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Summary

1. The a-, b-, c-diversity decomposition methodology is commonly used to investigate changes in diversity over

space or time but rarely conjointly. However, with the ever-increasing availability of large-scale biodiversity

monitoring data, there is a need for a sound methodology capable of simultaneously accounting for spatial and

temporal changes in diversity.

2. Using the properties of Chao’s index, we adapted Rao’s framework of diversity decomposition between

orthogonal dimensions to a multiplicative a-, b-, c-decomposition of functional or phylogenetic diversity over

space and time, thereby combining their respective properties.We also developed guidelines for interpreting both

temporal and spatial b-diversities and their interaction.
3. We characterized the range of b-diversity estimates and their relationship to the nested decomposition of

diversity.Using simulations, we empirically demonstrated that temporal and spatial b-diversities are independent
from each other and from a- and c-diversities when the study design is balanced, but not otherwise. Furthermore,

we showed that the interaction term between the temporal and the spatial b-diversities lacked such properties.
4. We illustrated our methodology with a case study of the spatio-temporal dynamics of functional diversity in

bird assemblages in four regions of France. Based on these data, our method makes it possible to discriminate

between regions experiencing different diversity changes in time. Ourmethodologymay therefore be valuable for

comparing diversity changes over space and time using large-scale data sets of repeated surveys.

Key-words: b-diversity, biodiversity, phylogenetic entropy, Shannon entropy, Hill numbers,
diversity partitioning, bird assemblages, large-scale monitoring, turn-over

Introduction

Patterns of species diversity, as determined by their functional

traits and phylogenetic relationships, have become central to

addressing a large range of research questions such as the infer-

ence of assembly rules in community ecology (Diamond 1975;

Webb 2000; Mouquet et al. 2012) or the delimitation of biodi-

versity hotspots in macro-ecology (Mazel et al. 2014). Using

functional and phylogenetic diversity indices implicitly rejects

the assumption that species are equally distinct entities, and

instead accounts for their functional similarities and shared

evolutionary history (Violle et al. 2007;Mouquet et al. 2012).

Thanks to the extension of large-scale biodiversity monitor-

ing (Pereira&Cooper 2006) and the development of citizen sci-

ence (Bonney et al. 2009), large data sets have been made

available for investigating the spatial and temporal dynamics

of biodiversity (Dornelas et al. 2014). These are of prime

importance in evaluating how species assemblages are respond-

ing to ongoing changes in climate and land uses. Since these

temporal changes are not necessarily homogeneous across

space, a depiction of biodiversity changes from both a spatial

and temporal perspective (Magurran et al. 2010) is required to

understand which processes contribute to biodiversity dynam-

ics. An adequate methodology is therefore needed to produce

meaningfulmeasures of diversity changes over space and time.

In his seminal paper, Whittaker (1960) proposed breaking

the regional species diversity (c-diversity) down into the aver-

age within-community species diversity (a-diversity) and the

between community species diversity (b-diversity). More spe-

cifically, Whittaker formulated two laws to link a, b and

c-diversities: an additive law (c = a + b) and a multiplicative

law (c = a 9 b). Two decomposition frameworks emerged

from these two alternative approaches, each with different

properties and drawbacks.

The additive law was adapted by Rao (1986) to the ‘Qua-

dratic Entropy’ index which generalized the Gini–Simpson

index to include species dissimilarities such as functional or

phylogenetic distances. He further proposed decomposing

c-diversity into several dimensions (e.g. space and time), a pro-

cedure called Anodiv (Pavoine 2012). However, the addi-

tive decomposition of the c-diversity, and by extension the

Anodiv procedure, has been criticized for its inability to
*Correspondence author. E-mail: loic.chalmandrier@ujf-grenoble.fr

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society

Methods in Ecology and Evolution 2015, 6, 109–118 doi: 10.1111/2041-210X.12297



produce b-diversity estimates independent from the c- and

a-diversities (Jost 2007; Baselga 2010). This property impedes

Anodiv’s ability to access temporal or spatial biodiversity

changes on large spatial scales. Indeed, large-scale biodiversity

monitoring typically covers numerous regions with variable c-
and a-diversities (e.g. Devictor et al. 2010), a consequence of

the large-scale environmental filtering and historical contin-

gencies that shape the biogeographical gradients of diversity

(Hawkins, Porter & Diniz-Filho 2003). Should b-diversities be
compared across regions, it is vital that they only quantify spa-

tial or temporal change within these regions, independently

from changes in c and a-diversities. Otherwise these two effects

would become indistinguishable.

The second framework, based onWhittaker’s multiplicative

law, addresses this issue of independence.When diversity is cal-

culated from an equivalent number (Hill 1973), it produces

estimates of b-diversity which are independent from the a- and
c-diversities (Jost 2007; Tuomisto 2010). Furthermore, the esti-

mate of the b-diversity is set between 1 and the number of com-

munities in the region studied. This property makes it possible

to produce standardized estimates of b-diversity which are not

dependent on the study design used in the region (Chao, Chiu

& Hsieh 2012). This is a particularly important feature since

large-scale biodiversity monitoring systems tend to be spatially

unbalanced (Ficetola et al. 2013). However, despite these

properties, Whittaker’s multiplicative law was never adapted

to breaking functional or phylogenetic diversity down into dif-

ferent dimensions.

We have built on these two frameworks and their respec-

tive advantages to propose a novel methodology for decom-

posing phylogenetic and functional diversity over space and

time, and obtaining measurements of b-diversity which are

independent of c-diversity and a-diversity. This study first

introduces our multiplicative framework for estimating spa-

tial and temporal beta diversities. Secondly, using a simula-

tion-based approach, we demonstrate that in the case of

taxonomic diversity, the estimated b-diversities are pairwise

independent from the c- and a-diversity and from each

other. Finally, we illustrate its novelty and features in a case

study by decomposing the spatio-temporal effects on the

functional diversity of the common avifauna in four regions

of France over the last decade.

Decomposing diversity over space and time

DEFIN IT IONS

We considered a region containing S sites in which species were

recorded at T dates. We defined a community as the species

composition of site s at a given date t. We defined a site pool as

the pool of all communities at site s pooled for all dates, a time

pool as the pool of all communities at a given date t pooled for

all sites and the regional pool as the pool of all communities

for all sites and dates. The spatio-temporal decomposition of

diversity (multiplicative a-, b-, c-decomposition) will ulti-

mately be calculated based on the ratios of the diversities in

these different units (communities and pools).

DIVERSITY INDEX

To calculate the diversity of a given unit, we used Shannon

entropy exponential. This index is an ‘equivalent number’, part

of the family of Hill numbers (Hill 1973). As such, its value

ranges from 1 (if one species makes up most of the total abun-

dance in the unit) to the number of species in the unit (if their

relative abundances are all equal). It can be interpreted as

the number of ‘equally abundant virtual species’ in the unit

(Tuomisto 2010):

DðPÞ ¼ exp $
XN

i¼1

logðpiÞ % pi

 !

eqn 1

with P, the vector {p1, p2, . . ., pN} of abundances of the N spe-

cies present in the unit studied.

To include functional and phylogenetic similarities between

species, we used the version of this index formulated by Chao,

Chiu& Jost (2010) fromAllen’s phylogenetic entropy (2009).

DðPÞ ¼ exp $
X

b

LðbÞ
T

logðpBðbÞÞ % pBðbÞ

 !

eqn 2

where the summation is made over all branches of an ultramet-

ric phylogenetic or functional tree of tips-to-root distance T, L

(b) is the length of branch b and pB denotes the vector contain-

ing for each branch b, the summed relative abundance of its

descendent species.Wewill refer to this index as Chao’s index.

Since the index includes species similarities, its absolute

value can be interpreted as the number of ‘equally abundant

and fully distinct virtual species’ in the study unit.

SPATIO-TEMPORAL DECOMPOSIT ION

We drew inspiration from the Anodiv procedure (Rao 1986;

Pavoine 2012) to decompose diversity according to two

orthogonal factors, here time and space, according to a

multiplicative framework using Chao’s index. It is expressed

as follows:

DðP::Þ¼ DðP::Þ

exp
PT

t¼1
xt%logðDðP:tÞÞ

! "

% DðP::Þ

exp
PS

s¼1
xs%logðDðPs:ÞÞ

! "

%
exp

PT

t¼1
xt%logðDðP:tÞÞ

! "
%exp

PS

s¼1
xs%logðDðPs:ÞÞ

! "

DðP::Þ%exp
PT

t¼1

PS

s¼1
xst logðDðPstÞÞ

! "

%exp
XT

t¼1

XS

s¼1

xst logðDðPstÞÞ
" #

eqn3

Pst is the vector of species relative abundance in community

at site s and date t. The formulation includes xst, a weight
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attributed to a community at site s and time t, that sums to 1

over all s and t based for instance on total abundance or species

richness in the community. A perfectly balanced design will

involve the absence of missing data and the equal weighting of

all communities, that is for all s and t, xst ¼ 1
ST. Unequal

weighting is not compulsory but is typically relevant when

communities have been sampled with different sampling efforts

(for a discussion, seeHardy& Jost 2008).

xs and xt are the weights of site pools s and time pools t,

respectively, and are calculated as the sum of the weights of

their constituent communities. The vector of species relative

abundance for the site pool s and time pool t is thus calculated

as the weightedmean of the species relative abundances in their

constituent communities: P:t ¼ 1
xt

PS
s¼1 xstPst and Ps: ¼ 1

xsPT
t¼1 xstPst. Finally, the vector of species relative abundances

in the species pool is calculated as the weighted mean of

species relative abundance across all communities:

P:: ¼
PS

s¼1

PT
t¼1 xstPst.

Equation 3 can be reformulated as:

c ¼ c
aT

% c
aS

% aS % aT
c% a

% a eqn 4

with c being the c-diversity of the study region; with aT and aS
being, respectively, the mean a-diversity of time and site pools

and a the mean a-diversity of the communities in the study

region.

Ormore simply,

c ¼ bT % bS % bST % a eqn 5

with bT being the temporal b-diversity, bS the spatial b-diver-
sity and bST the interaction term between the temporal and the

spatial b-diversities. If the spatial and temporal structure of the

data set is ignored, the total b-diversity b of the region across

time can be expressed as:

b ¼ c
a
¼ bT % bS % bST eqn 6

PROPERTIES OF THE b -DIVERSIT IES

Chiu, Jost & Chao (2014) demonstrated that Chao’s index

obeyed the ‘replication principle’. This implies that bT and bS
have several of the properties enumerated in Jost (2007) and

Tuomisto (2010), which facilitate the interpretation of their

numerical values:

1. bT and bS are pairwise independent from c and from aT
and aS, respectively (Jost 2007; Baselga 2010). Using simula-

tions, we demonstrate below that bT and bS are pairwise

independent from each other and are both pairwise indepen-

dent from a.
2. The values of bS (resp. bT) are intuitive and can be

interpreted as ‘the number of virtual, fully dissimilar and

equally abundant site pools (resp. time pools)’ in the study

region.

3. The values of bS, bT and b have a range that is only depen-

dent on the weights of, respectively, the site pools, time pools

and the communities:

1& bT &NT; with NT ¼ exp $
XT

t¼1

xt % logðxtÞ
" #

1& bS &NS; with NS ¼ exp $
XS

s¼1

xs % logðxsÞ

" #

1& b&NST; with NST ¼ exp $
XT

t¼1

XS

s¼1

xst % logðxstÞ
" #

The minimum possible value of bS, bT and b will be 1 if the

site pools, time pools or communities, respectively, are identi-

cal. The maximum possible value of bS, bT and b will be

attained if the site pools, time pools or communities, respec-

tively, do not share species or tree branches. NS, NT and NST

can be interpreted as the equivalent number of sites pools,

times pools and communities, respectively. If all communities

are weighted equally, they will be equal to S, T and ST, respec-

tively.

In other words, our measurement of change in diversity

over space (resp. over time) has a natural minimum and max-

imum. Thus the absolute values of bS and bT can be stan-

dardized by their minimum and maximum value to make

their value independent from the number of sites and time

periods studied (Chao, Chiu & Hsieh 2012): StdbS ¼ bS$1
NS$1 and

StdbT ¼ bT$1
NT$1

bST has a minimum value of 1 and a maximum value con-

strained by both the value of bS and bT (see Appendix S2 for

the demonstration),

1& bST &min
NST

NS
% 1

bT
;
NST

NT
% 1

bS

# $
:

RELATIONSHIP TO THE NESTED DECOMPOSIT ION OF

DIVERSITY

Another methodological choice that can be made when analy-

sing a spatio-temporal data set is to consider that space and

time are nested (e.g. Sobek et al. 2009). If space is considered

as nested within time periods, a new measure bS/T can be for-

mulated to characterize the mean spatial b-diversity of the

region within time periods (Pavoine & Dol"edec 2005; Tuomis-

to 2010).

The decomposition will then be expressed as:

c ¼ bT % bS=T % a eqn 7

meaning that

bS=T ¼ aT
a

¼ bS % bST

Alternatively, if we consider time periods as nested within

space:

© 2014 The Authors. Methods in Ecology and Evolution © 2014 British Ecological Society, Methods in Ecology and Evolution, 6, 109–118

Spatio-temporal diversity decomposition 111



c ¼ bS % bT=S % a eqn 8

meaning that

bS=T ¼ aS
a

¼ bT % bST

.

Thus, bS/T and bT/S are not strictly b-diversities because they
are the ratio of twomean a-diversities from different hierarchi-

cal levels, rather than the ratio of a unit’s diversity and the

diversity of its subunits. However, we demonstrated (Appendix

S1) that like b-diversities, they have fixed minimum and maxi-

mum values that are independent of the c- and a-diversities:
1& bS=T & NST

NT
and 1& bT=S & NST

NS
.

INTERPRETATION OF b -DIVERSIT IES

The different b-diversities can be interpreted on their own and

in combination with each other (Fig. 1). bT quantifies the

change in diversity between time pools, or in other words, the

temporal change in regional diversity, irrespective of the spatial

patterns of diversity. bS quantifies the change in diversity

between site pools, or in other words, the spatial change in

diversity after averaging the temporal variability of communi-

ties. bST quantifies the interaction between spatial and tempo-

ral turnover, it can be used to quantify finer changes such as a

rearrangement of species between sites between two dates

which are not quantified by bS and bT (Fig. 1). The case where
bST is equal to 1 indicates that there is an identical change of

diversity across space and time between communities, for

instance, if between two dates a species is introduced in all

studied communities at equal relative abundance. On the other

hand, a value of bST over 1 denotes a heterogeneity of change

of communities over space and time that is not quantified by

bS and bT because it averages out at larger spatial or temporal

scales. It is interesting to note that it is possible to have a situa-

tion where bS and bT equal one while bST is higher than one.

This is illustrated in Fig. 1 (bS = bT = 1 and bST > 1) with an

extreme case in which two communities fully inversed their

composition between the two dates studied. A concrete exam-

ple could be the mosaic theory of forest regeneration (Remm-

ert 1991): disturbances in a forested landscape would trigger

the same temporal successions but at different times and loca-

tions generating a heterogeneous landscape. In this case, there

is a spatial and temporal change between communities, but the

time pools remain constant (in other words, the diversity of the

region changes very little between the two dates) and the site

pools also remain constant (in other words, when averaged

over time, communities across the landscape have a similar

composition).

TEST OF FUNCTIONAL AND PHYLOGENETIC

b -DIVERSIT IES

A commonway to test the values of functional or phylogenetic

b-diversities is to use a randomization model to generate a dis-

tribution of b-diversities under a certain null hypothesis. Our

framework is compatible with any kind of randomization pro-

cedure. In the following case study of French avifauna, we

chose the species shuffling procedure that has been shown to

be among the most efficient null models in terms of Type I

error rate (Hardy 2008). A significant high (resp. low) b-diver-
sity thus indicates that species tend to be replaced by dissimilar

(resp. similar) species over time or space. We calculated the

effect size of each functional b-diversity, as the observed

b-diversity minus the mean of its null distribution divided by

the standard deviation of the null distribution. If the b-diver-
sity was higher than expected (positive effect size), then the

communities differed more than expected under a random

assembly model; if the b-diversity was lower than expected

(negative effect size), then the communities differed less than

expected under a random assemblymodel.

Independence properties of the spatio-temporal
diversity decomposition

We adapted the simulation procedures developed by Baselga

(2010) to demonstrate the independence properties of our

diversity decomposition framework. We used two simulation

approaches: (i) a top-down approach where we first chose a c
value, then generated a community weight vector and sequen-

tially randomly selected the values of aT, aS and a; (ii) a bot-

tom-up approach where we first chose an a value, then

generated a community weight vector and sequentially ran-

domly selected the values of aT, aS and c. Each draw was con-

strained by minimum and maximal values deduced from the

properties of the spatio-temporal decomposition stated above.

For a given number of sites (S) and dates (T), we tested 200 ini-

tial c or a values between 1 and 200, each repeated 200 times.

Both the top-down and bottom-up approach procedures are

detailed in Appendix S3. Both procedures are necessary to

demonstrate the pairwise independence of the b-diversities
from c and a (Baselga 2010). In the top-down approach, the b-
diversities need to be uncorrelated with c, and in the bottom-

up approach, the b-diversities need to be uncorrelated with a.
When no data were missing (i.e. all sites observed at all

times) and T = 4 and S = 10, we found no correlation of c
with StdbT (Fig. 2, r = $0'0014; 95% CI interval: [$0'011,
0'0084]), c with StdbS (Fig. 2, r = $0'0013; 95% CI interval:

[$0'011, 0'0085]) or StdbT with StdbS (Fig. 2, r = $0'0019;
95% CI interval: [$0'012, 0'008]) in the top-down approach

and no correlation of a with StdbT or a with StdbS in the bot-

tom-up approach (Fig. S1. a and StdbT: r = 0'0052; 95% CI

interval: [$0'0046, 0'015]). In contrast, bST depended on the

previously established bT and bS values, but is independent

from both c and a (Fig. 2. bST and c: r = 0'00038; 95% CI

interval: [$0'0094, 0'010] Fig. S1. bST and a: r = 0'0037; 95%
CI interval: [$0'0061, 0'0135]). When we further explored

alternative T and S parameterizations (for any values of S and

T between 2 and 10), we found these results to be robust

(Table 1).

We also investigated the specific case where community data

were missing in the data set. For all T and S parameter values,

a varying proportion of community weights were set to 0 while
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maintaining at least one community per site and date. We then

studied how the amount of missing data affects the indepen-

dence properties between c, bT, bS, bST and a. We found that

in the extreme case of perfect balance (all community weights

are equal), all correlations remained close to 0.When we intro-

duced unequal weighting and increased the proportion ofmiss-

ing data, the correlation between bT and bS increased slightly

but remained on average close to 0. However, there were some

extreme correlation values that deviated strongly from 0. We

observed the same pattern for the other relationships although

they tended to show more robustness (Fig. 3). This can be

explained by the fact that the sampling design becomes less

orthogonal between sites and dates as the amount of missing

data increases. The extreme case would be a spatial-temporal

data set where a single community was sampled per date, each

time at different sites. Then bT and bS would be equal. How-

ever, as indicated by the correlation values, which were on

average close to 0, the independence relationship remained on

average quite robust and only a few weight vectors resulted in

a loss of the independence properties.

Overall, we therefore conclude that bT, bS and bST are pair-

wise independent from a and c. We further conclude that bT
and bS are pairwise independent from each other but only

when theweighting scheme does not deviate too far from a per-

fectly balanced sampling design (i.e. nomissing data and for all

s and t,xst ¼ 1
ST).

Our simulation procedure has its limitations. Indeed, it is

not clear how the inclusion of a phylogenetic or functional tree

between species could further constrain the distribution of the

different diversity metrics compared to the maximal values of

 

 

 

 

 

 

 

 

Fig. 1. Graphical interpretation of the eight
possible patterns of diversity change over
space and/or time and their respective bS, bT,
bST value. Each cell of the table represents one
of the patterns illustrated by the composition
of four communities from two sites (lines) at
two dates (column), each represented by a cir-
cle. Sites and time pools (see Methods) com-
posed from the pooled composition of
communities over sites or dates, respectively,
are represented by rectangles. Within commu-
nities and pools, symbols represent individuals
from a species specified by the geometrical
shape.
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bT, bS and bST previously fixed. It is, however, intuitive that

the maximum number of completely distinct communities, site

pools or time pools is equal to the number of functional/phylo-

genetic tree branches that emerge from the root. Therefore,

although our simulation procedure concords with the current

understanding of the diversity decomposition using Chao’s

index, it should be specified that our approach is more strictly

appropriate for borderline cases where species are fully distinct

or when the inclusion of a functional or phylogenetic tree does

not affect the potential distribution of the diversity measures.

In other cases, it is possible that the independence properties

we empirically accessed would be altered.

Case study: spatio-temporal changes in
functional diversity in French bird assemblages

DATA

We applied our spatio-temporal framework to the avifauna

monitored by the French breeding bird survey programme

(Julliard et al. 2006). This programme relied on skilled orni-

thologists to monitor common birds using a standardized pro-

tocol from 2001 to 2012. Under this scheme, ornithologists

recorded every individual seen or heard during a five-minute

period at 10 count points, evenly distributed within 2 9 2 km

survey sites. The sites were randomly selected around the

observer’s locality, thus ensuring that a variety of habitats were

monitored (including intensive farmlands, forests, suburbs and

cities). We selected four regions, each defined as a circular

window 100 km in diameter, belonging to two disparate

biogeographical regions. Two were situated on the Mediterra-

nean coast (MED1 andMED2) and two on the Atlantic coast

(ATL1 and ATL2). Each region included different numbers of

survey sites for which temporal trends were available (i.e. with

sites monitored twice at least five years apart). ‘Communities’

were defined as the species assemblages recorded at the sites in

the different regions. Species similarity was estimated from the

ultrametric functional tree taken from Thuiller et al. (2014)

based on bodymass, diet and feeding behaviour (see Appendix

S4 for details). Each community was given the same weight.

Fig. 2. Pairwise scatterplot of the value of c,
StdbT,

StdbS, bST and a obtained from a ‘top-
down’ simulation procedure. T was equal to 4
and S to 10. The panels on the diagonal repre-
sent the distribution of each diversity estimate
over the simulations. The panels from the
lower triangle represent the pairwise relation-
ship between two of diversity estimates, and
the panels from the upper triangle contain the
Pearson correlation coefficient between two of
diversity estimates.

Table 1. Correlation coefficients between diversity measures according
to the simulation procedure for a given T and S value. The table dis-
plays the range of coefficients over the tested values of T and S
(2 ≤ T ≤ 10; 2 ≤ S ≤ 10). Asterisks indicate correlation coefficient
intervals close to 0

Diversitymeasures Top-down approach Bottom-up approach

c and StdbT [$0'0143, 0'0117]* [0'149, 0'598]
c and StdbS [$0'0137, 0'0153]* [0'146, 0'596]
c and bST [$0'0137, 0'0142]* [$0'181,$0'0653]
c and a [0'485, 0'912] [0'485, 0'915]
StdbT and

StdbS [$0'0137, 0'0270]* [$0'107, 0'193]
StdbT and bST [$0'559,$0'0725] [$0'414,$0'185]
StdbT and a [$0'486,$0'111] [$0'0162, 0'0136]*
StdbS and bST [$0'560,$0'0695] [$0'415,$0'188]
StdbS and a [$0'490,$0'106] [$0'0145, 0'0124]*
bST and a [$0'182, 0'0206] [$0'0150, 0'0159]*
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Mathematically, this means that for all s and t, xst ¼ 1
ST. To

further facilitate the interpretation of the result of the

spatio-temporal decomposition, we used a double principal

component analysis (dpcoa, Pavoine, Dufour & Chessel 2004)

to visualize the differences between the sites in each region in

terms of functional composition (Appendix S5 and Fig. S2). A

summary of the information on the four regions is available in

Table 2.

Results

SPATIAL b -D IVERSITY

Absolute values of spatial b-diversities differed strongly

between the four regions (Fig. 4). We found that

MED2 > ATL2 > MED1 > ATL1 regarding spatial b-diver-
sity. When focusing on standardized b-diversity, the ranking

between regions changed: the spatial b-diversity of the region

MED2 (which contained 14 sites) appeared much smaller such

as ATL2 > MED1 > MED2 > ATL1. This was confirmed by

the multivariate analysis, where MED2 appeared less spatially

structured across the main multivariate axis compared to the

other regions (Appendix S5, Fig. S2). The region MED1

and the region ATL2 stood out for their high values of stan-

dardized spatial b-diversity which indicated that the site pools

were more distinct in these regions than in the other two

regions. This difference could be due to greater region-wide

environmental heterogeneity in MED1 and ALT2 compared

toMED2 andALT1. The null model made it possible to deter-

mine that the site pools of the region MED1 were more func-

tionally different (albeit marginally) than expected from their

taxonomic composition compared to ATL2 despite having a

lower standardized value of spatial b-diversity (MED1, effect

size of bS = 1'22; ATL2, effect size of bT = 0'21; Fig. 4). The
multivariate analysis ofMED1 (Fig. S2) further suggested that

sites at both dates were differentiated mainly according to the

body size of their constituent species, suggesting a degree of

large-scale environmental filtering acting on the birds’ func-

tional traits. On the other hand, the difference between the

ATL2 site pools was not significantly different from the ran-

dom expectation. This suggests that the large functional differ-

ence between site pools was due to a large number of different

species (hence the high spatial b-diversity) but that between the
site pools, these species were not particularly distinct in terms

of their functional traits.

TEMPORAL b -DIVERSITY

Overall, the temporal change in regional diversity was more

substantial in the two Mediterranean regions than in the two

Atlantic regions (Fig. 4). However, the use of the null model

showed that the temporal b-diversity in MED1 was much

higher than expected from the taxonomic change (effect

size = 3'09) while inMED2, the temporal b-diversity was only
marginally different from the taxonomic change (effect

size = 1'48). This showed that between the two dates studied,

the MED1 time pools were significantly different in terms of

the functional traits of their constituent species (as suggested

by the multivariate analysis, this was most likely due to the rel-

ative increase in larger-bodied species in all the sites over time,

Fig. S2). In contrast, the twoAtlantic regions showed low tem-

poral b-diversity, and the null model further showed that it

was even lower than expected from the taxonomic change for

ATL1 (ATL1, effect size of bT = $1'87; ATL2, effect size of

bT = 0'15; Fig. 4). This indicated that the sites studied in

ATL1 remained remarkably constant over time, with species

being substituted by other species with similar functional traits.

Overall, these results are consistent with previous diachronic

analyses, which demonstrated substantial changes in bird com-

munities in inlandMediterranean areas over time due tomajor

changes in land use (Preiss, Martin & Debussche 1997; Sirami,

Brotons &Martin 2007).

INTERACTION TERM

The interaction term bST was always higher than 1 across the

four regions studied. However, as the value of bST is dependent
on both bT and bS and the study design (number of sites and

number of dates), it was difficult to compare it across regions.

The null model provides a way of determining whether the

interaction term was higher or lower than expected from the

taxonomic turnover.We found that the interaction term of bST
was much higher than expected (effect size = 1'99) indicating
that individual sites changed more in functional composition

Fig. 3. Boxplots of the correlation coefficients obtained from the simu-
lations as a function of the percentage of missing data (e.g. community
weights set to 0). The boxplot on the far left (designated by ‘B’) illus-
trates the case of perfect balance (all community weights are equal).
The figure displays the correlations between (a) c and StdbT given by the
top-down procedure, (b) c and StdbS given by the top-down procedure,
(c) c and bST given by the top-down procedure, (d) StdbT and StdbS
given by the top-down procedure (e) StdbT and a given by the bottom-
up procedure, (f) StdbS and a given by the bottom-up procedure and (g)
bST and a given by the bottom-up procedure.
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than expected from the temporal trend at regional level (bT).
Furthermore, the case of ATL1 is interesting because while bS
and bT are both lower than expected, bST is marginally higher

than expected (effect size = 0'26). We interpreted this as a case

of a region with communities whose functional composition

had changed markedly over time, but in opposite directions.

This indicates potential for investigating bST as an emergent

spatio-dynamic component of community changes.

Perspectives and limitations of spatio-temporal
decomposition

The novel methodology presented herein has several advanta-

ges and strengths. Firstly, it allows a standardized decomposi-

tion of diversity across regions with potentially very different

c-diversities. In France, the functional and phylogenetic

c-diversities of avifauna are heterogeneous across space due to
different macro-climatic influences (Devictor et al. 2010).

Most notably, the Mediterranean Basin has high taxonomic,

functional and phylogenetic c-diversity, which contrasts with

the rest of France. Using our methodology, b-diversities are
found to be pairwise independent from the local c-diversities,
thus making it possible to study processes such as landscape

heterogeneity or land use change across regions without inter-

ference from the biogeographical differences quantified by the

c-diversities. In contrast, there was a risk with the originalAno-
div procedure (Rao 1986) of yielding overestimated values for

b-diversities in biogeographical areas with high c-diversities,
regardless of the actual spatial or temporal change (Baselga

2010).

Secondly, our methodology accounts for differences in sam-

pling efforts between regions. In our case study, spatial and

temporal functional b-diversities were standardized using the

maximum and minimum value they could possibly attain in a

region (Fig. 4), thus producing estimates of b-diversities that
were unrelated to the number of sites or dates studied within

each region (Chao, Chiu &Hsieh 2012). Although our method

does not prevent bias if the sampling is not representative of

the biodiversity in a region over space and time, the standardi-

zation makes it possible to compensate for an unbalanced

study design between regions. This solves a common problem

arising from large-scale biodiversity monitoring where remote

areas tend to be under sampled (Jiguet et al. 2012; Ficetola

et al. 2013).

Thirdly, our approach also makes it possible to test the

space-for-time substitution often used when time-series data

are not available. The drivers of diversity change such as cli-

mate (e.g. Blois et al. 2013) or land use (e.g. Sirami, Brotons &

Martin 2007) can be studied both across space and time. Ecol-

ogists have thus traditionally used space-for-time substitution

as an alternative to expensive and rare long-term studies (Pick-

ett 1989; e.g. Chalmandrier et al. 2013). This substitution

assumes that changes in diversity over spatial locations and

changes in diversity over time are equivalent and independent

under the assumption that they are driven by the same ecologi-

cal process (Fukami & Wardle 2005). However, this assump-

tion can easily be violated by confounding processes such as

dispersal (Brotons, Pons &Herrando 2005), biotic interactions

(Thuiller et al. 2007) and delayed responses to changes in the

local environment (Devictor et al. 2012). Our methodology

provides tools which are adapted to testing the assumption on

Table 2. Characteristics of the different regions

Region
Biogeographical
zone

Number of
sites

First
year

Final
year

Size of the species
pool

Functional c-
diversity

Functional a-
diversity

MED1 Mediterranean 5 2003 2008 63 8'06 6'48
MED2 Mediterranean 14 2003 2009 57 10'75 7'22
ATL1 Atlantic 7 2003 2009 43 8'32 6'73
ATL2 Atlantic 5 2003 2009 44 8'69 6'10

Fig. 4. Functional b-diversity decomposition between spatial (dark
grey), temporal (grey) and spatial-temporal interaction (light grey)
components for each of the four regions. Each bar represents the abso-
lute value of the b-diversity (top) or its value standardized by its mini-
mum and maximal possible value (bottom). Numbers above each bar
show the effect size against the null model. A negative value indicates a
higher than expected value of b-diversity while a positive value indi-
cates a lower than expected value of b-diversity.
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which space-for-time substitution is based: the pairwise

independence of bS and bT allows for the direct comparison of

the spatial and temporal components of changes in diversity.

However, we showed that this independence property was only

maintained if the sampling design is balanced (i.e. there is rela-

tively a low amount of missing data, and communities have a

similar weight). We therefore recommend testing the sampling

design beforehand using the simulation procedures to assess

whether bS and bT are theoretically pairwise independent.
Fourthly, this is the first study to adapt the diversity decom-

position between multiple factors originally proposed by Rao

(1986) to the requirements of b-diversities computations, as

recommended by Jost (2007) and Tuomisto (2010). Further-

more, we generalize this approach using Chao’s index (2009)

which includes species’ functional and phylogenetic distances,

thereby combining the advantages of both methods. Shannon

entropy exponential and its generalization are the only equiva-

lent numbers that fully combine the properties of the additive

and multiplicative a-, b-, c-decomposition (Jost 2007). This

opens promising avenues for adapting our framework tometh-

odologies based on the additive decomposition of the Shannon

entropy (e.g. P"elissier & Couteron 2007). It is also the only

equivalent number where (i) there is more or less a general con-

sensus about the handling of unequal weighting of communi-

ties (but see Chiu, Jost & Chao 2014) and (ii) the unequal

weighting still leads to b-diversities values that are pairwise

independent from c- and a-diversities (Jost 2007; Tuomisto

2010).

Chao’s index belongs to a large family of indices that extend

the Hill numbers (1973) to include species’ phylogenetic simi-

larities (Chao, Chiu & Jost 2010) making it possible to explic-

itly parameterize the weight given to a rare vs. a dominant

species. While our framework is transposable to these indices,

some properties (pairwise independence of b-diversities from
c- and a-diversities, range of bST and of nested b-diversities)
need to be demonstrated, in particular in the case of missing

data and unequal weighting of communities. The Chao’s index

studied is based on assumptions on how to take into account

species abundances, that is the contribution of a species to the

diversity value is proportional to its relative abundance (Chiu,

Jost & Chao 2014). It thus may not be suitable for achieving

certain analytical aims: for instance, a conservation approach

may want to consider rare and dominant species equally

regardless of their relative abundance. On the other hand, a

focus on ecosystem functioning may require an emphasis on

dominant species as they are expected to be the main contribu-

tors to ecosystem functioning (Garnier et al. 2004; but see

Mouillot et al. 2013). Furthermore, recent work has shown the

value of analysing diversity patterns with multiple equivalent

numbers in order to vary the weighting given to dominant as

opposed to rare species and to disentangle multiple assembly

rules (Arroyo-Rodriguez et al. 2013; Chalmandrier et al.

2014b).We therefore argue for more statistical development to

adapt spatio-temporal decomposition to other equivalent

numbers, using the generalization of Hill numbers, and thus

adding a supplementary parameter which explicitly examines

the impact of species’ relative abundances.

Conclusion

Recent years have seen major efforts to unify methodologies

for evaluating and decomposing assemblage diversity. We

have drawn on these achievements to propose a methodology

that overcomes the challenges encountered when studying

large-scale diversity data sets which encompass multiple

orthogonal dimensions. We have shown that this approach

can be used with classical animal survey data (also available

for butterflies, fishes and plants) and that it provides clear

results. Althoughmore work is required to expand thismethod

to multiple diversity indices, we believe that the properties of

our methodology open up promising avenues for evaluating

and testing diversity change across multiple dimensions. This

will allow thorough analyses of the ever-increasing data pro-

duced by biodiversity survey programmes world-wide.
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