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Abstract
Aim: While species distribution models (SDMs) are standard tools to predict species dis-
tributions, they can suffer from observation and sampling biases, particularly presence- 
only SDMs, which often rely on species observations from non- standardized sampling 
efforts. To address this issue, sampling background points with a target- group strategy is 
commonly used, although more robust strategies and refinements could be implemented. 
Here, we exploited a dataset of plant species from the European Alps to propose and dem-
onstrate efficient ways to correct for observer and sampling bias in presence- only models.
Innovation: Recent methods correct for observer bias by including covariates related 
to accessibility in model calibrations (classic bias covariate correction, Classic- BCC). 
However, depending on how species are sampled, accessibility covariates may not 
sufficiently capture observer bias. Here, we introduced BCCs more directly related to 
sampling effort, as well as a novel corrective method based on stratified resampling 
of the observational dataset before model calibration (environmental bias correction, 
EBC). We compared, individually and jointly, the effect of EBC and different BCC 
strategies, when modelling the distributions of 1,900 plant species. We evaluated 
model performance with spatial block split- sampling and independent test data, and 
assessed the accuracy of plant diversity predictions across the European Alps.
Main conclusions: Implementing EBC with BCC showed best results for every evalu-
ation method. Particularly, adding the observation density of a target group as a bias 
covariate (Target- BCC) gave the most realistic modelled species distributions, with a 
clear positive correlation (r ≃ .5) found between predicted and expert- based species 
richness. Although EBC must be carefully implemented in a species- specific manner, 
such limitations may be addressed via automated diagnostics included in a provided R 
function. Implementing EBC and bias covariate correction together may allow future 
studies to address efficiently observer bias in presence- only models, and overcome 
the standard need of an independent test dataset for model evaluation.
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1  | INTRODUC TION

Analysing diversity patterns and assessing how species are dis-
tributed in space, time and along environmental gradients are 
central topics in ecology (Barthlott et al., 1996; MacArthur, 1965; 
Von Humboldt & Bonpland, 2010). Predicting current and future 
species distributions is frequently done using species distribu-
tion models (SDMs; Araújo et al., 2019; Pearson, 2010; Thuiller 
et al., 2009), which are statistical methods that relate species re-
cords to co- occurring environmental or anthropogenic conditions 
(Brun et al., 2020; Graham et al., 2011; Guisan & Zimmerman, 2000). 
Over the last two decades, SDMs have gained increasing popularity 
among researchers, with studies investigating and comparing SDM 
methods and their specific assets, as well as evaluating the reliability 
of their predictions compared to field data (Elith & Graham, 2009; 
Elith et al., 2006; Guisan & Thuiller, 2005; Guisan et al., 2017). 
Currently, SDMs based on presence- only data enjoy high popu-
larity, due to the rapid growth of online databases of species ob-
servations from scientific, naturalist and citizen- science initiatives 
(Samy et al., 2013; Wüest et al., 2020). There are several types of 
presence- only SDMs, and one of the most well- known methods is 
Maxent (Phillips et al., 2006), a special case of point- process model 
(PPM; Warton & Shepherd, 2010). PPMs are common tools to model 
presence- only data in other fields (e.g. seismology, epidemiology, 
neurology and economics), and they have been recently introduced 
in ecology as a type of presence- only SDM. Being proportional to 
Maxent, but with many additional advantages (Renner et al., 2015; 
Renner & Warton, 2013), this method is becoming one of the tools 
of choice for presence- only models.

Presence- only SDMs are an appealing tool, but their imple-
mentation necessitates following good modelling practice (Araújo 
et al., 2019), with correcting for observer bias often being regarded 
as the most important part (Graham et al., 2004; Phillips et al., 2009). 
Observer or sampling bias of species records results from excessive 
effort in distinct geographic regions of the study area; for example 
along roads, coasts, rivers, towards low elevations, near towns or 
biological field stations (Chauvier et al., 2021; Fithian et al., 2015; 
Graham et al., 2004; Reddy & Dávalos, 2003). Moreover, bias of ob-
servational datasets in geographic space generally results in bias in 
environmental space (Bystriakova et al., 2012; Graham et al., 2004; 
Phillips et al., 2009). This may lead to non- representative ecological 
preferences of species, and, in turn, distorted SDM fits and predic-
tive outputs, particularly if a part of the species environmental niche 
is greatly over- sampled (Hastie & Fithian, 2013). However, various 
methods of bias correction have been suggested and combined in 
the literature. For example, spatial thinning of species observations 
according to the study area’s resolution (Aiello- Lammens et al., 2015; 
Kiedrzyński et al., 2017; Steen et al., 2020), model- based corrections 
(Komori et al., 2020; Stolar & Nielsen, 2015), or combining species 
observations with large survey data (Fithian et al., 2015; Fletcher 
et al., 2016) have been recommended. Yet overall, sampling back-
ground data with the target- group strategy— that is, using similar 

sampling design/bias to sample background points as observed spe-
cies presence points— remains currently the most popular approach 
(Botella et al., 2020; Hertzog et al., 2014; Kramer- Schadt et al., 2013; 
Phillips et al., 2009; Righetti et al., 2019). While this approach seems 
to improve model predictive performance, limitations regarding the 
number of background points to sample, and how to define tar-
get groups remain (Cerasoli et al., 2017; Warton et al., 2013), and 
might lead to lack of observer bias correction (Hanberry et al., 2012; 
Hertzog et al., 2014; Iturbide et al., 2015).

In response to these limitations, new corrective strategies based 
on bias covariate correction (BCC) have recently been implemented 
for presence- only models (Merow et al., 2016; Warton et al., 2013). 
During the model calibration and on top of the environmental vari-
ables, one or several bias covariates are added to account for im-
perfect sampling. These covariates are then kept constant (mean or 
zero) when predictions are made. By this, the parameters estimated 
during the model inference are corrected for the observer bias. 
Distance to/density of roads and cities (here called Classic- BCC; 
Bonnet- Lebrun et al., 2020; El- Gabbas & Dormann, 2018a, 2018b; 
Warton et al., 2013) have been shown to be particularly useful bias 
covariates that can improve predictive outputs. These improve-
ments, however, strongly depend on whether the chosen bias co-
variates manage to capture the geographic bias existing in the data. 
Efficient bias covariate correction is therefore strongly dependent 
on preliminary spatial diagnostics to clearly uncover the cause of 
geographic bias (Albert et al., 2010; Amano & Sutherland, 2013; 
Warton et al., 2013). This need could be overcome if the selected 
bias covariates were to directly summarize the patterns of effort 
bias in the data, allowing for automated BCC implementation. 
Here, as a first step, we attempt to integrate the whole density of 
observations in the study area (i.e. target- group observation den-
sity; Figure 1a) as bias covariate within PPMs, alone (referred to as 
Target- BCC), and in combination with Classic- BCC (referred to as 
Mixed- BCC).

As already mentioned, correcting observer bias in presence- 
only models is increasingly done with BCC. Still, this approach does 
not address the potential environmental bias that may occur in the 
sampling design of observational datasets. Before data collection, 
appropriate sampling design should be environmentally stratified 
(Albert et al., 2010; Austin & Heyligers, 1989; Hirzel & Guisan, 2002; 
Mohler, 1983). Indeed, sampling frequencies in environmental space 
may still remain skewed if species observations are not initially sam-
pled according to an environmental stratification. Moreover, BCC 
effectiveness is generally known to decay proportionally to the 
correlation between observer bias and environmental predictors 
(Warton et al., 2013). For example, if a bias covariate is strongly cor-
related with temperature, correcting predictions for the calibrated 
observer bias would also correct predictions for the calibrated tem-
perature, thus skewing the species response. As a second step, we 
thus address this limitation within a novel corrective method based 
on random stratified sampling (referred to as environmental bias 
correction or EBC). Correcting sampling bias by filtering, before 
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model calibrations, single- species observations based on environ-
mental conditions has previously been addressed, with contrasting 
results (Fourcade et al., 2014; Varela et al., 2014). Our method ex-
tends such developments by correcting potential environmental bias 
by applying an artificial environmental stratification to the whole 
observational dataset. More specifically, environmental clusters 
that represent the main environmental conditions are generated 
across the study area. Within each cluster, the original observa-
tions of species are then concurrently subsampled without altering 
their ecological preferences. Depending on the research question 
or system studied, the type of random stratified sampling selected 
may be equal (sampling size equal across clusters) or proportional 
(sampling size proportionate to each cluster’s area) across the study 
region (Boschetti et al., 2018; Hirzel & Guisan, 2002; Williams & 
Brown, 2019).

In this study, we tested the potential of the two above- mentioned 
EBC strategies as well as the Target- BCC approach to correct for 
observer and sampling bias in presence- only SDMs. More precisely, 
we investigated the effectiveness of ‘EBC equal- stratified’ (EBCe) 
and ‘EBC proportional- stratified’ (EBCp) strategies, along with dif-
ferent BCC strategies considering Classic- , Target-  and Mixed- BCC, 
to model the distribution of 1,900 plant species across the European 
Alps. To provide a valuable comparative analysis, we evaluated the 
SDMs with both spatial block split- sampling (BSS) and an indepen-
dent test dataset (Flora Alpina; Aeschimann et al., 2004). From the 
model projections, we generated diversity maps for each corrective 
strategy and compared them to a map of expert- based plant diver-
sity of the European Alps.

2  | MATERIAL S AND METHODS

2.1 | Study area

The study area covered the European Alps, as defined by an enlarged 
version of the official Alpine Convention perimeter (Permanent 
Secretariat of the Alpine Convention, 2009). The enlargement con-
sisted of adding Switzerland entirely, as well as two French depart-
ments, Ain and Bouches- du- Rhône, for which we had extremely 
well- documented species observations. The size of the total study 
area is 294,994 km2, and includes a wide range of climatic and topo-
graphic conditions.

2.2 | Species observations

The observational dataset used in this study was compiled from more 
than 210 individual sources, with the largest contributions from the 
National Data and Information Centre on the Swiss Flora (InfoFlora; 
c. 48%), the French National Alpine Botanical Conservatory (CBNA; 
c. 19%), the French National Mediterranean Botanical Conservatory 
(CBNMED; c. 5%), and the Global Biodiversity Information Facility 
(GBIF, http://www.gbif.org/; c. 2%). All datasets were merged after 
unifying the species taxonomy, and after severely filtering inaccu-
rate GBIF geo- referenced observations (see Chauvier et al., 2021 for 
more information on methods).

In total, the original observational dataset included 3,560 species 
(Figure 1a). This set was further filtered according to the prevalence 

F I G U R E  1   Distribution of species observation densities across the extended European Alps. (a) shows the whole target group 
observation densities (i.e. Target group v1.0 layer). It includes 6,523,980 observations for 3,560 species. (b) shows observation densities used 
to model species distributions. It represents 5,369,442 observations for 1,900 species. Distribution of species densities was aggregated at 
3- km resolution for better visual representation and log transformed 
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of each species (or proportion of 1- km pixels occupied); that is, spe-
cies occurring in fewer than 100 pixels across the study area were 
removed. In total, the refined observational dataset included 1,900 
species (Figure 1b) for model calibration (see Supporting Information 
Appendix S1: Table S1 for information on data distribution ranges). 
It is important to note that for species with >10,000 observations, 
we sampled randomly without replacement a subset of 10,000 ob-
servations for better computation efficiency (following Thuiller 
et al., 2018).

Additionally, an independent and unbiased test dataset, report-
ing the empirical distributional range of our 1,900 plant species 
over the European Alps, was constructed from expert- based infor-
mation available in the Flora Alpina (FA) for a total of 54 political 
units (Aeschimann et al., 2004). For each species, we generated 
binary FA presence/absence rasters at a 1- km resolution by inter-
secting the polygons of its expert- based native political units with 
its expert- based elevation preference (see Supporting Information 
Appendix S1: Table S2, Figure S1 for more information). The 1,900 
species binary layers were used for independent model evalua-
tion, and to construct a map of expert- based plant diversity of the 
European Alps.

2.3 | Environmental data

We extracted all 19 bioclimatic variables from the Climatologies at 
High resolution for the Earth’s Land Surface Areas (CHELSA) portal 
(Karger et al., 2017, http://chels a- clima te.org/), available for the time 
period 1979– 2013. All predictors were kept at a 1- km spatial reso-
lution and projected to the standard Lambert azimuthal equal area 
projection for Europe (EPSG:3035). A principal component analysis 
(PCA) was computed among all 19 variables to obtain PCA axes sum-
marizing the main climatic patterns. We kept the first five PCA axes 
that cumulatively explained >90% of the total variance.

2.4 | Model calibration

We used point- process models (PPMs), where model output repre-
sents the intensity of the expected number of species occurrences 
per unit area, which is modelled as a log- linear function of the en-
vironmental covariates (Renner et al., 2015). PPMs were calibrated 
as a ‘down- weighted Poisson regression’ (DWPR, following Renner 
et al., 2015), using a generalized linear model (McCullagh, 1984) 
with second- order polynomials for all covariates (see Supporting 
Information Appendix S1: Text S1 for more details). Quadrature 
points (commonly referred to as background data) were here used 
to estimate the model log likelihood (see Supporting Information 
Text S1), and sampled randomly without replacement across the 
study area over a 1- km regular mesh. We estimated for each PPM 
the appropriate number of quadrature points by running 10 re-
peated series of DWPR while gradually increasing the number of 
randomly sampled points from 500 to 800,000, as explained in 

Renner et al. (2015) (in Figure 2b). The number of quadrature points 
at which the log likelihood converged was then automatically kept 
(see Supporting Information Appendix S1: Figure S2 and Text S1).

2.5 | Bias covariate correction (BCC)

In total, we generated six bias covariates approximating survey ef-
fort. For Classic- BCC, four covariates were based on roads and cit-
ies. Distance to roads (a) and to cities (b) were generated based on 
OpenStreetMap (https://www.opens treet map.org). All roads and 
cities of our study area were extracted from this source and con-
verted into two binary 100- m grids. Distances to roads and cities 
were, respectively, calculated with the Geospatial Data Abstraction 
Library (GDAL; https://gdal.org/) and aggregated by sum to 1- km res-
olution (Bonnet- Lebrun et al., 2020; El- Gabbas & Dormann, 2018a). 
Density of roads (c) and of cities (d) were obtained by aggregating the 
binary 100- m layers by sum to 1- km resolution.

For Target- BCC, two covariates were based on the target group 
observation density (of the original observational dataset of 3,560 
species) across the study area (Figure 1a). Target group v1.0 (e) 
represented the observation density of all 3,560 species at 1- km 
resolution (see Figure 1a), whereas Target group v2.0 (f) was a kernel- 
smoothed sampling intensity surface of the former (see Supporting 
Information Appendix S1: Figure S3).

All bias covariates were projected to the standard Lambert 
azimuthal equal area projection for Europe (EPSG:3035), after 
square root transformation (following Renner et al., 2015; Warton 
et al., 2013).

For each species, 12 PPMs were calibrated (see Figure 2a). Each 
PPM included as predictors, the first five climate PCA axes, and as 
for BCC, a unique combination of bias covariates (Figure 2b). No- BCC 
had no bias covariate included. Classic- BCC used Density of roads 
and of cities (BCCde), Distance to roads and to cites (BCCdi) or both 
(BCCdd) as bias covariates. Our proposal, Target- BCC, used Target 
group v1.0 (BCCtg1) and its analogue Target group v2.0 (BCCtg2) as 
bias covariates. Finally, we tested six combinations of Classic-  and 
Target- BCC (Mixed- BCC) in order to test whether combined BCC 
strategies improve observer bias correction; that is, BCCtg1.de, 
BCCtg1.di, BCCtg1.dd, BCCtg2.de, BCCtg2.di and BCCtg2.dd.

Implementing BCC in PPMs allows for modelling species ob-
servation intensities both as a function of environmental predic-
tors, and of an assumed observer bias (Renner & Warton, 2013; 
Warton et al., 2013, see Supporting Information Appendix S1: 
Text S2 for formula). Once calibrated, all models were spatially 
projected, with bias covariates being set to a constant value of 
0 for all cells to correct for the fitted observer bias (following 
Warton et al., 2013). It is important to note that all bias covari-
ates were weakly correlated with all climate PCA predictors; that 
is, Pearson’s |r| < .33 (see Supporting Information Appendix S1: 
Figure S4 for more details). Environmental effects were therefore 
hardly masked by observer- bias effects during model calibration 
(Warton et al., 2013).
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2.6 | Environmental bias correction (EBC)

The model design described so far was repeated for all 1,900 spe-
cies with and without an additional, novel corrective method based 
on random stratified sampling (EBC). Stratified sampling design 
of species observations may be equal or proportional (Boschetti 
et al., 2018; Hirzel & Guisan, 2002; Williams & Brown, 2019). We 
therefore accounted within our models for three different strategies: 
no (No- EBC), proportional- stratified (EBCp) and equal- stratified EBC 
(EBCe; Figure 2a). To this end, 100 clusters of similar environmental 
conditions were first generated over the European Alps (Figure 3a, 
see Supporting Information Appendix S1: Figure S5 for non- 
summarized legends). Environmental conditions were defined based 
on the first five climate PCA axes, from which we identified clusters 
with the clustering large applications (CLARA) method, using the R 
package cluster (Maechler et al., 2019; R Core Team, 2020; Reynolds 
et al., 2006; Schubert & Rousseeuw, 2019). The number of clusters 
was selected to be large enough to account for the environmental 
complexity of the study area.

EBC corrects, before model calibrations, potential environmental 
bias in the design of an observational dataset, by artificially subsa-
mpling original species observations according to the environmental 
stratification of the study area (Figure 3b,c). The equal- stratified de-
sign, EBCe, scales the number of species observations in each cluster 
proportional to the total number of observations, across all species, 
found in the cluster with the highest observation density (cluster no. 
31 in Figure 3). The correction is thus not applied to species individ-
ually, but rather across all species, which means that although the 
number of observations per species in a cluster is changed, its pro-
portion relative to the other species remains constant. By this, each 

species’ environmental bias is corrected among clusters without al-
tering its ecological preference. The proportional- stratified design, 
EBCp, additionally multiplies the number of observations per species 
and clusters by the cluster’s area.

The resulting output then indicates a new number of observations 
per cluster and species that may be subsampled with replacement 
over the original observational dataset (see Supporting Information 
Appendix S1: Figure S6 for observation counts along climate pre-
dictors). EBCp and EBCe are implemented in the R function wsl.ebc 
(R Core Team, 2020; see Supporting Information Appendix S2 for 
function, description, examples, code and parameters).

2.7 | Model evaluation

We assessed the predictive performance of each PPM under five-
fold spatial block split- sampling tests (BSS; Roberts et al., 2017). 
This approach requires preliminarily delineating independent spa-
tial blocks to partition observations in geographic space. Here we 
evenly partitioned each set of species observations and quadrature 
points into 10 blocks and combined them into five folds (two blocks 
per fold were combined so that differences in number of observa-
tions across folds were minimal). To this end, we first ran a parti-
tioning around medoids clustering on the observation coordinates 
and, in a second step, k- nearest neighbour classification to assign 
quadrature points to observation blocks (see Brun et al., 2020 for 
more details). Model evaluation was also performed against the in-
dependent Flora Alpina dataset. For each PPM, the same number 
of Flora Alpina presences/absences as quadrature points were sam-
pled, to ensure balanced repartitioning among folds. To make the 

F I G U R E  2   Model framework of the study. (a) shows the pipeline applied for our analysis in order to generate 684,000 projections for 
1,900 species. For each species, 12 types of bias covariate correction (BCC) were applied, and each model was calibrated with three types 
of environmental bias correction (EBC); no (No- EBC), proportional- stratified (EBCp) and equal- stratified EBC (EBCe). Two types of model 
evaluation were performed: with fivefold spatial block split- sampling (5- fold Block SS) and the Flora Alpina independent dataset (FA). Each 
projection was converted to binary presences/absences using two different estimates of the maximum true skill statistic threshold (maxTSS); 
that is, for each evaluation. (b) describes the 12 BCC strategies used along five climate principal component analysis (PCA) axes to calibrate 
the point- process models (PPMs) 
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two evaluation strategies comparable, the same block structure 
was applied to the Flora Alpina presences/absences (see Supporting 
Information Appendix S1: Figure S7 for spatial block split- sampling 
details). PPM performance was thus concurrently calculated using 
presences/quadrature points, and Flora Alpina presences/absences 
of the left- out fold, for spatial block split- sampling and Flora Alpina 
evaluations, respectively.

Model predictions were evaluated with the true skill statistic 
(TSS; Allouche et al., 2006). For each fold, projected observation in-
tensities were converted to a binary presence/absence raster using 
two different estimates of the maximum TSS threshold (maxTSS); 
that is, one per evaluation type. For each species, EBC- BCC strat-
egy, and evaluation, binary rasters of each fold were summed, and 
presences were assigned to pixels when at least half of the folds 
predicted so (Araújo & New, 2007; Guisan et al., 2017; Thuiller 
et al., 2009). In total, we generated and stacked 1,900 binary rasters 
of species presence per EBC- BCC strategy (n = 36) and evaluation 
type (n = 2), obtaining 72 maps of modelled species diversity over 
the European Alps that we could compare to an expert- based map.

Finally, we used nonparametric Friedman tests to detect differ-
ences in model predictive performances (Friedman X2) between all 
BCC treatments tested in our study, when EBCp/e applies or not. 
Post- hoc Nemenyi tests were applied to assess pairwise differences 
between treatment means (*p- value < .05) using the R package 
PMCMR (Pohlert, 2014; R Core Team, 2020).

3  | RESULTS

When No- EBC was considered, models including No- BCC showed 
higher TSS than models including Target- BCC for the split- sampling 
evaluation (Friedman X2 = 546.1, p- value < .001, Figure 4b), but lower 
TSS for the independent Flora Alpina evaluation (Friedman X2 = 
4,313.4, p- value < .001, Figure 4e). Classic- BCC had overall the same 
performance as No- BCC models, while Mixed- BCC models showed 
similar performance to that of Target- BCC models. All results were 
confirmed with the Area Under the ROC Curve (AUC) and Boyce index 
tests (see Supporting Information Appendix S1: Figure S8, Table S3.

F I G U R E  3   Methodology framework of the environmental bias correction (EBC). (a) summarizes with a 10- colour palette the 100 
environmental clusters obtained using the clustering large applications (CLARA) method for better visualization. (b) defines the EBC 
methodologies that were applied in the study for 1,900 species. Each cluster j (matrix columns) summaries per species m (matrix rows) the 
original number of observations (yellow box). Equal- stratified EBC (EBCe) here multiplies and divides each cluster j, by the total number 
of observations across all species in cluster no. 31 and j, respectively (black terms in Equation 1). Proportional- stratified EBC (EBCp) 
additionally multiplies each cluster j by its area in pixels (added green term in Equation 1). Results indicate a new number of observations 
(EBCe or EBCp) per cluster and species (blue box), which are subsampled with replacement from the original observational dataset. (c) 
summarizes per cluster the observation densities in the different datasets, for uncorrected (yellow shade), EBCp (green shade) and EBCe 
(blue shade) corrections, relative to the cluster distribution across the whole study area (grey shade). For better visualization, 200,000 
and 180,000 cluster values were sampled randomly without replacements over the study area and for the three sets of observations 
(uncorrected, EBCp and EBCe corrected). For more clarity, an interpolation spline between palette counts was applied 
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Projected species diversity for No- BCC models was more biased 
towards Switzerland under split- sampling than independent evalu-
ation (Figure 4a,d). Target- BCC decreased this spatial bias for both 
evaluation strategies, although more strongly for the independent 
evaluation (BCCtg1: Figure 4c,f; BCCtg2: see Supporting Information 
Appendix S1: Figure S9a). Indeed, Target- BCC projected diversity 
displayed stronger correlations with the expert- based diversity for 
independent evaluation (r(BCCtg1) = .32, r(BCCtg2) = .35) rather than 
under split- sampling (r(BCCtg1) = −.12, r(BCCtg2) = −.11; see Supporting 
Information Appendix S1: Figure S10).

When EBC was considered, the quality of model predictions 
and correlations with expert- based diversity increased, and differ-
ences in model performances between all models decreased. For 
split- sampling evaluations, models including Target- BCC performed 
similarly to models including No- BCC (EBCp: Friedman X2 = 372.2, p- 
value < .001, Figure 4h; EBCe: Friedman X2 = 257.3, p- value < .001, 
see Supporting Information Appendix S1: Figure S11b). For the in-
dependent evaluation, Target- BCC performed better than No- BCC 
(EBCp: Friedman X2 = 2,144.2, p- value < .001, Figure 4k; EBCe: 
Friedman X2 = 2,806.5, p- value < .001, see Supporting Information 
Figure S11e). Classic- BCC had overall the same performances as 
did No- BCC models, and Mixed-  as Target- BCC models. Again, 
our results were not sensitive to the evaluation metric used (see 
Supporting Information Figure S8, Table S3).

Adding EBCp/e to No- BCC led to very similar projections for both 
evaluation methods, with a less biased pattern towards Switzerland 
(Figure 4g,j; see Supporting Information Figure S11a,d). The same 
trend applied when adding EBCp/e to BCCtg1/2, but with higher 
diversity patterns at low elevations (Figure 4i,l and Supporting 
Information Figures S9b,c). Finally, Target- BCC projected diversity 
displayed strongest correlations with the expert- based diversity 
for both split sampling (EBCp: r(BCCtg1) = .37, r(BCCtg2) = .37; EBCe: 
r(BCCtg1) = .33, r(BCCtg2) = .33) and Flora Alpina evaluation (EBCp: 
r(BCCtg1) = .51, r(BCCtg2) = .51; EBCe: r(BCCtg1) = .56, r (BCCtg2) = .56; 
Figure 5 and Supporting Information Figure S10).

4  | DISCUSSION

In this paper, we compared different strategies to correct for ob-
server and sampling bias in presence- only SDMs, and demonstrated 
that model predictions of plant species distributions in the European 
Alps are considerably improved when EBC is implemented (Figures 4 
and 5). While BCC focuses on the correction of observer bias via 
covariate adjustment, EBC implements a complementary correc-
tion based on random stratified sampling (Austin & Heyligers, 1989; 
D’Antraccoli et al., 2020; Hirzel & Guisan, 2002; Mohler, 1983). 
Environmentally imbalanced sampling designs in observational data-
sets is a recurrent issue in ecological studies (Albert et al., 2010; 
Hirzel & Guisan, 2002). EBC corrects for this environmental bias by 
applying an artificial environmental stratification to the observa-
tional dataset through two design variants (EBCp, EBCe). This strati-
fication corrects over all species observations the excessive sampling 

effort detected in specific environments of the study area, allow-
ing known limitations regarding BCC to be overcome. Bias covari-
ate correction works generally well to address geographic observer 
bias (Bonnet- Lebrun et al., 2020; El- Gabbas & Dormann, 2018a; 
Warton et al., 2013). However, this correction is only meaningful (a) 
if the observer bias covariate remains weakly to moderately corre-
lated with the environmental predictors used in the model (Warton 
et al., 2013), and (b) if it adequately describes the origin of the bias 
in the data. EBC overcomes both limitations and may therefore be 
implemented independently to BCC.

Nevertheless, EBC should (a) only be applied if environmental bias 
is apparent, (b) ideally implemented for specific species, and (c) pre-
serve the influence of the environmental cluster in which the species 
was originally most sampled. (a) Environmental bias in observational 
data is usually a consequence of spatial bias (Bystriakova et al., 2012; 
Phillips et al., 2009). The observational dataset must therefore be 
carefully explored in geographic and environmental space prior to 
analysis to detect potential environmental biases. Here, this bias was 
geographically (Figure 1) and environmentally (Figure 3) detected, 
with disproportionately high sampling within the administrative bor-
der of Switzerland. (b) Subsampling species observations in environ-
mental space should not be applied to species whose environmental 
bias strongly differs from the overall one (i.e. if the number of origi-
nal species observations per cluster is weakly correlated with that of 
the full dataset). In our analysis, this correlation was strong for Abies 
alba (r = .84), but weak for Pinus cembra (r = .13; Figure 6). Therefore, 
while EBC corrected the environmental bias of the former, it dis-
torted the originally well- distributed observations of Pinus cembra in 
the latter, correcting for a non- existent environmental bias. (c) After 
implementing EBC, the cluster in which the species was originally 
most sampled no longer necessarily contains the highest number of 
subsampled observations. Subsampled observations may indeed be 
relatively more frequent in other clusters with originally stronger 
under- sampling. Although such corrective behaviour is pursued, one 
could require per species the cluster with the most original observa-
tions to be as representative as the cluster with the most corrected 
observations, especially if EBCp is applied (see arrows and Abies 
alba, Datura stramonium; Figure 6). Such optional adjustment could 
be particularly beneficial for SDM studies seeking to preserve the 
environmental influence of heavily sampled regions. In respect of (b) 
and (c), further descriptions and codes addressing such limitations 
are detailed in Supporting Information Appendix S2.

Although EBC may be implemented independently, we found that 
combining it with bias covariate correction yields better predictive 
performance and better agreement with our independent diversity 
map (Figures 4 and 5; as predicted in Table 1). Unless strong cor-
relations between the bias and environmental covariates are found, 
BCC should be implemented together with EBC, as bias covariate 
correction remains strongly relevant if EBC does not initially succeed 
in correcting for the environmental bias (see Pulmonaria obscura; 
Figure 6). Particularly, Target- BCC improved model performance/
predictions compared to Classic- BCC, with BCCtg1/2 producing 
very similar results (Supporting Information Figures S9– S11); that is, 
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an approximate density map of observations (Target group v2.0) is as 
efficient as the pixel- by- pixel target group observation density of 
the study area (Target group v1.0) when applying Target- BCC. While 
this correction can improve and simplify the implementation of BCC, 
we advise Mixed- BCC to be used by default, as Classic-  and Target- 
BCC could perform differently depending on the observational data-
set, and their combination may correct more robustly. In our study, 
Target- BCC likely performed best because the survey effort across 
our study area showed strong large- scale variations, with peaks in 

Switzerland and southern France. Although these regional or ad-
ministrative biases are quite common across observational datasets, 
superimposing biases related to accessibility (e.g. roads, coasts, 
elevation or cities) are also frequent, and often species- specific. 
Including concurrently covariates targeting different types of bias 
should therefore make BCC more adaptive and performant.

Employing semi- dependent (spatial split block sampling) and 
independent (Flora Alpina dataset) evaluation strategies, as well 
as corresponding estimates of the maxTSS, revealed an ‘evaluation 

F I G U R E  4   True skill statistic (TSS) of species distribution models when 12 bias covariate corrections (BCC), no environmental bias 
correction (No- EBC) and proportional- stratified EBC (EBCp) apply, for both block split- sampling (BSS) and Flora Alpina (FA) evaluations 
(b, e, h, k). Related species diversity (1,900 species) of No- BCC and BCC Target group v1.0 (BCCtg1) are shown on the left and right panels 
respectively. Projected diversity is described here for No- EBC (a, c, d, f) and EBCp (g, i, j, l). The 12 BCC are categorized as follows: No- BCC 
(orange), Classic- BCC (red), Mixed- BCC (blue) and Target- BCC (green). Friedman tests were here applied for each of the four centre panels 
(***p- value < .001 for all): Friedman X2 = 546.1, 4,313.4, 372.2 and 2,144.2 (b, e, h and k, respectively). All pairwise comparisons were run 
with post- hoc Nemenyi tests and displayed following a letter- based representation (p- value > .05) 
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paradox’, which is conditional on whether the test data are truly 
independent. In agreement with other studies, we confirm that 
non- corrected model predictions seem to perform better than 
corrected ones, if the observations used for testing and calibrat-
ing originate from the same spatially biased observational dataset 
(Smith et al., 2021; Stolar & Nielsen, 2015; Warton et al., 2013). This 
paradox was particularly apparent under split- sampling evaluation, 
and when comparing No- BCC with Target- BCC models (Figure 4a– f). 
This paradox may be quite detrimental if SDMs are selected based 
on TSS, or other evaluation metrics, calculated from test data lacking 
independence. This may lead to inappropriate model selection, and 

consequently to erroneous spatial predictions of species distribu-
tions. Interestingly, when EBC is applied, the amplitude of the par-
adox strongly diminishes, and similar evaluation performances are 
obtained for split sampling and independent tests when predicting 
plant diversities (Figure 4g– l). This means that implementing EBC 
decreases the risk of inappropriate evaluations and therefore pre-
dictions, regardless of the evaluation procedure.

However, the correlations we found between predicted and 
expert- based diversities (Figure 5) remained moderate, and this 
may have different reasons: (a) the expert- based diversity is only 
based on filtered coarse political units, which may not represent 

F I G U R E  5   Comparison between expert- based species diversity (Flora Alpina) and Target- BCC (BCC Target group v1.0; BCCtg1) projected 
and binarized (maximum true skill statistic threshold, maxTSS) diversity, when proportional- stratified EBC (EBCp) is applied for split sampling 
and Flora Alpina evaluation. (a) represents the expert- based plant diversity constructed from the independent test dataset. (b) and (d) 
represent projected diversity maps found in Figure 4i and 4l, respectively. (c) and (e) show the statistical relationship between expert- based 
diversity and projected diversity, for block split- sampling (BSS) and Flora Alpina (FA) evaluation. For this analysis, 10,000 values were 
spatially sampled randomly without replacement per diversity layer. Both panels display Spearman's rank correlation coefficient r, and the 
explained deviance D2 from a fitted Poisson- based generalized linear model (GLM) with first- order polynomials 
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the true and detailed shape of plant diversity in the European Alps. 
To simplify model comparisons and computations, (b) our study 
did not remove species models with comparably low TSS, and (c) 
only climate predictors were used, whereas soil and land cover 
have been shown to be essential for predicting more accurately 
plant species distribution (Chauvier et al., 2021). Finally, it is es-
sential that sampling design is based on prior knowledge of the sys-
tem studied (Albert et al., 2010; Arneill et al., 2019; D’Antraccoli 
et al., 2020). If available, EBC can include other prior variables (than 
climate predictors) that are thought to have an influence on the 
species distribution (e.g. longitude, latitude, elevation or habitat 

suitability maps). No consensus exists on the best random strat-
ified sampling design; however, not all designs should be based 
on the environmental space of the study area. The same problem 
arises when ecological studies need to choose between a propor-
tional or equal- stratified design when inventorying or collecting 
species samples (Hirzel & Guisan, 2002). Accordingly, EBCp and 
EBCe may be both implemented via our R function (R Core Team, 
2020; see Supporting Information Appendix S2).

To conclude, we propose that combining both EBC and bias co-
variate correction might be the best choice in presence- only SDMs 
when predicting current and future species distributions. Given the 

F I G U R E  6   Summary of observation densities per cluster for four selected species, using uncorrected (yellow shade), proportional (EBCp; 
green shade; first column) and equal- stratified EBC (EBCe; blue shade; second column) corrected data. The data are shown relative to the 
cluster distribution across the study area (grey shade). Two thousand cluster values were sampled randomly without replacements within the 
study area and for the three sets of observations (uncorrected, EBCp and EBCe corrected). For more clarity, an interpolation spline between 
palette counts was applied. Arrows indicate the difference between EBC corrected observations of the densest original cluster (with the 
highest number of original observations) and the densest corrected cluster (with the highest number of corrected observations). The third 
column displays Pearson's correlations between the number of original observations per cluster for Abies alba, Pinus cembra, Pulmonaria 
obscura and Datura stramonium (first, second, third and fourth row, respectively) and that of the full dataset (all; see Figure 3c). CLARA = 
clustering large applications 
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growing interest in using citizen- science data to follow and predict 
invasive species, to guide the reintroduction of species, or to protect 
biodiversity (Grünig et al., 2020; Hunter- Ayad et al., 2020; Lehtomäki 
et al., 2019), using these corrections may prove to be strongly bene-
ficial for future ecological studies, which will increasingly implement 
presence- only models. Interestingly, all methods presented here 
may be extended independently to presence– absence data not sub-
ject to the same observer bias, and might turn out to be useful for 
further ecological applications.
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