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Abstract
Aim: Environmental DNA (eDNA) is increasingly used for analysing and modelling 
all‐inclusive biodiversity patterns. However, the reliability of eDNA‐based diversity 
estimates is commonly compromised by arbitrary decisions for curating the data 
from molecular artefacts. Here, we test the sensitivity of common ecological analy-
ses to these curation steps, and identify the crucial ones to draw sound ecological 
conclusions.
Location: Valloire, French Alps.
Taxon: Vascular plants and fungi.
Methods: Using soil eDNA metabarcoding data for plants and fungi from 20 plots 
sampled along a 1000‐m elevational gradient, we tested how the conclusions from 
three types of ecological analyses: (a) the spatial partitioning of diversity, (b) the di-
versity–environment relationship, and (c) the distance–decay relationship, are robust 
to data curation steps. Since eDNA metabarcoding data also comprise erroneous 
sequences with low frequencies, diversity estimates were further calculated using 
abundance‐based Hill numbers, which penalize rare sequences through a scaling pa-
rameter, namely the order of diversity q (Richness with q = 0, Shannon diversity with 
q ~ 1, Simpson diversity with q = 2).
Results: We showed that results from different ecological analyses had varying 
degrees of sensitivity to data curation strategies and that the use of Shannon and 
Simpson diversities led to more reliable results. We demonstrated that molecular op-
erational taxonomic unit clustering, removal of polymerase chain reaction errors and 
of cross‐sample contaminations had major impacts on ecological analyses.
Main conclusions: In the Era of Big Data, eDNA metabarcoding is going to be one 
of the major tools to describe, model and predict biodiversity in space and time. 
However, ignoring crucial data curation steps will impede the robustness of several 
ecological conclusions. Here, we propose a roadmap of crucial curation steps for dif-
ferent types of ecological analyses.
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1  | INTRODUC TION

Understanding the structure and distribution of biodiversity 
across space and time is a critical goal in ecology. The develop-
ment of environmental DNA (eDNA) metabarcoding approaches 
now facilitate the monitoring of species at biogeographical scales 
and across the whole tree of life (Drummond et al., 2015; Taberlet, 
Coissac, Pompanon, Brochmann, & Willerslev, 2012). It is now pos-
sible to tackle unresolved questions that could not be addressed 
with traditional biodiversity surveys so far. For example, eDNA‐
based biodiversity studies have enabled the spatial partitioning of 
diversity (i.e. gamma, alpha and beta diversity) of so far elusive 
taxa in both terrestrial and marine environments (e.g. marine vi-
ruses and protists, soil fungi and bacteria), thereby improving our 
understanding of their community assembly processes and of 
their role in structuring communities and networks at global scales 
(e.g. Lima‐Mendez et al., 2015; Tedersoo et al., 2014). However, 
while the eDNA metabarcoding approach promises substantial 
advances in macroecology and multi‐taxa studies, it requires an 
appropriate and careful processing of the tremendous amount of 
sequences generated to draw robust and ecologically meaningful 
conclusions.

Indeed, the analyses of diversity patterns (e.g. alpha‐ and beta‐
diversity; Whittaker, 1960) across space and of the processes gener-
ating these patterns are traditionally based on community matrices 
representing the presence/abundance of species across samples. In 
eDNA metabarcoding surveys, the data consist of hundreds to mil-
lions of DNA sequencing reads from the hundreds to thousands of 
species co‐occurring within samples. Using bioinformatics, these 
data are then transformed in community matrices, but with species 
replaced by DNA sequences, and species abundance replaced by a 
number of sequencing reads. While, in an ideal world, one sequence 
should correspond to a single species, in practice, it can correspond 
to several species if the DNA region has a low taxonomic resolu-
tion, and more critically, one species can be represented by tens to 
thousands of variant sequences. Amongst those variants, a few are 
biologically meaningful (e.g. intraspecific variability), but the large 
majority of them are technical errors produced at the different stages 
of the laboratory treatments, from DNA extraction to sequencing 
(see Table 1 and Appendix S1; Bálint et al., 2016; Taberlet, Bonin, 
Zinger, & Coissac, 2018). These errors can represent more than 70% 
of the sequences in raw metabarcoding datasets, and have usually 
low frequencies (e.g. singletons; Brown, Veach, et al., 2015). If inter-
preted as genuine, these sequences can, therefore, inflate diversity 
by several orders of magnitude and lead to flawed ecological inter-
pretations (Kunin, Engelbrektson, Ochman, & Hugenholtz, 2010). 
Molecular protocols are thus applied to reduce and/or control spe-
cific technical errors accumulated during the data production. For 
example, replicated polymerase chain reaction (PCR) amplification 
and use of negative controls allow identifying artefactual sequences 
resulting from random errors introduced by DNA polymerases or 
sequencers, as well as reagent contaminants (de Barba et al., 2014). 
However, error rates remain high even with the most stringent 

molecular protocols (Bálint et al., 2016; Taberlet et al., 2018), which 
has led to the development of bioinformatics algorithms aiming at 
detecting errors known to occur during data generation (e.g. PCR er-
rors or chimeric sequences). Also, most of these tools require spec-
ifying thresholds and parameter values, which are usually based on 
arbitrary decisions and visual assessments. An example is the clas-
sification of sequence variants into MOTUs (Molecular Operational 
Taxonomic Units) based on the similarity of sequences. While this 
step is critical because MOTUs are used as a proxy for species in 
the majority of DNA metabarcoding studies (Appendix S1), MOTUs 
are commonly defined using a 97% sequence similarity threshold, 
a value historically defined as the similarity level of full‐length 16S 
rRNA barcodes below which bacterial strains necessarily belong to 
different species (Stackebrandt & Goebel, 1994). However, the opti-
mal threshold value to define MOTUs depends on the focal taxa and 
polymorphism/length of the DNA marker used (e.g. Brown, Chain, 
Crease, MacIsaac, & Cristescu, 2015; Kunin et al., 2010). It also de-
pends on the PCR/sequencing error rate, which varies across molec-
ular protocols, and depends on the amount of target DNA: when it 
is low, each genuine DNA fragment has a higher probability of being 
amplified at each PCR cycle (Taberlet et al., 2018).

Hence, using DNA metabarcoding requires making several 
methodological choices. Beyond those related to molecular proto-
cols and bioinformatics software, one of the most critical choice is 
to decide which data curation steps to include in the curation pro-
cedure. Indeed, each step directly affects the community matrix 
obtained, by influencing the final list of MOTUs and/or their fre-
quencies within samples. Previous methodological studies have thus 
underlined the importance of data curation steps on the reliability 
of ecological analyses and provided guidelines for bioinformatics 
decision‐making (e.g. Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; 
Schloss, 2010). However, most of these studies tested the influence 
of data curation procedures on a single metric or ecological ques-
tion. However, questions related to local community richness can be 
very sensitive to errors (Flynn, Brown, Chain, MacIsaac, & Cristescu, 
2015), while comparisons of communities’ composition might be less 
affected (Leray & Knowlton, 2015; Taberlet et al., 2018). In addition, 
most studies have focused on microbial communities (bacteria or 
fungi), and few have addressed such questions to macro‐organisms. 
Finally, most published tests have so far relied on mock communities 
(i.e. positive controls) usually made of DNA extracts for few known 
species. While mock communities are useful to identify errors and 
estimate error rates, the conclusions cannot easily be translated to 
realistic environments with rich and complex communities (Alberdi 
et al., 2018).

Here, we address how methodological choices related to the 
DNA metabarcoding data curation strategy influence the results 
for different types of ecological analyses and their related diversity 
metrics. We used soil eDNA data from an elevational gradient in the 
French Alps, and focused on plants and soil fungi to represent both 
macro‐ and microorganisms, as well as DNA markers with different 
length (Table 2). Patterns of plant diversity have been extensively 
studied in this area (e.g. Chalmandrier, Münkemüller, Lavergne, & 
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Thuiller, 2015) and serve as a good reference to evaluate the results 
estimated from eDNA metabarcoding data. We subjected these data 
to 256 different data curation strategies, which correspond to all 
possible combinations of seven critical data curation steps. We then 
tested how the curation strategies influence the inferences drawn 
from three different ecological analyses: (a) a spatial partitioning 
of diversity (i.e. gamma, alpha and beta diversities) to estimate the 
regional and local diversity of the gradient, (b) a diversity–environ-
ment relationship, to analyse the influence of environment on the 
local community diversity (alpha), and (c) a distance–decay analysis, 
to evaluate if similarities between communities (beta) decrease with 
increasing geographic distances. To this end, we first checked the ac-
curacy of eDNA metabarcoding data in detecting ecological patterns 

by comparing the eDNA‐based diversity patterns with the expected 
values based on mock communities and traditional botanical surveys 
(only available for plants). Second, we did an overall sensitivity anal-
ysis to test the sensitivity of ecological results to the data curation 
strategy. Finally, with a variance partitioning analysis we identified 
the crucial curation steps (i.e. those that introduced more variance to 
the results) to include or consider in the curation procedure.

To achieve these objectives, we built on Hill numbers (Hill, 1973) 
to estimate diversity, which unifies mathematically the best known 
diversity measures in ecology through a unique parameter q (i.e. 
Richness at q = 0, the exponential of Shannon entropy at q ~ 1 and 
the inverse of Simpson at q = 2). In this framework, the weight of the 
rare species decreases when increasing the value of the parameter 

TA B L E  1  Brief description of classical technical errors occurring in DNA metabarcoding data, the associated data curation steps tested in 
the present study and the curation methodology

Target error Definition Curation step (abbreviation) and methodology

Mixed Common obvious molecular/sequencing 
errors such as mispaired reads, sequences 
with ambiguous bases, that are too short or 
singletons.

Common basic filtering:
Removal of sequences meeting these criteria. This step is not tested 
here and has been applied systematically.

PCR error Base misincorporation by the DNA polymerase 
during the PCR amplification.

PCR errors removal (PCR error):
Identification of PCR errors using a model‐based classification of 
sequences based on their similarities and abundances. The model 
reflects the accumulation of base misincorporation across PCR 
cycles, where genuine sequences remain more abundant than their 
respective errors.

Highly spurious 
sequences

Chimeras from multiple parents, primers di-
mers, etc. or sequences from highly degraded 
DNA fragments that largely differ from any 
known sequence.

Highly spurious sequences removal (spurious):
Removal of sequences of whose similarity with their closest match 
in public reference databases is below 70% (plants) or 50% (fungi).

Chimeras Sequences obtained from the recombination 
of two or more parent sequences

Chimera detection and removal (chimeras):
Removal of sequences that have a high probability to be a subse-
quence from other, more abundant sequences in the dataset.

Remaining PCR errors/
Biological variation

Sequences from the same species either 
resulting from a PCR error that could not be 
filtered above, or from intraspecific variability

MOTU clustering (clustering):
Clustering of sequences into MOTUs on the basis of their pairwise 
similarity. Here done at different sequence similarity thresholds.

External contaminants DNA coming from an external source other 
than the biological sample

Reagent contaminants cleaning (reagent):
Removal of sequences that are more abundant in negative controls 
relative to biological samples because of the absence of other com-
peting DNA fragments during the amplification process.

Cross‐contaminations 
or tag‐jumps

Genuine sequences present in a sample where 
actually absent, either due to cross‐contami-
nations at the bench, or due to tag‐jumps oc-
curring during the library preparation or the 
sequencing, that is, switches of nucleotidic 
labels used to assign the sequencing reads 
to their samples. These contaminants are 
usually of much lower abundance than their 
sample of origin.

Cross‐sample contamination curation (cross):
If the abundance of a given MOTU in a given sample is below 0.03% 
of the total MOTU abundance in the entire dataset, it is considered 
as absent in this sample.

Dysfunctional PCRs PCRs that are too different in comparison with 
their technical replicates.

Dysfunctional PCR removal (DysPCR):
Removal of PCR replicates from a single biological sample that are 
more dissimilar to each other in MOTUs composition and structure 
than are the PCR obtained from other biological sample.

Abbreviations: MOTU, molecular operational taxonomic unit; PCR, polymerase chain reaction. 
Note: Target errors make reference to the errors described further in Appendix S1. See also Table S2.4 for more details on the curation steps used in 
this study.
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q. This feature is particularly relevant for DNA metabarcoding data, 
since artefactual sequences are usually rare compared to the genu-
ine ones (Bálint et al., 2016; Taberlet et al., 2018). Hill numbers can 
thus penalize these rare sequences at different degrees: q = 1 is the 
order of diversity that levels the MOTUs exactly according to their 
relative abundances, while q < 1 overweigh rare MOTUs and q > 1 
overweight abundant MOTUs. As a result, we could expect that di-
versity measures that give less importance to rare sequences (i.e. 
q > 0) are less sensitive to the data curation strategy, because they 
penalize the artefactual sequences targeted by the curation steps.

2  | MATERIAL S AND METHODS

2.1 | Sample data

Soil cores were sampled at 10 different elevations equally distrib-
uted across an elevational gradient in the northern French Alps 
(from 1,748  m to 2,725  m a.s.l.) in 2012. At each elevation, two 
10 m × 10 m plots were selected (20 plots in total). In each plot, 
21 soil cores distributed along the two diagonals were sampled. Soil 
corers were cleaned and sterilized between each sample collection. 
Extracellular DNA was then extracted twice, from 15 g as described 
in Taberlet, Prud’homme, et al. (2012). Aboveground plant commu-
nity information (hereafter observed plant diversity) was obtained in 
each plot with a botanical survey conducted during the annual pro-
ductivity peak (mid‐July) using the Braun‐Blanquet cover‐abundance 
scale (Braun‐Blanquet, 1946).

2.2 | Molecular analyses

eDNA‐based plant diversity was estimated by targeting a vascu-
lar plant‐specific marker (P6 loop of chloroplast trnL, Table 2). It 
targets highly conserved priming sites across vascular plants and 
amplifies a short region, which is desired when working with de-
graded DNA. eDNA‐based fungal diversity was assessed using the 
nuclear ribosomal Internal Transcribed Spacer 1 (ITS1; Table 2). 
For each DNA extract, PCRs were run in duplicate leading to four 
technical replicates per core sample and DNA marker. PCR ther-
mocycling conditions and mixture composition and purification 
can be found in Table S2.1 in Appendix S2. To control for poten-
tial contaminants, extraction and PCR blank controls were in-
cluded in the experiment. To control for false positives caused by 

tag‐switching events, we also defined “sequencing blank controls”, 
that is, tag combinations not used in our experimental design, but 
that could be formed at the library preparation or sequencing 
stage (See Appendix S1). We also included positive controls in this 
experiment, which consisted of a mix of DNA extracted from 16 
plant species. For this, genomic DNA was extracted from leaf tis-
sue using the DNeasy Plant Kit (Qiagen GmbH), quantified, diluted 
at different concentrations for each species and mixed to form 
a mock community (species composition provided in Table S2.2, 
Appendix S2). Positive controls allow for quantification of techni-
cal biases introduced by PCR and sequencing. Illumina sequencing 
was performed on a HiSeq platform (2 × 100 bp paired‐end reads) 
for plant amplicons and on a MiSeq (2 × 250 bp paired‐end reads) 
for fungi amplicons, both using the paired‐end technology.

2.3 | Bioinformatics analyses

The Illumina sequencing paired‐end reads (Table S2.3) were pre-
processed for each marker with three procedures: (a) assembling 
forward and reverse paired‐end reads based on their overlapping 
3’‐end sequences, (b) assigning each read to its respective sample 
(demultiplexing) and (c) combining strictly identical sequences into 
unique DNA sequences while keeping information on their abun-
dance (number of sequencing reads) in each sample (dereplication). 
Then we systematically processed the dereplicated sequences fol-
lowing common data curation procedures that included removal 
of sequences with low paired‐end alignment scores, removal of 
singletons, removal of short sequences and removal of sequences 
containing ambiguous bases (not to be confounded with a phred‐
quality filtering; Figure 1a; Table 1; Table S2.4). Singletons are 
sequences that occur only once in the whole dataset and many 
studies agree that their removal is necessary to reduce data com-
plexity/computational time and because they mostly correspond 
to molecular artefacts that may inflate disproportionately diversity 
indices (Brown, Veach, et al., 2015; Kunin et al., 2010). In our data, 
they represented 70%–80% of the total number of sequences but 
only 1%–15% of the total number of sequencing reads for plants 
and fungi respectively (Table S2.3 in Appendix S2). We finally as-
signed each remaining sequence to a taxonomic clade with the 
ecotag command from the OBITools software package (Boyer  
et al., 2016) that uses a lowest common ancestor algorithm for the 
assignment, and the EMBL database version 133 as a reference.

TA B L E  2  Characteristics of the DNA markers used to estimate eDNA‐based diversity in this study

DNA Marker
Target 
taxa Forward primer (5ʹ−3ʹ) Reverse primer (5ʹ−3ʹ)

Length [range] 
(bp) References

P6 loop of the chloroplast 
trnL intron

Vascular 
plants

g:GGGCAATCCTGAGCCAA h: CCATTGAGTCTCTG 
CACCTATC

48 [10–220] Taberlet et al., 2007

Nuclear ribosomal DNA 
Internal Transcribed 
Spacer 1 (ITS1)

Fungi ITS5: GGAAGTAAAAGTCG 
TAACAAGG

Fung02:CCAAGAGATC 
CGTTGYTGAAAGTK

226 [68–919] White, Bruns, Lee, 
& Taylor, 1990; 
Taberlet et al., 
2018
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Next, data from each marker were processed following a range 
of different data curation strategies to test the sensitivity of eco-
logical analyses to different methodological choices (Figure 1b). 
To do so, we selected seven important steps: (a) removal of PCR 
errors, (b) filtering of highly spurious sequences, (c) removal of 

chimeras, (d) sequence classification into MOTUs (MOTU cluster-
ing), (e) removal of reagent contaminants, (f) cross‐sample contam-
ination cleaning and (g) dysfunctional PCRs filtering (see Table 1; 
Appendix S1; Table S2.4 in Appendix S2 for target errors and step 
descriptions). Curation steps were either kept or excluded, and 

F I G U R E  1  Workflow of the sensitivity analysis. (a) Raw data are curated with basic filtering steps for each DNA marker (plants: trnL‐P6 
loop, fungi: internal transcribed spacer 1). (b) Filtered data are processed using seven curation steps that were varied or removed in each 
data curation strategy making a total of 256 possible combinations. As a result, 256 community matrices are obtained per DNA marker 
and used to (c) conduct three types of ecological analyses. The range of values obtained for each ecological analysis and diversity metric 
represents the variance due to the data curation strategy
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were always performed in the same order in each data curation 
strategy. For the MOTU clustering step, when kept, three cluster-
ing thresholds were tested (1, 2 or 3 mismatches allowed between 
pairwise aligned sequences). We used here raw mismatches rather 
than percentages of dissimilarities because the DNA markers used 
are short (< 100 bp) and/or highly polymorphic in length. Using the 
percentages of dissimilarity in this case would penalize more little 
differences when alignments are short than when they are long.

All different possible combinations of these curation strategies 
were implemented (Figure 1b). Most of the curation steps were 
done using the software OBITools (Boyer et al., 2016). Chimera 
detection was performed with UCHIME (Edgar, Haas, Clemente, 
Quince, & Knight, 2011) and we used Sumaclust (Mercier, Boyer, 
Bonin, & Coissac, 2013) for MOTU clustering due to its ability in 
handling large datasets and its flexibility for defining the clustering 
threshold (see Table S2.4 for more details on the algorithm). After 
data curation, PCR replicates were summed and standardized by 
the total number of reads in each core sample. We then pooled 
the samples for each of the 20 plots to obtain a single community 
per plot. For this, MOTUs abundance (already standardized by the 
number of reads) were summed and standardized by the number 
of samples in each plot. For each of the data curation strategies, 
we obtained a community matrix with rows representing plots and 
columns representing all the MOTUs obtained after curation, which 
we used here as a proxy for species. Therefore, our sensitivity anal-
ysis was conducted on a total of 256 matrices for each DNA marker 
(Figure 1c).

2.4 | Ecological questions

We tested the sensitivity of the results for three common ecologi-
cal analyses to the above‐mentioned data curation strategies using 
MOTUs as equivalent of species:

2.4.1 | Spatial partitioning of diversity

We used the multiplicative diversity partitioning approach 
(Whittaker, 1960) to analyse gamma (here the diversity across 
the entire gradient), alpha (diversity of local communities) and 
beta diversity (diversity between communities). In the Hill num-
bers framework, gamma diversity is the effective number of spe-
cies in the pooled meta‐community (i.e. across all plots), alpha 
diversity is the effective number of species per community (i.e. 
plot) and beta diversity is the effective number of communities, 
calculated as the ratio of gamma diversity to alpha diversity. We 
followed Chao, Chiu, and Jost, (2014)’s definition where beta di-
versity is independent of alpha and ranges from 1 (all communi-
ties are identical) to the total number of communities N (when 
N  =  20 all communities are different). We limited our study to 
taxonomic diversity, because the DNA markers we used here 
are rather short (Table 2) and are highly variable in length, which 
make them not suitable for inferring accurate phylogenetic rela-
tionships at the scale of the community.

2.4.2 | Diversity–environment relationship 
(alpha ~ soil organic matter content)

Diversity is often linked to abiotic drivers, and a common ecological 
research question is how alpha diversity changes along an environ-
mental gradient. Here, we fitted a linear model to determine changes 
in alpha diversity along a gradient of soil organic matter content 
(SOM content), known to be a strong predictor of diversity changes 
in the study site (Ohlmann et al., 2018).

2.4.3 | Distance–decay relationship 
(similarity ~ geographic distance)

Species’ distributions and resulting diversity patterns are con-
trolled by both species dispersal abilities and spatial turnover of 
environmental conditions (Tuomisto, 2003). One hypothesis is 
thus that spatially distant communities are more different than 
close communities (“distance‐decay”, Green et al., 2004; Tuomisto, 
2003). We used the Jaccard‐type overlap (UqN) as a measure of 
similarity (Chao et al., 2014) and we fitted a linear model using the 
log transformation of similarity against the geographic distance to 
evaluate the distance–decay. The geographic distance between 
plots was calculated with Euclidean distances using the elevation 
values of the plots.

For each DNA marker (plant and fungi), we calculated the 
gamma, alpha and beta diversities (spatial partitioning of diversity) 
for each of the 256 community matrices obtained from the differ-
ent metabarcoding data curation strategies using Hill numbers with 
values of q = {0,0.5,1,2}. For the diversity–environment and the dis-
tance–decay relationships, we fitted our models to each community 
matrix and extracted the slopes and the R‐squares of the models. 
Alpha diversity and community similarity were calculated using Hill 
numbers with values of q = {0,1,2}.

2.5 | Sensitivity analyses

2.5.1 | Detectability of ecological patterns

To test the ability of eDNA metabarcoding data and of the dif-
ferent data curation strategies to detect ecological patterns we 
(a) evaluated the completeness of the sampling unit (plot), and (b) 
used the observed plant diversity and positive controls as refer-
ences to evaluate the accuracy of the ecological results. We ac-
knowledge that eDNA‐based diversity is expected to slightly 
diverge from observed diversity (see discussion) but they should 
follow similar trends (Hiiesalu et al., 2012; Träger, Öpik, Vasar, & 
Wilson, 2019; Yoccoz et al., 2012). The sampling completeness of 
each plot was evaluated with rarefaction curves for the different 
orders of diversity q = {0,1,2} and for three data curation strate-
gies with varying filtering stringency: a “no data curation” strategy 
with no curation step at all; a “basic curation” strategy including 
only the chimera removal and a traditional clustering threshold 
allowing three mismatches between clustered sequences and, a 
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“rigorous curation” strategy, including all the curation steps con-
sidered here and a clustering threshold allowing two mismatches.

2.5.2 | Overall sensitivity analyses

To test the sensitivity of the results for the different ecological anal-
yses and their related diversity metrics to the data curation strategy, 
we used the variance of each diversity estimate, obtained across the 
256 community matrices and for each marker (Figure 1c). For the 
diversity–environment and the distance–decay relationships, we 
looked at the variance in the slope and the R‐square of the linear 

regression across the 256 models for each marker. In addition, we 
used “the rigorous” and “the basic” curation strategies explained 
above, that correspond to commonly used pipelines, to exemplify 
how results can differ between studies.

2.5.3 | Identifying the crucial steps of the 
curation procedure

To identify the crucial steps we did a variance partitioning analysis 
for each diversity metric. For the spatial partitioning of diversity, the 
diversity metrics (gamma, alpha and beta diversities) were used as 

F I G U R E  2  Estimated values of the spatial partitioning of diversity components (a‐f), of the regression parameters from the diversity–
environment (g‐j), and of distance–decay (k‐n) relationships across the 256 curation strategies for different diversity metrics (Hill numbers, 
q = {0,0.5,1,2}). The top row (a‐c, g, h, k, and l) corresponds to the plant DNA marker (trnL‐P6 loop) and bottom row (d‐f, i, j, m, and n) to the 
fungi DNA marker (internal transcribed spacer 1). Size of each box (including whiskers) represents the sensitivity of the diversity metrics or the 
model parameters to the data curation strategy. The circle and the triangle symbols indicate the values obtained from a rigorous and a basic 
curation strategy respectively. The star symbol indicates the values calculated from botanical survey (only represented for plants, top row)
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the response variable in function of the curation steps. For the di-
versity–environment and the distance–decay relationships we used 
the slope and the R‐square of the models as the response variable in 
function of the curation steps. Variance partitioning analyses were 
done with the R package relaimpo (Grömping, 2006).

3  | RESULTS

3.1 | Detectability of ecological patterns with eDNA 
metabarcoding data

3.1.1 | Sampling completeness of the plots

For both markers/taxa, the total diversity was well represented by 
the number of reads sequenced, when considering the diversity at 
q = {1,2} (Figure S2.1 and S2.2 in Appendix S2). At q = {0}, the rarefac-
tion curve rarely saturated, but we obtained more asymptotic curves 
when increasing the stringency of the data curation strategy.

3.1.2 | Spatial partitioning of diversity

Overall, we found that alpha diversity estimates at q =  {1,2} were 
closer to the observed plant diversity (Figure 2b) and to the positive 
controls composition (Figure 3) than at q = {0,0.5}. However, diver-
sity at q =  {1} slightly underestimated gamma (Figure 2a) and beta 
(Figure 2c) while all diversity components were underestimated for 
most curation strategies at q = {2} (Figure 2a‐c). Richness (q = 0) was 
always overestimated. While we obtained very accurate results for 
diversity at q = {0.5} when using a rigorous pipeline, a basic pipeline 
led to a substantial overestimation.

3.1.3 | Diversity–environment relationship

While the expected positive slope was in most cases detected 
(Figure 2g) and its value was on average very similar to the one ob-
tained for observed plant diversity, especially when using a rigorous 
pipeline, it was highly overestimated for some data curation strate-
gies at q = {0,1}.

3.1.4 | Distance–decay relationship

The expected negative slope of the distance–decay curve was al-
ways detected (Figure 2k). However, independently of the data cura-
tion strategy, the slope was always underestimated compared to the 
curve calculated with observed plant diversity. Also, the R‐square of 
the distance–decay relationship was reduced at q = {2} (Figure 2l).

3.2 | Overall sensitivity of ecological questions and 
diversity metrics

The results of different ecological questions had varying degrees 
of sensitivity to the data curation strategies. While the estimates in 
all ecological questions were highly sensitive (width of the boxplots 

in Figure 2), the main signal of the diversity–environment and the 
distance–decay relationships was consistent across most curation 
strategies.

3.2.1 | Spatial partitioning of diversity

Sensitivity of gamma, alpha and beta diversity decreased for higher 
values of q, that is, weighing down rare MOTUs (Figure 2a‐f). Diversity 
estimates at q = {0} were the most sensitive, with more than two or-
ders of magnitude for both gamma and alpha (Figure 2a,b) diversities 
of plants. Likewise, the rigorous and basic curation strategies (circles 
and triangles in Figure 2) exhibited a steep difference at q = {0}, which 
decreased when using higher values of q in the majority of cases.

3.2.2 | Diversity–environment relationship

The interpretation of the alpha‐SOM content relationship could 
change depending on the data curation strategy used. However, 

F I G U R E  3  Mean diversity estimated in positive controls across 
the 256 data curation strategies for different diversity metrics 
(Hill numbers, q = {0,0.5,1,2}). Size of each box (including whiskers) 
represents the sensitivity of the diversity metrics to the data 
curation strategy. The star symbol indicates the values calculated 
from the known species composition in positive controls, the other 
symbols are as in Figure 2
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the alpha‐SOM content relationship was more robust when using 
q = {1,2}, that is, a positive relation between alpha diversity and SOM 
content was detected independently of the data curation strategy 
used (Figure 2g,h). Patterns in fungi diversity were more robust, 
that is, no relation between fungi diversity and SOM content was 
detected across the different pipelines. A very weak positive rela-
tion between fungi diversity and SOM content was observed for 
q =  {1,2}. The rigorous and the basic strategies led to very similar 
results for both DNA markers/taxa.

3.2.3 | Distance–decay relationship

In contrast, a significant distance–decay relationship was always de-
tected from eDNA metabarcoding data independently of the data 
curation strategy, but the rate at which similarity decays with in-
creasing distance between plots (i.e. slope) slightly changed across 
strategies. While very similar results were found between the 

rigorous and the basic strategies for the distance–decay curve of 
plants, the slope of the distance–decay curve for fungi was very low 
when using a basic instead of a rigorous strategy.

3.3 | Crucial steps of the curation procedure

Overall, we found that two curation steps, the removal of PCR 
error and the clustering to define MOTUs, explained most of 
the variation in diversity estimates across data curation strate-
gies (more than 15% each and usually more than 40% in total) for 
most of the diversity metrics in the ecological analyses and for 
both markers/taxa (Figure 4 and Figure S2.3 in Appendix S2). Also, 
cross‐sample contamination removal explained large parts of the 
variance of beta diversity in the spatial partitioning of diversity 
analyses (Figure 4a,b) and of R‐squares and slopes in the diver-
sity–environment (Figure 4c,d) and distance–decay (Figure 4e,f) 
relationships analyses.

F I G U R E  4  Relative importance (% of variance explained) of the data curation steps on the variability of estimated values of the 
spatial partitioning of diversity components (a, b) and of the parameters from the diversity–environment (c, d) and distance–decay (e, f) 
relationships, using Hill numbers at q = {1} (see Figure S2.3 for the other q values). The top row (a, c, and e) corresponds to the plant DNA 
marker (trnL‐P6 loop) and bottom row (b, d, and f) to the fungi DNA marker (internal transcribed spacer 1). A model was fitted independently 
for each diversity component (a, b) or model parameter (c‐f) as response variable, with curation steps as main effects
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4  | DISCUSSION

Ecologists do now increasingly rely on DNA metabarcoding to 
measure biodiversity as this approach holds the promise of al-
lowing testing long‐standing hypotheses at spatial, temporal 
and taxonomic scales that were hitherto inaccessible with tradi-
tional approaches. However, the technique is still hampered by 
a substantial amount of technical errors (Table 1; Appendix S1;  
Bálint et al., 2016; Taberlet et al., 2018). Here, we sought at 
testing the sensitivity of the conclusions drawn from different 
ecological analyses and diversity metrics to the steps commonly 
used to curate DNA metabarcoding data from such errors. We 
show that ecological conclusions had varying degrees of sensi-
tivity to the data curation strategies and that the use of metrics 
that are less sensitive to rare species/MOTUs (i.e. Shannon and 
Simpson diversity) leads to more robust diversity estimates. Also, 
we demonstrated that MOTU clustering, removal of PCR errors 

and removal of cross‐sample contaminations have a major influ-
ence on ecological results, and must always be carefully included 
when curating DNA metabarcoding data.

The breadth of our study makes our findings generalizable to 
other systems. Indeed, we found similar trends in the sensitivity 
of gamma and alpha diversity estimates for both our observed 
plant diversity and the mock community (Figure 2 vs Figure 3). 
Second, our study focuses on both plants and fungi, that widely 
differ in their ecological properties and the length of their mark-
ers (on average 50 bp for plants vs 225 bp for fungi). Still, while 
they do not share the same diversity patterns, their sensitivity 
to data curation strategies were comparable. Furthermore, we 
expect that our study and the experimental testing design we 
developed will stimulate further methodological studies (e.g. for 
tropical or aquatic systems and other markers/taxa) and that they 
will serve as a guide to prioritize some curation steps when de-
ciding for a curation strategy.

F I G U R E  5  Guidelines to improve the reliability of ecological results when analysing environmental DNA metabarcoding data
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4.1 | Linking methodological choices with 
ecological questions

The ecological question(s) underlying a study should lead the pri-
oritization of the curation steps to be included in the data curation 
procedure, as well as the selection of appropriate diversity metrics 
(Figure 5). If the aim of the study is to estimate the spatial parti-
tioning of diversity (Figure 5a), it is important to keep in mind that 
all diversity components are biased by the data curation steps. 
Richness is highly sensitive to error accumulation, and was hence 
the metric responding the strongest to the data curation strategy. 
Consequently, if measuring richness is crucial for the study, and, 
thus, rare species are important, the reliability of the results must 
be confirmed with additional analyses. For example, a more con-
servative strategy (i.e. keeping only MOTUs present in more than 
a certain number of PCR replicates) can improve the reliability of 
final results, but with the risk of missing species represented by 
few sequences in only a few samples due to the sampling process 
occurring when preparing aliquots of one DNA extract (Alberdi et 
al., 2018). Verifying the pertinence of species detected by looking 
in detail into the taxonomic assignments can also improve the reli-
ability of results, even though this could be problematic for poorly 
known taxa with incomplete reference databases (Cristescu, 
2014). Also, positive controls (with mock communities) and numer-
ous negative controls (extraction, PCR) must be included in all the 
phases of sequence generations to ensure the accuracy of rich-
ness estimates (Bálint et al., 2016). In any cases, a certain degree 
of uncertainty will always remain because of the complexity of 
deciding objectively which sequences are genuine and which are 
artefactual.

We corroborated that richness is a very sensitive metric and 
is always overestimated (Figure 2a‐c). The intrinsic properties of 
eDNA can inflate the diversity compared to traditional surveys 
because eDNA can persist in the environment or be transported 
through space depending on the abiotic conditions (e.g. water 
transport, temperature, UV, or microbial activity; Barnes & Turner, 
2016). This means that the diversity eDNA estimates not only en-
compass local and current species, but also species that are dor-
mant (Hiiesalu et al., 2012), that were present in the recent past 
(Yoccoz et al., 2012) or that are present in the vicinity of the studied 
area (Taberlet et al., 2018). In other words, the spatio‐temporal win-
dow captured by local eDNA diversity estimates may be larger than 
that captured by traditional approaches, a property that can be de-
sirable or not depending on the question addressed. Distinguishing 
this feature from methodological bias remains at this stage difficult, 
as it may look like cross‐contamination, and also because the cycle 
of eDNA in the environment remains poorly understood (Barnes & 
Turner, 2016). However, it is crucial to account for eDNA proper-
ties when interpreting richness‐based studies to avoid meaningless 
conclusions.

When the detection of rare species is not of importance, Hill 
numbers are a promising solution to increase the robustness of 
results and to avoid the inflation of diversity estimates. The Hill 

numbers approach has been already proposed to better estimate 
microbial diversity (e.g. Bálint et al., 2016; Chiu & Chao, 2016), 
and we corroborate its efficiency for estimating plant diversity 
and potentially other macro‐organisms from metabarcoding 
data. Both, Shannon and Simpson diversity measures led to a 
satisfying representativeness of the sampling unit diversity and 
were robust to the different data curation strategies tested here, 
but Shannon diversity was less biased. In the same way that rich-
ness overestimated diversity, Simpson diversity tended to un-
derestimate diversity. Diversity measures, other than richness 
(i.e. q  >  0), account for species/MOTUs abundance structure. 
The factors determining species’ abundances in a community 
are not the only factors determining the MOTUs’ abundances. 
These correspond to a pool of DNA fragments from current, 
dormant, or past populations (e.g. microbes) down to one (or 
part of one) single multicellular individual that are besides am-
plified by PCR. Consequently, a highly abundant MOTU does 
not necessarily imply that more individuals of the corresponding 
taxon were present, it could also be due to for example, higher 
body mass, larger root systems, or slower DNA decomposition. 
Besides, given the exponential nature of the PCR amplification, 
abundant taxa become even more abundant in this step and this 
could lead to an underestimation of Simpson diversity. Hence, 
interpreting MOTUs frequency directly as species abundance 
can be highly misleading, and estimating species abundance in 
terms of number of individuals or biomass from eDNA is still 
a major challenge in the field (Deiner et al., 2017). However, 
MOTUs frequency correlates to a certain extent to species rel-
ative abundance, and more importantly, errors are usually rarer 
than genuine sequences (reviewed in Taberlet et al., 2018). 
Accordingly, Shannon diversity from eDNA samples appears 
here as a balanced diversity measure, robust to the data curation 
strategy, and hence, to rare errors. This can be generalized to all 
ecological analyses tested in this study. Given these results, we 
argue that using a complete diversity profile (for example, with 
q values between 0 and 2) may allow improving confidence in 
diversity estimates from eDNA data while getting information 
about MOTUs structure of abundances.

Another important outcome of our assessment is that despite 
the above‐mentioned limits, robust conclusions can be obtained 
from eDNA metabarcoding data if the aim is to link local diversity 
(alpha) or community similarity (beta) to environmental or geo-
graphic gradients (Figure 5b). Changes in local diversity across 
an environmental gradient were more sensitive to the data cura-
tion strategies than the distance–decay relationship. Our results 
thus corroborate other studies that demonstrated the robust-
ness of beta diversity to bioinformatics analyses (Botnen, Davey, 
Halvorsen, & Kauserud, 2018; Deiner et al., 2017). However, 
the slope of the distance–decay was always underestimated 
compared to that obtained from observed plant diversity. On 
one hand, this could result from a lack of phylogenetic resolu-
tion of the genetic marker used here, which is relatively short. 
In alpine ecosystems, it is common to see abundant species 
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replaced by closely related species across an elevational gra-
dient (Chalmandrier et al., 2015). A genetic marker with a low 
phylogenetic resolution would not detect these changes and as 
a consequence, gamma and beta diversities would be underesti-
mated. However, the underestimation of gamma diversity rela-
tive to alpha diversity is not strong enough, suggesting that other 
reasons may also explain the lower slope of the distance–decay 
curve for eDNA‐based plant diversity. Botanical surveys used 
in this study represent just a local snapshot of the visible plant 
diversity at the sampling time, and, unlike the eDNA approach, 
may miss species with an offset phenology or present only in 
the vicinity of the sampling area (Hiiesalu et al., 2012). We can 
expect that the larger spatio‐temporal window captured by the 
eDNA metabarcoding approach would thus result in higher sim-
ilarity among the sites, which could be tested by increasing the 
botanical sampling effort across seasons and years to reduce bo-
tanical surveys biases related to the differentiated phenology of 
the species.

4.2 | Crucial steps for designing a careful 
curation protocol

While we included here curation steps that are common to most 
bioinformatic tools (e.g. Qiime, USEARCH), we acknowledge that 
algorithms within OBITools have their own particularities, as each 
of the other packages, and that the results obtained here may not 
be directly transferable. However, we expect that the differences 
from a specific software are minor compared to the differences 
caused by the choice of specific curation steps (Bonder, Abeln, 
Zaura, & Brandt, 2012). In general, we corroborate past studies 
concluding that the clustering threshold used for defining MOTUs 
leads to significant changes in diversity estimates and that this 
is especially important for alpha and gamma diversities, but less 
so for beta diversity (Botnen et al., 2018; Brown, Veach, et al., 
2015; Kunin et al., 2010). Additionally, we found that PCR errors 
and cross‐sample contaminations are critical steps and that in-
cluding them leads to more realistic spatial diversity patterns and 
estimates of diversity components. These two steps correct the 
diversity at local levels (i.e. sample level) and are especially impor-
tant when comparing communities. To our knowledge, this is the 
first study testing in a systematic way the effect of these curation 
steps on results across different types of ecological analyses. We 
recommend carefully choosing the MOTU clustering threshold, 
for example, empirical means can be estimated for each marker 
or targeted taxa using in silico methods with reference databases 
(Taberlet et al., 2018) or experimentally, using mock communities 
(Brown, Veach, et al., 2015), and considering removing PCR errors 
and cross‐sample contaminations when designing a curation pro-
tocol to study biodiversity patterns. Furthermore, a rigorous data 
curation strategy including all the curation steps of the present 
study allowed obtaining accurate diversity estimates and diver-
sity–environment and distance–decay relationships. This demon-
strates that the other curation steps should not be neglected.
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