
that	captured	by	traditional	approaches,	a	property	that	can	be	de-
sirable	or	not	depending	on	the	question	addressed.	Distinguishing	
this	feature	from	methodological	bias	remains	at	this	stage	difficult,	
as	it	may	look	like	cross-contamination,	and	also	because	the	cycle	
of	eDNA	in	the	environment	remains	poorly	understood	(Barnes	&	
Turner,	2016).	However,	 it	 is	crucial	to	account	for	eDNA	proper-
ties	when	interpreting	richness-based	studies	to	avoid	meaningless	
conclusions.

When	the	detection	of	rare	species	is	not	of	importance,	Hill	
numbers	are	a	promising	solution	to	increase	the	robustness	of	
results	and	to	avoid	the	inflation	of	diversity	estimates.	The	Hill	

numbers	approach	has	been	already	proposed	to	better	estimate	
microbial	diversity	(e.g.	Bálint	et	al.,	2016;	Chiu	&	Chao,	2016),	
and	we	corroborate	its	efficiency	for	estimating	plant	diversity	
and	 potentially	 other	 macro-organisms	 from	 metabarcoding	
data.	 Both,	 Shannon	 and	 Simpson	 diversity	 measures	 led	 to	 a	
satisfying	representativeness	of	the	sampling	unit	diversity	and	
were	robust	to	the	different	data	curation	strategies	tested	here,	
but	Shannon	diversity	was	less	biased.	In	the	same	way	that	rich-
ness	 overestimated	 diversity,	 Simpson	 diversity	 tended	 to	 un-
derestimate	 diversity.	 Diversity	measures,	 other	 than	 richness	
(i.e.	 q	 >	 0),	 account	 for	 species/MOTUs	 abundance	 structure.	
The	 factors	 determining	 species’	 abundances	 in	 a	 community	
are	 not	 the	only	 factors	 determining	 the	MOTUs’	 abundances.	
These	 correspond	 to	 a	 pool	 of	 DNA	 fragments	 from	 current,	
dormant,	 or	 past	 populations	 (e.g.	 microbes)	 down	 to	 one	 (or	
part	of	one)	single	multicellular	 individual	 that	are	besides	am-
plified	 by	 PCR.	 Consequently,	 a	 highly	 abundant	 MOTU	 does	
not	necessarily	imply	that	more	individuals	of	the	corresponding	
taxon	were	present,	 it	could	also	be	due	to	for	example,	higher	
body	mass,	 larger	root	systems,	or	slower	DNA	decomposition.	
Besides,	given	the	exponential	nature	of	the	PCR	amplification,	
abundant	taxa	become	even	more	abundant	in	this	step	and	this	
could	 lead	 to	 an	underestimation	of	 Simpson	diversity.	Hence,	
interpreting	 MOTUs	 frequency	 directly	 as	 species	 abundance	
can	be	highly	misleading,	 and	estimating	 species	 abundance	 in	
terms	 of	 number	 of	 individuals	 or	 biomass	 from	 eDNA	 is	 still	
a	 major	 challenge	 in	 the	 field	 (Deiner	 et	 al.,	 2017).	 However,	
MOTUs	frequency	correlates	to	a	certain	extent	to	species	rel-
ative	abundance,	and	more	importantly,	errors	are	usually	rarer	
than	 genuine	 sequences	 (reviewed	 in	 Taberlet	 et	 al.,	 2018).	
Accordingly,	 Shannon	 diversity	 from	 eDNA	 samples	 appears	
here	as	a	balanced	diversity	measure,	robust	to	the	data	curation	
strategy,	and	hence,	to	rare	errors.	This	can	be	generalized	to	all	
ecological	analyses	tested	in	this	study.	Given	these	results,	we	
argue	that	using	a	complete	diversity	profile	(for	example,	with	
q	 values	 between	 0	 and	 2)	may	 allow	 improving	 confidence	 in	
diversity	 estimates	 from	 eDNA	 data	while	 getting	 information	
about	MOTUs	structure	of	abundances.

Another	important	outcome	of	our	assessment	is	that	despite	
the	above-mentioned	limits,	robust	conclusions	can	be	obtained	
from	eDNA	metabarcoding	data	if	the	aim	is	to	link	local	diversity	
(alpha)	 or	 community	 similarity	 (beta)	 to	 environmental	 or	 geo-
graphic	 gradients	 (Figure	 5b).	 Changes	 in	 local	 diversity	 across	
an	environmental	gradient	were	more	sensitive	to	the	data	cura-
tion	strategies	than	the	distance–decay	relationship.	Our	results	
thus	 corroborate	 other	 studies	 that	 demonstrated	 the	 robust-
ness	of	beta	diversity	to	bioinformatics	analyses	(Botnen,	Davey,	
Halvorsen,	 &	 Kauserud,	 2018;	 Deiner	 et	 al.,	 2017).	 However,	
the	 slope	 of	 the	 distance–decay	 was	 always	 underestimated	
compared	 to	 that	 obtained	 from	 observed	 plant	 diversity.	 On	
one	 hand,	 this	 could	 result	 from	 a	 lack	 of	 phylogenetic	 resolu-
tion	 of	 the	 genetic	marker	 used	 here,	which	 is	 relatively	 short.	
In	 alpine	 ecosystems,	 it	 is	 common	 to	 see	 abundant	 species	
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replaced	 by	 closely	 related	 species	 across	 an	 elevational	 gra-
dient	 (Chalmandrier	 et	 al.,	 2015).	 A	 genetic	 marker	 with	 a	 low	
phylogenetic	 resolution	would	not	detect	 these	changes	and	as	
a	consequence,	gamma	and	beta	diversities	would	be	underesti-
mated.	However,	 the	 underestimation	 of	 gamma	 diversity	 rela-
tive	to	alpha	diversity	is	not	strong	enough,	suggesting	that	other	
reasons	may	also	explain	the	lower	slope	of	the	distance–decay	
curve	 for	 eDNA-based	 plant	 diversity.	 Botanical	 surveys	 used	
in	 this	study	represent	 just	a	 local	 snapshot	of	 the	visible	plant	
diversity	at	 the	 sampling	 time,	 and,	unlike	 the	eDNA	approach,	
may	 miss	 species	 with	 an	 offset	 phenology	 or	 present	 only	 in	
the	vicinity	of	 the	sampling	area	 (Hiiesalu	et	al.,	2012).	We	can	
expect	 that	 the	 larger	spatio-temporal	window	captured	by	 the	
eDNA	metabarcoding	approach	would	thus	result	in	higher	sim-
ilarity	among	the	sites,	which	could	be	tested	by	 increasing	the	
botanical	sampling	effort	across	seasons	and	years	to	reduce	bo-
tanical	surveys	biases	related	to	the	differentiated	phenology	of	
the	species.

4.2 | Crucial steps for designing a careful 
curation protocol

While	we	included	here	curation	steps	that	are	common	to	most	
bioinformatic	 tools	 (e.g.	QIIME,	USEARCH),	we	 acknowledge	 that	
algorithms	within	oBItools	have	their	own	particularities,	as	each	
of	the	other	packages,	and	that	the	results	obtained	here	may	not	
be	directly	transferable.	However,	we	expect	that	the	differences	
from	a	 specific	 software	 are	minor	 compared	 to	 the	differences	
caused	 by	 the	 choice	 of	 specific	 curation	 steps	 (Bonder,	 Abeln,	
Zaura,	&	Brandt,	 2012).	 In	 general,	we	 corroborate	 past	 studies	
concluding	that	the	clustering	threshold	used	for	defining	MOTUs	
leads	 to	 significant	 changes	 in	 diversity	 estimates	 and	 that	 this	
is	especially	 important	 for	alpha	and	gamma	diversities,	but	 less	
so	 for	 beta	 diversity	 (Botnen	 et	 al.,	 2018;	 Brown,	 Veach,	 et	 al.,	
2015;	Kunin	et	al.,	2010).	Additionally,	we	found	that	PCR	errors	
and	 cross-sample	 contaminations	 are	 critical	 steps	 and	 that	 in-
cluding	them	leads	to	more	realistic	spatial	diversity	patterns	and	
estimates	of	diversity	 components.	These	 two	 steps	 correct	 the	
diversity	at	local	levels	(i.e.	sample	level)	and	are	especially	impor-
tant	when	comparing	communities.	To	our	knowledge,	this	is	the	
first	study	testing	in	a	systematic	way	the	effect	of	these	curation	
steps	on	results	across	different	types	of	ecological	analyses.	We	
recommend	 carefully	 choosing	 the	 MOTU	 clustering	 threshold,	
for	 example,	 empirical	means	 can	 be	 estimated	 for	 each	marker	
or	targeted	taxa	using	in	silico	methods	with	reference	databases	
(Taberlet	et	al.,	2018)	or	experimentally,	using	mock	communities	
(Brown,	Veach,	et	al.,	2015),	and	considering	removing	PCR	errors	
and	cross-sample	contaminations	when	designing	a	curation	pro-
tocol	to	study	biodiversity	patterns.	Furthermore,	a	rigorous	data	
curation	 strategy	 including	 all	 the	 curation	 steps	 of	 the	 present	
study	 allowed	 obtaining	 accurate	 diversity	 estimates	 and	 diver-
sity–environment	and	distance–decay	relationships.	This	demon-
strates	that	the	other	curation	steps	should	not	be	neglected.
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