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 50 

SA1: Model description  51 

 52 

BIOMOD (Thuiller 2003; Thuiller  et al. 2005; Thuiller et al. 2006; Thuiller et al. 2009) is 53 

a package implemented in R software for ensemble forecasting of species distributions, 54 

enabling the treatment of a range of methodological uncertainties in species distribution 55 

models and the examination of species-climate relationships. Here, we used the nine models 56 

implemented BIOMOD: Generalised Linear Models GLM (McCullagh & Nelder 1989), 57 

Generalised Additive Models GAM (Hastie & Tibshirani 1990), Multivariate Adaptive 58 

Regression Splines MARS (Freidman 1991), Classification Tree Analysis CTA (Breiman et 59 

al. 1984), Mixture Discriminant Analysis MDA (Hastie et al. 1994), Artificial Neural 60 

Networks ANN (Ripley 1996), Generalised Boosted Models GBM (Ridegeway 1999), 61 

Random forests (Breiman 2001), and one Rectilinear Envelope Similar to BIOCLIM (Busby 62 

1991). Seven climatically derived variables considered critical to plant physiological function 63 

and survival were used as input data in BIOMOD: mean annual, winter, and summer 64 

precipitation, mean annual temperature and minimum temperature of the coldest month, 65 

growing degree days (GDD>5°C) and an annual potential evapotranspiration. Mean monthly 66 

values were averages for the period of 1971-2000 and of 2046-2065.  67 

 For each species and for all models, 70% of the original data were used for the model 68 

calibration, while 30% were kept for model evaluation using the True Skill Statistics (TSS) 69 

method (Allouche et al. 2006). This procedure was repeated ten times to make sure the model 70 

predictive accuracy was not influenced by the random-splitting procedure. 71 

 To account for the fact that different models are used altogether, we applied a 72 

committee averaging method to extract a single output from the 9 models X 10 repetitions of 73 

outputs per model. The committee averaging method is an ensemble forecasting method 74 

(Thuiller et al. 2009) based on the use of different model algorithms (e.g. regressions, 75 

classification trees, machine learning). The rationale of ensemble forecasting is that different 76 

algorithms have different levels of accuracy under different circumstances and there is no 77 

single perfect algorithm (Elith* et al. 2006). In the committee averaging method, predicted 78 

probability maps of species' presences from the different algorithms are not averaged, but 79 

instead transformed into binary maps (using for each model the threshold that maximizes 80 

TSS) which are then summed to obtain one single map of the final output. In other words, 81 

each model "votes" for each site whether it forecasts species presence or not. It is therefore 82 
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not a probability of occurrence that is measured but rather a percentage of agreement on 83 

species presence between the various algorithms and repetitions (90 binary maps). The main 84 

advantage of the committee averaging method is the use of "comparable outputs" (binary 85 

presence-absences) instead of the raw algorithm outputs (continuous probabilities) that do not 86 

necessarily have the same meaning or the same range of variation. Note that we did not 87 

necessary use the 90 binary maps as we only kept the models having a TSS higher than 0.3 (to 88 

make sure bad models were excluded). The final committed averaging outputs were 89 

transformed into binary presence-absence using a threshold maximizing the TSS.  90 

 Another advantage of the committee averaging procedure is that the raw output (not 91 

binary transformed and standardized between 0 and 1) gives the likelihood of being true given 92 

the data and models. Values close to 0 mean that all models and repetitions agree that predict 93 

an absence. Values close to 1 mean that all models and repetitions agree to predict a presence. 94 

Intermediate values give the uncertainty associated with the projection.  95 

 96 

N-NBM (Badeau et al. 2010) investigated the relationship between the binary responses of 97 

trees and the explanatory variables with a logit function (proc logistic SAS 9.2, 2002). No 98 

climatic variable was considered a priori critical, so N-NBM used a wide set of potential 99 

explanatory effects: minimum, maximum and mean temperatures; precipitations; wind speed; 100 

relative humidity and vapor pressure deficit; atmospheric pressure; global solar irradiance; 101 

potential evapotranspiration (based on Turc’s formula, Penman’s formula and Penman-102 

Monteith’s formula corrected by the CO2 concentrations); growing degree days (>0°C, >5° 103 

and >10°C); number of days of frost (<0°C, <-5°C, <-10°C). A daily water balance model 104 

(Granier et al. 1999) was also used to quantify the water stress intensity, the number of days 105 

of water stress; the start date of water stress. Each of these three variables was calculated for 106 

deciduous and evergreen forests using the three PET calculations. Monthly, seasonal and 107 

annual values were computed from daily data covering the 1971-2000 period. Effects in the 108 

models were selected according to a stepwise method and a significance level of the score chi-109 

square ≤0.0001. The compromise between the number of variables and the model 110 

performance was evaluated step-by-step with the Nagelkerke R², AIC values, Khi² score, 111 

variance inflation factor, collinearity and TSS. Because numerous explanatory variables can 112 

be added to the models with very low significance levels, an expert-based selection was also 113 

used: each new variable entering into the model should have a “physiological sense” 114 

otherwise the procedure stops (e.g. the significance of November atmospheric pressure is not 115 

obvious); at each step the new variable should improve significantly the TSS (better ranking 116 
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of one hundred points at least); the number of explanatory variables was strongly limited (no 117 

more than five variables for the species studied here). Calibration / validation procedures were 118 

done three times at least (i.e. if the order of the variables was consistent) on randomly selected 119 

points (70% / 30% of the original data). Final parameter estimates were averaged from the 120 

three calibrations. 121 

 122 

STASH (Sykes et al. 1996; Sykes 2001) is a bioclimatic model that simulates the 123 

biogeography of individual plant species at the continental scale. This model estimates the 124 

bioclimatic envelope of the considered species by comparing its native distribution with 125 

gridded bioclimatic data. The bioclimatic envelope consists of a minimum set of 126 

physiologically constraining environmental parameters to plant growth and regeneration (i.e. 127 

mean temperature of the coldest month, mean temperature of the warmest month, 128 

accumulated growing season warmth (GDD), chilling requirement for budburst and a drought 129 

index). These parameters associated to physiological mechanisms are assumed to control 130 

species' distribution limits. Some of these parameters act as on-off switches on the growth 131 

index calculated by STASH, other parameters act as multipliers of the growth index and 132 

determine the degree of presence of the species in a grid cell (See Sykes et al. 1996 for further 133 

details). 134 

 STASH requires monthly mean values of temperature, precipitation and percentage of 135 

cloudiness, to generate gridded bioclimatic parameters over i) the time period corresponding 136 

to the native distribution dataset to define the bioclimatic envelope of the focal species ii) the 137 

considered time periods of the study to compute specialised growth index by comparison with 138 

the previously defined bioclimatic niche. 139 

 140 

PHENOFIT (Chuine & Beaubien 2001; Morin & Chuine 2005) is composed of several 141 

sub-models: different phenological models (leafing, flowering, fruiting, and leaf senescence), 142 

a frost injury model, a survival model and a reproductive success model. Every sub-model 143 

works at a daily time-step. The model outputs a mean probability of presence of an adult tree 144 

of the studied species. This probability is assessed by the fitness of the individual, calculated 145 

as the product of its probability to survive until the next reproductive season and to produce 146 

viable seeds before the end of the annual cycle (reproductive success). In this study, fitness 147 

was averaged over the time slice. Parameter estimates are either directly measured (e.g. LT50, 148 

temperature inducing 50% frost damage on leaves or buds or twigs) or fitted on observations 149 

of the species traits. The inputs are daily climate variables (daily maximum and minimum 150 



 6 

temperatures, precipitation, relative humidity, total incoming shortwave radiation, wind 151 

speed) and the holding water capacity of a site. The version used for this study used the leaf 152 

senescence model of (Delpierre et al. 2009) and a daily water balance calculated with a 153 

Penman PET. 154 

 155 

CASTANEA (Davi  et al. 2005; Dufrêne et al. 2005) is an eco-physiologically multi-layer 156 

process-based model, simulating carbon, energy and water balance, and stand growth in an 157 

even-aged monospecific forest stands. For most processes the stand is represented by an 158 

average tree. As far as mortality is concerned, a gaussian tree distribution is considered for the 159 

key state variables (notably carbon reserves). 160 

 Tree structure is subdivided into four functional compartments: foliage, aboveground 161 

and belowground woody biomass (stem, branches and coarse roots), fine roots, and 162 

carbohydrates reserves pool located in sapwoods of woody biomass. The canopy is 163 

considered homogeneous horizontally and vertically subdivided into a variable number of 164 

layers, each of them enclosing a constant (small) amount of leaf area. The main processes 165 

simulated are: (i) at half-hourly timescale, the canopy photosynthesis, maintenance and 166 

growth respiration (autotrophic respiration), soil heterotrophic respiration, transpiration and 167 

evapotranspiration. (ii) and at daily timescale, the carbon allocation, growth of organs, leaf 168 

area index and water content. Tree mortality was taken into account and estimated from the 169 

carbohydrates reserve pool (when reserves reached a low level, a corresponding fraction of 170 

the trees was considered dead). The effect of CO2 concentration is directly taken into account 171 

by the photosynthesis model. The model reproduces the observed enhancement of 172 

photosynthesis and the reduction of stomatal conductance both due to CO2 increase. This is 173 

the only direct effect of CO2 increase that is assumed. All phenological events (budburst, leaf 174 

expansion and growth, start of leaf yellowing and leaf fall) are modelled daily depending on 175 

degrees-days and day duration (Delpierre et al. 2009). The present version of CASTANEA 176 

was used for two species: European beech and sessile oak. CASTANEA uses many input 177 

parameters; some of them are taken from literature, other ones estimated from field 178 

measurements, interpolation or theoretical evaluation.  179 

 Input meteorological driving variables at hourly temporal scale are global radiation, 180 

rainfall, wind speed, air humidity, air temperature and CO2 air concentration. 181 

 The duration of each simulation corresponds to the period of the forest management 182 

cycle according to a medium scenario of forest exploitation (The first cut occurs when the 183 

trees reach 40 years old, then a cut is made approximately every 10 years). For each 184 
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simulation, we replicated the climate time series (1970 to 2001 for current climate, 2046 to 185 

2065 for future climate) until the end of the forest management cycle (150 years for both 186 

species). 187 

 To analyse the predictions of the model in forest vigour and productivity, we chose as 188 

main output the sum of wood harvested during the management cycle, seen as an indicator of 189 

tree fitness. 190 

 191 

LPJ (Smith et al. 2001; Bonan et al. 2003; Sitch et al. 2003; Hickler et al. 2004; Gritti  et 192 

al. 2006; Miller et al. 2008). The version of LPJ used here is described in (Gritti et al. 2006) 193 

and does not include any modifications of the model since then (e.g. Hickler et al. 2006, 194 

Miller  et al. 2008). We ran LPJ with only one species instead Plant Functional Type (PFTs) in 195 

order to compare LPJ with the species-based models used in this study. LPJ is a generalized 196 

ecosystem model that combines mechanistic representations of plant physiological and 197 

biogeochemical processes with explicit formulations of the dynamic processes controlling 198 

vegetation structure, such as plant establishment, mortality, and competition inter and/or intra 199 

species/PFTs (although no competition was accounted for in the version used in this study), 200 

The model simulates the growth of individual trees on a number of replicate patches, 201 

corresponding approximately in size to the area of influence that one large adult tree has on its 202 

neighbours. Climate changes influence plant growth in LPJ via temperature effects on the 203 

kinetics of photosynthesis and maintenance respiration; influence of soil water content on 204 

stomatal conductance and photosynthesis; and changes in phenology (in association with an 205 

increased GDD during the growing season). Increased atmospheric CO2 concentrations result 206 

in biochemical stimulation of photosynthesis, and can lead to improved water balance due to 207 

enhanced water-use efficiency. 208 

 Climatic factors, expressed as monthly mean temperature, precipitation and 209 

cloudiness, as well as a prescribed disturbance regime (which can be used to represent land 210 

management) and soil characteristics, directly influence vegetation distribution and dynamics. 211 

 Simulations are performed across a grid. Within each grid cell the focal species 212 

performance is described as yearly or monthly production indices such as Net Primary 213 

Production or Leaf Area Index. Each species is defined by a set of parameters describing plant 214 

physionomy, allometry, physiology, phenology and bioclimatic limits. The species sets used 215 

in the present study were based on the set of the corresponding PFTs defined in the global 216 

version of LPJ-Guess (Smith et al. 2001). However species-specific values were used when 217 
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available. In this study LPJ predicts potential or ‘natural’ distribution of vegetation described 218 

by climate and intraspecific interactions within an ecosystem.  219 

 220 

ORCHIDEE (De Noblet-Ducoudré et al. 2004; Krinner et al. 2005) is a terrestrial 221 

biosphere model based on three different sub-models simulating explicitly processes of water 222 

and energy exchange between atmosphere and vegetation, terrestrial carbon cycle linked 223 

vegetation and soil decomposition processes, as well as changes in vegetation distributions in 224 

response to climate change as well as short time scale interactions between vegetation and 225 

biosphere. ORCHIDEE includes (i) a hydrological model which operates at 30 minutes time 226 

step and describes water and energy exchanges between land vegetated and atmosphere, (ii) a 227 

carbon model which operates at a one day time step and simulates the different sub-processes 228 

of the carbon cycle and their interactions: phenology, photosynthesis, respirations, carbon 229 

allocation, litter decomposition and soil carbon dynamics, and (iii) a vegetation dynamics 230 

model which operates at one year time step, and includes the parameterization of vegetation 231 

dynamics that determine the distribution of species based on bioclimatic criteria for the 232 

introduction or elimination of PFTs, fire, sapling establishment, light competition and tree 233 

mortality.  234 

 The variables used by ORCHIDEE are: minimum and maximum air temperature, 235 

shortwave and long wave incoming radiations, specific air humidity, precipitations, surface 236 

pressure and wind speed. Time step is 30’. Data are then interpolated from daily to 30’ 237 

timestep using a weather generator that allows reproducing the diurnal cycle of main 238 

parameters. The model outputs (fraction of PFT occupied by grid cells) are averaged over the 239 

time slice (20 years around 2001 and 2055). 240 

 In this study and compared to initial parameterization of (Krinner et al. 2005), some 241 

changes in vegetation dynamics have been made: 242 

 1) Climate constraints are used to define adaptation and regeneration of PFTs. Theses 243 

climatic parameters are applied to define the rate of PFT expansion and eventually the death 244 

of PFT if certain thresholds are reached. These constraints were originally only based on 245 

mean annual temperature. A new constraint on minimum soil water was introduced to account 246 

for constraints water stress on PFT distribution. Average yearly minimum soil water is 247 

calculated based on 20 years climatology. The adaptation factor is then modulated by the ratio 248 

of average climatologic minimum soil water to its threshold in a similar way to what is done 249 

with temperature. 250 
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 2) Another modification was done for calculation of the rate of PFT expansion. In the 251 

initial formulation PFT expansion rate was independent of the NPP of this PFT. This rate was 252 

only depending on regeneration factor. NPP was then only taken into account in the light 253 

competition process when sum of fractional cover of all PFT was over 95%, then PFT with 254 

highest NPP are dominant over the others PFT. The rate of expansion of each PFT is now 255 

modulated by the ratio of NPP of the PFT to the NPP of the most productive PFT. 256 

  257 

IBIS (Foley et al. 1996; Kucharik et al. 2000) is a terrestrial biosphere model designed 258 

around a hierarchical, modular structure and consists of four modules which operate at 259 

different time steps. The land surface module operates at relatively short time step (here 60 260 

min) and simulates water, CO2, and energy exchanges. The vegetation phenology module 261 

operates on daily time step and describes vegetation cycle (budburst and senescence) in 262 

relation to seasonal climatic conditions. The carbon balance module simulates gross 263 

photosynthesis, maintenance and growth respiration and net primary productivity. The 264 

vegetation dynamic module simulates at a yearly time-step the time-dependent changes in 265 

vegetation cover resulting from changes in NPP, carbon allocation, mortality and biomass 266 

turnover of each plant functional types and PFTs competition. 267 

 The energy, water and carbon fluxes simulated by IBIS have been validated against 268 

site-specific biophysical measurements from fluxes towers (Delire & Foley 1999), field-level 269 

ecological studies (Senna et al. 2005; Kucharik et al. 2006), as well as spatially extensive 270 

ecological and hydrological data (Costa & Foley 1997; Kucharik et al. 2000; Coe et al. 2002). 271 

IBIS is forced by hourly values of air temperature and humidity, precipitation, wind speed, 272 

downward solar visible and infrared radiation. We present here quasi-equilibrium results. For 273 

the current climate, the model was spin up for 500 years using the 1951-2000 climate forcing 274 

repeatedly. The last 30 years were used for the analysis. Similarly for the 2055 time slice, the 275 

model was run for 200 years looping through the 2046-2065 climate forcing and we analyzed 276 

the last 20 years. We chose to analyze results in terms of NPP because IBIS is mainly a 277 

vegetation carbon balance model and this variable best reflects the inner workings of the 278 

model. 279 

  For this study, we modified the very simple winter leaf phenology parameterization 280 

based on temperature for the deciduous trees to allow them to grow on the Western part of the 281 

country. With the original parameterization, coniferous trees would systematically win 282 

competition in the Western half of the country because the growing season of deciduous trees 283 

was too short. We also increased the specific leaf area index of broadleaved evergreen trees to 284 
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better represent Holm Oak. The original parameterization was better suited for species like 285 

Eucalyptus trees. We also had to lower the minimum bioclimatic temperature limit to allow 286 

the species in France in the current climate. The very high resolution climate data used in this 287 

study includes temperatures extremes that are not present in the climatologies at 0.5 degrees 288 

resolution used to develop the model at global scale. 289 
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SA2: Regionalized Climate 290 

 Regionalized climate scenarios were produced with a multivariate statistical downscaling 291 

methodology, which is able to generate local time series of temperature and precipitation, and 292 

other variables at different sites based on large-scale circulation predictors, here the mean sea-293 

level pressure, as well as the 2-meter temperature averaged over France. It starts from 294 

regional climate properties to establish discriminating weather types for the chosen local 295 

variable. Intra-type variations of the relevant forcing parameters are then taken into account 296 

by multivariate regression using the distances of a given day to the different weather types as 297 

predictors. The final step consists of conditional resampling. For further details in climate 298 

regionalization see (Boé et al. 2009) 299 

 300 

SA3. Model comparison in the future climate 301 

To respond to the question “For a given simulated distribution of a tree species under current 302 

climate, what fraction is projected to disappear in the future?", we calculated a relative rate of 303 

gain or loss for each species for each of the 14 bioclimatic regions as: (sum of 2055 grid cells 304 

with presence - sum of current grid cells with presence) / sum of current grid cells with 305 

presence. Negative values correspond to loss of area for a species, positive values to gain 306 

(Tables S1-S5). In regions with very limited current presence we do not present relative 307 

change. Because the Holm oak presence is currently confined to the Mediterranean region, it 308 

is difficult to calculate a relative rate of gain or loss for the other ecological regions, since the 309 

current presence is zero.  310 

 However, if a tree species is simulated to be present in 10% of a region and to 311 

disappear entirely in the future, this is not at all the same as situation where it is present in 312 

90% of a region and the completely disappears in the future. The relative change calculated 313 

above assigns the same value of both situations (i.e., -1). For this reason, we calculated an 314 

absolute change metric as (sum of grid cells with presence in 2055 - sum of grid cells with 315 

presence in current climate) / sum of grid cells (Table S1-S6). This absolute change works 316 

better in some ways (i.e., it accounts for the % current presence in a region), but fails to 317 

respond to the important question about relative change. For example, if one model simulates 318 

30% presence under current climate and another simulates 50% presence and both simulate 319 

total loss under the future, an absolute change metric tells us that models disagree, when in 320 

fact they both agree that climate will be unfavorable for the species throughout the entire 321 

region.    322 
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  323 

 324 

Fig. S1. Monthly mean temperatures and sum of precipitation averaged over the current 325 

climate (1970-2001) and the 2055 climate (2046-2065) across France. 326 
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 327 

Fig. S2. Anomalies of Temperature (°C) versus Precipitation (mm. year-1) of 2046-2065 328 

period compared to 1961-1990 reference climate for 14 CMIP3 IPCC models downscaled 329 

scenarios, and 7 Meteo-France ARPEGE model downscaled scenarios. The ARPEGE 330 

downscaled scenario used in this study is the dark blue filled circle. 331 
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 332 

Fig. S3. N-NBM sensitivity tests: (a) For European beech, the sum of growing days GDD 333 

(sum of days with Temperature > 10°C) can explain entirely the future distribution since 334 

holding all other climatic variables to current values and maintaining only the future values of 335 

GDD leads to the same distribution than in 2055; (b) For Pedunculate oak, the potential 336 

evapotranspiration PET of July can explain entirely the future distribution since holding all 337 

other climatic variables to current values and maintaining only the future values of PET leads 338 

to the same distribution than in 2055; (c) For Sessile oak, NBM shows contrasting and weak 339 

sensitivity to climate; (d) For Scots pine as for beech, temperature (GDD) seems to play the 340 

dominant role on the future distribution. Red = predicted to be present in the current climate 341 

but absent in 2055; Blue = predicted to be absent in the current climate but present in 2055; 342 

Green = predicted to be present in the current and 2055 climates and White = predicted to be 343 

absent in the current and 2055 climates. 344 
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 345 

Fig S4. Modeled Sessile oak distribution under present and future climate: (a) Current spatial 346 

patterns of Sessile oak simulated by models and observed current distribution based on NFI 347 

data. Green indicates presence; white indicates absence. (b) Model projections of changes in 348 

Sessile oak distribution by mid-century. Red = predicted to be present in the current climate 349 

but absent in 2055; Blue = predicted to be absent in the current climate but present in 2055; 350 

Green = predicted to be present in the current and 2055 climates and White = predicted to be 351 

absent in the current and 2055 climates. (c) Sensitivity tests carried out by setting one climate 352 

variable to current levels and all others to 2055 levels. CO2 = atmospheric CO2 concentration 353 

set to current value. T = Temperature set to current climate. P = Precipitation set to current 354 

climate. PET = potential evapotranspiration set to current climate.  355 

 356 
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 357 

 358 

Fig S5. Model projections of changes in European beech and Scots pine distribution by mid-359 

century. Red = predicted to be present in the current climate but absent in 2055; Blue = 360 

predicted to be absent in the current climate but present in 2055; Green = predicted to be 361 

present in the current and 2055 climates and White = predicted to be absent in the current and 362 

2055 climates.  363 



 17 

Tables 364 

 365 

 366 

Table S1. Relative and absolute rates of loss or gain of presence of European beech projected 367 

by different models for each bioclimatic region. 368 

 BIOMOD N-NBM STASH PHENOFIT CASTANEA LPJ 

Relative change -0.41 0.04 -0.46 0.15 0.19 0.62 Alps 

Absolute change -0.26 0.03 -0.20 0.09 0.12 0.32 

Relative change -0.29 -0.14 -0.04 0.02 -0.01 0 Jura 

Absolute change -0.29 -0.14 -0.03 0.02 -0.01 0 

Relative change -0.99 -0.97 -0.69 -0.03 -0.33 -0.14 Saône 

Absolute change -0.78 -0.77 -0.69 -0.03 -0.32 -0.13 

Relative change -1 -0.99 -0.77 0 -0.68 -0.35 Alsace 

Absolute change -0.65 -0.62 -0.77 0 -0.64 -0.35 

Relative change -0.52 -0.34 -0.16 -0.02 -0.09 0 Vosges 

Absolute change -0.52 -0.34 -0.16 -0.02 -0.09 0 

Relative change -1 -0.89 -0.55 0 -0.13 0.04 NE 

Absolute change -0.94 -0.81 -0.55 0 -0.12 0.03 

Relative change -1 -0.94 -0.76 -0.04 -0.23 0.29 NW 

Absolute change -0.43 -0.45 -0.74 -0.04 -0.22 0.13 

Relative change -0.99 -0.84 -0.93 -0.09 -0.23 -0.25 Brittany 

Absolute change -0.57 -0.37 -0.70 -0.09 -0.21 -0.09 

Relative change -1 -1 -1 -0.25 -0.62 -0.28 SW 

Absolute change -0.02 -0.04 -0.87 -0.25 -0.31 -0.02 

Relative change -0.62 -0.36 -0.31 -0.07 -0.09 0.40 Pyrenees 

Absolute change -0.42 -0.27 -0.22 -0.06 -0.07 0.23 

Relative change -0.78 -0.80 -0.57 -0.25 -0.47 -0.02 Center 

Absolute change -0.67 -0.68 -0.55 -0.23 -0.42 -0.02 

 369 

 370 
 371 
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Table S2. Relative and absolute rates of loss or gain of presence of Pedunculate oak projected 372 

by different models for each bioclimatic region. 373 

 BIOMOD N-NBM STASH PHENOFIT LPJ 

Relative change -0.13 -0.78 -0.48 1 0.17 Alps 

Absolute change -0.02 -0.03 -0.06 0.30 0.12 

Relative change 0.12 -0.38 0.48 0.71 0 Jura 

Absolute change 0.08 -0.26 0.24 0.41 0 

Relative change -0.76 -0.68 -0.94 -0.06 0 Saône 

Absolute change -0.71 -0.54 -0.94 -0.06 0 

Relative change -0.83 -0.35 -0.99 -0.03 0 Alsace 

Absolute change -0.83 -0.35 -0.86 -0.03 0 

Relative change -0.18 -0.45 -0.06 0.47 0 Vosges 

Absolute change -0.16 -0.34 -0.04 0.30 0 

Relative change -0.72 -0.41 -0.86 0.05 0 NE 

Absolute change -0.71 -0.40 -0.86 0.05 0 

Relative change -0.58 -0.38 -0.84 -0.03 0.01 NW 

Absolute change -0.56 -0.38 -0.74 -0.03 0.01 

Relative change -0.37 -0.03 -0.78 -0.14 0.14 Brittany 

Absolute change -0.37 -0.03 -0.73 -0.14 0.11 

Relative change -0.84 -0.42 -0.87 -0.32 0.08 SW 

Absolute change -0.73 -0.38 -0.80 -0.32 0.07 

Relative change -0.91 -0.13 -0.15 0.01 0.13 Pyrenees 

Absolute change -0.34 -0.04 -0.08 0.01 0.10 

Relative change -0.93 -0.92 -0.78 -0.09 0 Center 

Absolute change -0.59 -0.51 -0.58 -0.06 0 

 374 

 375 

 376 
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Table S3. Relative and absolute rates of loss or gain of presence of Sessile oak projected by 377 

different models for each bioclimatic region. 378 

  379 

 BIOMOD N-NBM CASTANEA 

Relative change -0.59 0.25 0.56 Alps 

Absolute change -0.12 0.06 0.21 

Relative change -0.37 0 -0.01 Jura 

Absolute change -0.35 0 -0.01 

Relative change -0.94 -0.06 -0.30 Saône 

Absolute change -0.89 -0.06 -0.28 

Relative change -0.81 0 -0.80 Alsace 

Absolute change -0.81 0 -0.62 

Relative change -0.63 0 -0.07 Vosges 

Absolute change -0.63 0 -0.07 

Relative change -0.69 -0.01 -0.11 NE 

Absolute change -0.68 -0.01 -0.11 

Relative change -0.82 -0.11 -0.27 NW 

Absolute change -0.65 -0.10 -0.24 

Relative change -1 -0.27 -0.18 Brittany 

Absolute change -0.52 -0.16 -0.15 

Relative change -1 -0.96 -0.65 SW 

Absolute change -0.13 -0.33 -0.25 

Relative change -1 -0.86 0.26 Pyrenees 

Absolute change -0.31 -0.43 0.14 

Relative change -0.87 -0.1 -0.34 Center 

Absolute change -0.65 -0.09 -0.28 
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Table S4. Relative and absolute rates of loss or gain of presence of Temperate broad leaf 380 

summer-green PFT (TeBS) projected by different models for each bioclimatic region. 381 

 382 

  383 

 BIOMOD N-NBM IBIS ORCHIDEE 

Relative change -0.45 0.15 0.40 -0.3 Alps 

Absolute change -0.25 0.09 0.18 -0.15 

Relative change -0.30 0 0.10 -0.19 Jura 

Absolute change -0.30 0 0.09 -0.18 

Relative change -0.87 -0.30 -0.01 -0.28 Saône 

Absolute change -0.81 -0.30 -0.01 -0.28 

Relative change -0.81 0 0 -0.24 Alsace 

Absolute change -0.81 0 0 -0.23 

Relative change -0.41 0 0.01 -0.44 Vosges 

Absolute change -0.41 0 0.01 -0.41 

Relative change -0.81 -0.01 0 -0.29 NE 

Absolute change -0.80 -0.01 0 -0.26 

Relative change -0.73 -0.05 -0.02 -0.35 NW 

Absolute change -0.66 -0.05 -0.02 -0.32 

Relative change -0.45 0 -0.05 -0.64 Brittany 

Absolute change -0.44 0 -0.05 -0.55 

Relative change -0.95 -0.38 -0.37 -0.78 SW 

Absolute change -0.72 -0.37 -0.34 -0.28 

Relative change -0.77 -0.09 0.17 -0.44 Pyrenees 

Absolute change -0.56 -0.07 0.10 -0.22 

Relative change -0.85 -0.41 -0.12 -0.49 Center 

Absolute change -0.75 -0.40 -0.10 -0.27 

 384 
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Table S5. Relative and absolute rates of loss or gain of presence of Scots pine projected by 385 

different models for each bioclimatic region. 386 

 387 

 BIOMOD N-NBM STASH PHENOFIT LPJ 

Relative change 0.03 -0.14 -0.21 -0.08 -0.03 Alps 

Absolute change 0.02 -0.11 -0.19 -0.07 -0.02 

Relative change -0.1 -0.53 -0.01 0 0 Jura 

Absolute change -0.07 -0.45 -0.01 0 0 

Relative change -0.99 -0.98 -0.59 -0.41 -0.29 Saône 

Absolute change -0.48 -0.34 -0.59 -0.41 -0.29 

Relative change -1 -1 -0.56 0 -0.06 Alsace 

Absolute change -0.68 -0.25 -0.56 0 -0.06 

Relative change -0.56 -1 -0.16 0 0 Vosges 

Absolute change -0.53 -0.90 -0.16 0 0 

Relative change -0.96 -0.99 -0.61 -0.25 -0.26 NE 

Absolute change -0.88 -0.91 -0.61 -0.25 -0.26 

Relative change -1 -1 -1 -0.83 -0.91 NW 

Absolute change -0.38 -0.51 -0.76 -0.80 -0.86 

Relative change -1 -0.99 -1 -0.99 -1 Brittany 

Absolute change -0.28 -0.10 -0.07 -0.39 -0.48 

Relative change -1 -1 -1 -1 -1 SW 

Absolute change -0.01 -0.04 -0.03 -0.07 -0.05 

Relative change -0.22 -0.32 -0.34 -0.34 -0.23 Pyrenees 

Absolute change -0.13 -0.18 -0.24 -0.26 -0.15 

Relative change -0.56 -0.65 -0.59 -0.46 -0.45 Center 

Absolute change -0.53 -0.55 -0.55 -0.45 -0.44 
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Table S6. Absolute rates of gain or loss of presence of Holm oak (for BIOMOD, N-NBM, 388 

STASH and LPJ) and temperate broad leaf evergreen PFT (TeBE for IBIS and ORCHIDEE) 389 

projected by models for each bioclimatic region.  390 

 391 
 392 

 BIOMOD N-NBM STASH LPJ IBIS ORCHIDEE 

Alps Absolute change 0.01 0.04 0.06 0.16 0.07 0.33 

Jura Absolute change 0.25 0.09 0.14 0 -0.01 0.15 

Saône Absolute change 0.63 0.60 0.89 0.04 0.19 0.23 

Alsace Absolute change 0.21 0.83 0.94 0 0.71 0.17 

Vosges Absolute change 0.31 0.19 0.05 0 0.16 0.13 

NE Absolute change 0.32 0.19 0.73 0.17 0.06 0.37 

NW Absolute change 0.33 0.33 0.79 0.75 0.12 0.81 

Brittany Absolute change 0.49 0.47 0.41 0.86 0.05 0.48 

SW Absolute change 0.75 0.81 0 0.30 0.35 0.46 

Pyrenees Absolute change 0.66 0.54 0.19 0.36 -0.08 0.24 

Center Absolute change 0.76 0.59 0.50 0.35 0.20 0.41 

Mediterranean  Absolute change 0 -0.08 0.01 -0.22 0.01 0.09 

 393 
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