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ABSTRACT

Aim To examine the impacts of climate change on endemic birds, which are of
global significance for conservation, on a continent with few such assessments. We
specifically assess projected range changes in relation to the Important Bird Areas
(IBAs) network and assess the possible consequences for conservation.

Location South Africa, Lesotho and Swaziland.

Methods The newly emerging ensemble modelling approach is used with 50
species, four climate change models for the period 2070–2100 and eight bioclimatic
niche models in the statistical package biomod. Model evaluation is done using the
receiver operating characteristic and the recently introduced true skill statistic.
Future projections are made considering two extreme assumptions: species have
full dispersal ability and species have no dispersal ability. A consensus forecast is
identified using principal components analysis. This forecast is interpreted in terms
of the IBA network. An irreplaceability analysis is used to highlight priority IBAs for
conservation attention in terms of climate change.

Results The majority of species (62%) are predicted to lose climatically suitable
space. Five species lose at least 85% of their climatically suitable space. Many IBAs
lose species (41%; 47 IBAs) and show high rates of species turnover of more than
50% (77%; 95 IBAs). Highly irreplaceable regions for endemic species become
highly localized under climate change, meaning that the endemic species analysed
here experience similar range contractions to maintain climate niches.

Main conclusions The South African IBAs network is likely to become less
effective for conserving endemic birds under climate change. The irreplaceability
analysis identified key refugia for endemic species under climate change, but many
of these areas are not currently IBAs. In addition, many of these high-priority areas
that are IBAs fall outside the current formal protected areas network.
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INTRODUCTION

The idea that we can conserve species where they currently exist

is unrealistic given recent climate change predictions. Conser-

vationists are in dire need of robust estimates of the impacts of

climate change on species, since it is likely that species will move

out of the current locations of reserve networks and designated

conservation areas or face local extinction (Parmesan & Yohe,

2003; Araújo et al., 2004, 2006; Hannah et al., 2007; Coetzee,

2008a).

Bioclimatic niche models are widely used to estimate the

potential impacts of climate change (e.g. Pearson & Dawson,

2003; Guisan & Thuiller, 2005; Thuiller et al., 2008). However,

substantial challenges remain in their use and application,

Global Ecology and Biogeography, (Global Ecol. Biogeogr.) (2009)

© 2009 Blackwell Publishing Ltd DOI: 10.1111/j.1466-8238.2009.00485.x
www.blackwellpublishing.com/geb 1



especially in interpreting between-model differences for the

same species and different climate change scenarios (Pearson &

Dawson, 2003; Thuiller, 2004; Guisan & Thuiller, 2005; Araújo &

Guisan, 2006; Pearson et al., 2006; Austin, 2007). While these

models excel at predicting the current distributions of species, it

is unclear which models perform the best at predicting future

distributions under a changing climate, as modelling projec-

tions can vary widely (Thuiller, 2004, 2007; Araújo & Rahbek,

2006; Pearson et al., 2006). A recently emerging alternative

method for reducing uncertainty among models is the use of

ensemble forecasting, which involves combining multiple bio-

climatic niche models (Thuiller, 2004; Araújo et al., 2005, 2006;

Araújo & New, 2006). By using a suite of models and many

climate change scenarios, combined with ensemble techniques,

more robust forecasts can be made with appropriate interpreta-

tion (Araújo & New, 2006). In a seminal paper, Araújo et al.

(2005) tested the predictive accuracy of bioclimatic models

using observed bird species range shifts under climate change in

two periods of the recent past. Their study supports the use of

ensemble forecasting approaches in climate change modelling

research and demonstrates how uncertainty in predictions can

be reduced by selecting the most consensual projections (see

also Marmion et al., 2009).

Here, we use the newly emerging ensemble modelling

approach to examine the impacts of climate change on South

African endemic birds, which are of global significance for con-

servation. We also assess the predicted range changes in terms of

the southern African Important Bird Area network. Important

Bird Areas (IBAs) are a global network of sites designated by

BirdLife International as being important for the conservation

of the world’s avifauna (Fishpool & Evans, 2001). IBAs are des-

ignated using criteria based on the presence of globally threat-

ened, restricted-range or biome-restricted bird species, or the

presence of substantial congregations of bird species. IBAs are

designed so that they overlap as far as possible with the existing

reserve network of the particular region in question (Fishpool &

Evans, 2001).

Endemic species are particularly suitable for bioclimatic niche

models since: (1) models can capture the entire distributional

range of a species in question, and can thus be expected to be

more accurate (Thuiller, 2004; Guisan & Thuiller, 2005; Broen-

nimann et al., 2006), and (2) errors are greater for species with

larger areas of occupancy and greater extents of occurrence,

but endemic species typically have smaller distribution ranges

(Araújo & Pearson, 2005; McPherson & Jetz, 2007).

The impacts of climate change on biodiversity in South Africa

are predicted to be severe, and are already occurring (e.g. Foden

et al., 2007). For example, focusing on only six southern African

bird species, Simmons et al. (2004) predicted a 40% mean loss of

climatically suitable area for these species in the region by 2050.

Many African IBAs are predicted to experience a major loss of

species as bird distributions change in response to changing

climate (Hole et al., 2009). Our study provides an important

contribution, given the lack of information on the impacts of

climate change on biodiversity in the Southern Hemisphere

(IPCC, 2007).

DATA AND METHODS

Species and climate data

Species locality data were obtained from the Southern African

Bird Atlas Project database (SABAP; Harrison et al., 1997).

SABAP data were collected mainly between 1987 and 1992 by

observers visiting quarter-degree grid cells (0.25° ¥ 0.25°, c.

676 km2; hereafter grid cells). We assumed that a species was

absent from grid cells where it was not recorded, as done by

others (van Rensburg et al., 2004). For the modelling analysis we

selected endemics with > 90% of their distributions within

South Africa, occupying > 20 grid cells and excluding those

species where taxonomic uncertainties exist – 50 species fulfilled

these criteria (Hockey et al., 2005); see Appendix S1 in Support-

ing information). In total we used 18,658 records in 2000 grid

cells.

Mean values of six climatic predictor variables were derived

from the Climate Research Unit (CRU) monthly means climate

data (New et al., 2002) for the period 1961–90. The climate

variables included: annual temperature (°C), temperature of the

coldest month (°C), temperature of the warmest month (°C),

annual precipitation (mm), precipitation in the warmest month

(mm) and precipitation in the coldest month (mm). The choice

of variables reflects energy and water constraints on the distri-

bution range of birds and the availability of suitable variables

obtained from the various climate change models. These vari-

ables impose known constraints on species distributions as a

result of widely shared physiological limitations (e.g. Lennon

et al., 2000; van Rensburg et al., 2002; Araújo et al., 2005).

Southern Africa is especially vulnerable to climate change, but

few regional climate models (RCMs) have been applied to the

region and throughout the world (Tadross et al., 2005). We used

four climate change models, including RCMs and downscaled

global climate models (MM5, PRECIS, HadCM3, CCAM –

details follow) to capture the variability in the underlying

assumptions of the climate processes that are represented in the

models. While a variety of emissions scenarios reflect different

projected anthropogenic emissions rates, the climate change

models that we used follow the ‘business as usual’ A2 Special

Report on Emission Scenarios (SRES) scenario, which assumes

that global carbon emissions will continue unhindered (Naki-

cenovic & Swart, 2000).

Both MM5 (a fifth-generation mesoscale model; Tadross

et al., 2005) and the Providing REgional Climates for Impacts

Studies model (PRECIS) are RCMs that have been produced at

a spatial resolution of 50 ¥ 50 km and are nested within 10 years

of control and future integrations of HadAM3H (Jones et al.,

2004). The current climate calibration for PRECIS spans the

period 1970–79 whereas the current climate calibration of MM5

is 1975–84. Future climate projections are for 2070–80 and

2090–2100 for MM5 and PRECIS, respectively. The perfor-

mances of MM5 and PRECIS have been assessed over the south-

ern African domain and been shown to be relatively credible

(Hudson & Jones, 2002; Tadross et al., 2005). HadCM3 is a

coupled ocean–atmosphere general circulation model devel-
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oped by the Hadley Centre for Climate Prediction (Gordon

et al., 2000), and empirically downscaled to a regional resolution

by Hewitson (2003). An evaluation of this downscaling (Hewit-

son & Crane, 2005) shows that key climate patterns are cap-

tured. The current climate calibration for HadCM3 spans the

period 1970–99 and the future climate projection is for 2071–

2100. The Conformal-Cubic Atmospheric Model (CCAM) is a

variable-resolution model (here used at 50 ¥ 50 km) applied to

sub-Saharan Africa by Engelbrecht et al. (2009). Its predecessor,

DARLAM, has been used in bioclimatic niche modelling

(Olwoch et al., 2008). Following Tadross et al. (2005), anomaly

values for temperature-related variables for each climate change

model (meaning the difference between that particular climate

model’s current modelled and future modelled output) were

added to an observed climate baseline. For rainfall, we used a

proportional adjustment, calculated from the current and future

modelled outputs, and multiplied the proportional change with

the observed rainfall data. This approach is considered robust

and follows best-practice guidelines (see Tadross et al., 2005;

IPCC-TGICA, 2007). Although climate change models and

baseline climate data have differing temporal scales of projec-

tions and differing baseline current climate calibrations, these

models represent the most recent available climate change data

for southern Africa at an appropriate spatial resolution. There is

substantial overlap in the range of future conditions predicted

by these models, so predictions are not completely disjunct due

to these mismatches. Our aim is a broad-scale first assessment of

climate change impacts, using a best-practice ensemble tech-

nique, and as such we consider this limitation acceptable.

The 50 ¥ 50 km resolution climate change datasets were

matched to the atlas data grid cells by using standard procedures

in Arcgis version 9.1 (ESRI, 2008). We resampled 50 ¥ 50 km

cells, without interpolation, to a 1 ¥ 1 km raster dataset. We then

summarized the data to the 0.25° grid cell bird atlas data using a

moving window summary procedure. Since the 0.25° grid cells

and the 50 ¥ 50 km cells datasets did not share the same origin

in their coordinate systems, these cells did not overlap in a

regular fashion. Exploratory data analysis (unpublished)

showed that our procedure, on average, produced results that are

more faithful to the original climate patterns’ 50 ¥ 50 km cells

than the more common kriging spatial interpolation technique.

Modelling methods

Bird distributions were predicted using eight models in the bio-

climatic niche modelling package called biomod (Thuiller,

2003), within the R environment (R Development Core Team,

2006). biomod enables many bioclimatic models to be run

simultaneously on a large suite of species. Models included: (1)

generalized linear models (GLM), (2) generalized additive

models (GAM), (3) classification tree analysis (CTA), (4) feed-

forward artificial neural networks (ANN), (5) generalized

boosted models (GBM; also known as boosted regression trees,

BRT), (6) random forests (RF), (7) mixture discriminant analy-

sis (MDA), and (8) multivariate adaptive regression spline

(MARS). GLM, GAM, CTA and ANN are described and dis-

cussed in Thuiller (2003). In a recent test of 16 niche models

(Elith et al., 2006), including GBM, MARS, GLM, GAM and

CTA, the GBM models performed best. MDA (Hastie & Tibshi-

rani, 1996) and RF (Breiman, 2001) were also added as promis-

ing newer modelling techniques which are gaining acceptance in

the literature (e.g. Broennimann et al., 2007).

Model evaluation

Models were calibrated using a 70% random sample of the

observed data, and model performance was assessed using the

remaining 30% of the data. We evaluated model projections

between observed species presences and absences and projected

distributions by calculating the area under the curve (AUC) of

the receiver operating characteristic (ROC) curve (Fielding &

Bell, 1997; Thuiller, 2003). Prediction accuracy is considered to

be no better than random for AUC values of <0.5, poor when

they are in the range 0.5–0.7, and useful in the range 0.7–0.9.

AUC values that are greater than 0.9 are considered to be excel-

lent (Swets, 1988).

The kappa statistic has been widely used for model evaluation

(Thuiller, 2003; Araújo et al., 2005; Pearson et al., 2006), but has

recently been shown to be particularly sensitive to prevalence

(Allouche et al., 2006). We used the recently introduced true skill

statistic (TSS) as it is has all of the advantages of kappa but is not

sensitive to prevalence (Allouche et al., 2006). The TSS is more

often used to assess the accuracy of weather forecasts and com-

pares the number of correct forecasts minus those attributable to

random guessing with that of a hypothetical perfect forecast. It

uses a confusion matrix (Fielding & Bell, 1997) to calculate

sensitivity plus specificity minus one. The following ranges were

used to interpret TSS statistics: values from 0.2 to 0.5 were poor,

values from 0.6 to 0.8 were useful, and values larger than 0.8 were

good to excellent.

Probability of occurrence for each species was transformed to

presence–absence values in biomod by estimating an optimum

threshold maximizing the percentage of presence and absence

correctly predicted for ROC curves and by calculating the best

probability threshold by maximizing the TSS statistic for the

evaluation data. Overall we obtained 64 projections for each of

the 50 species modelled, thus 2400 projections in total (eight

models by four climate change models by two methods of trans-

formation to presence/absence for 50 species).

Consensus model

To calculate our consensus climate change projection, a prin-

cipal components analysis (PCA), which identifies linearly

covarying projections (e.g. Thuiller, 2004), was run in R (R

Development Core Team, 2006). Following Araújo et al. (2005),

data for the PCA were the future predicted species richness data,

per grid cell, obtained from the two transformation methods,

for each modelling combination (64 combinations in total).

PCA has been used successfully in ensemble forecasting

(Thuiller, 2004; Araújo et al., 2005; Thuiller et al., 2005;

Marmion et al., 2009). The first principal component (PC1) is

equal to a line that goes through the central tendency of all sets
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of model projections and minimizes the square of the eigen

distance of each set of projections to that line. PC1 is as close to

all of the data as possible and is thus the consensus axis (Araújo

et al., 2005). Component loadings in PCA (the weights given to

individual model projections within each component) represent

the relative contribution of each projection within components.

We selected individual modelling combinations which had the

overall highest component loading, from the first principal

component which best summarized the overall pattern of varia-

tion in climate change projections. In our case, the first nine

models had the highest and equal component loadings, and we

selected these for the consensus forecast (following Araújo et al.,

2005; Appendix S2). Nonetheless, where to place the cut-off

from the PCA loading for the selected models is essentially arbi-

trary. The species richness data per grid cell, thus the projected

range change data from the nine models, were averaged using

the ‘bounding box’ technique (Araújo & New, 2006). Model

agreement occurs where at least half the models (� 5; the

median) agree. Thus species presence is predicted if at least five

or more models predict species presence – hereafter called the

consensus forecast (see Appendix 1 for PCA loadings of consen-

sus models; all results are in Appendix S2).

Data analysis

To account for differences in species dispersal abilities, we con-

sidered two scenarios of range change. We assumed that species

could either fully disperse to all new suitable areas (full dis-

persal) or alternatively that they will be unable to disperse to any

of the new suitable areas, so would only persist in areas they

currently find suitable (no dispersal). This assumption cannot

predict whether species would actually establish in new suitable

areas under the full dispersal scenario. It is a broad assumption

that is commonly used, and represents two opposing extremes of

how climate change may affect species ranges, based only on the

dispersal abilities of species (Thomas et al., 2004; Thuiller et al.,

2005). The realized patterns will necessarily somewhere fall

between these two extremes. We calculated both of these sce-

narios for all species within the consensus forecast, and thus

have a consensus forecast under no dispersal and a consensus

forecast under full dispersal.

To estimate the climatically suitable space gained or lost per

species under the consensus forecast, we calculated the percent-

age of grid cells gained or lost and the percentage range change

under no dispersal and full dispersal assumptions. For each grid

cell, under a full dispersal assumption only, we calculated species

turnover using T = 100(L + G)/(SR + G); where T = turnover,

L = number of grid cells lost, G = number of grid cells gained

and SR = current species richness of that grid cell (Thuiller et al.,

2005). A turnover value of 0 indicates that the assemblage of

species is predicted to remain the same in the future (i.e. no loss

or gain of species) and a value of 100 indicates that the assem-

blage of species in that grid cell is completely different (i.e. the

species loss equals the initial species richness).

Irreplaceability is a widely used measure of conservation

importance, and aims to achieve representativeness, meaning

that all designated biological features are represented. Here we

use it mainly as an exploratory analysis, to identify regions with

unique endemic species assemblages that are vulnerable to

climate change and to identify regions that may form refugia in

future. For instance, if species contract their ranges into similar

regions, the irreplaceability of that region will increase under

future change scenarios. Irreplaceability is defined as the likeli-

hood that a given site will need to be protected to achieve a

specified set of conservation targets (e.g. Margules & Pressey,

2000). Its value ranges from 0 to 1, where a value of 1 indicates

an entirely biologically distinct and totally irreplaceable site,

thus containing species that only occur in that site. We calcu-

lated irreplaceability using both the current distribution data

and the consensus forecast for the 50 endemic species using the

C-Plan systematic Conservation Planning System, Version 3.11

(Pressey et al., 2009); http://www.uq.edu.au/~uqmwatts/cplan.

html). C-Plan is designed to support conservation planning

decisions. The system calculates the irreplaceability value of

landscape elements in terms of characteristics such as species

composition, vegetation types and land-use types. C-Plan cal-

culates and displays the irreplaceability of each site in a region as

a guide to its importance for the regional conservation goal. We

set targets at one, so that each species would be represented in at

least one 0.25° ¥ 0.25° grid cell and investigated the overlap of

this pattern with the IBA network.

Following others (e.g. Margules & Pressey, 2000; Reyers, 2004)

we considered sites with both high vulnerability and high irre-

placeability as the highest priority sites for conservation action,

here in terms of climate change. IBAs in South Africa, Lesotho

and Swaziland were digitized in Arcgis version 9.1 (ESRI, 2008)

using data from Barnes (1998) and conspicuous geographical

features (n = 122). Islands were excluded. Species lists for each

IBA were obtained by intersecting the IBA layer with the current

and consensus forecast grid cell data. Species loss per IBA due to

climate change as calculated in the present analysis was stan-

dardized from 0 to 1 by dividing all species loss values by the

overall highest species loss value. Coetzee (2008b) comprehen-

sively analysed the current and future land-use threats to south-

ern African IBAs. To complement their analysis, and to form

part of an integrated assessment on global change threats to

IBAs, we used their database of irreplaceability values for all

IBAs, calculated for 655 bird species across South Africa. Species

loss per IBA due to climate change is plotted against these irre-

placeability values for each IBA, forming a comprehensive

picture on the threat from climate change, at least in terms of

their endemic bird assemblages. These two-dimensional plots of

IBAs are used to identify those currently irreplaceable IBAs of

national importance that are likely to be most affected by the

threat of climate change via endemic species loss per IBA.

RESULTS

In general models had good agreement between observed data

and current modelled predictions (Table 1). When the calibra-

tion data were used, RF models appeared to overfit the data.

Based on the evaluation set, GBM, RF and GAM models
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appeared overall to be the best performing bioclimatic models,

followed closely by the GLM, MARS and ANN techniques

(Table 1).

The first principal component (PC1 or consensus axis)

explained 46.8% of model variation. The nine consensus models

were selected from the first axis of the PCA and included

outputs from MM5, PRECIS and CCAM climate change

models, GBM and CTA bioclimatic niche models and both ROC

and TSS binary transformation outputs (Appendix 1). Patterns

in predicted species richness changes were broadly similar across

the different regional circulation models, as the similar compo-

nent loadings show (Appendix 1). Overall, GBM best summa-

rized the overall patterns in range change for all models used,

followed by CTA models.

The majority of species (31 species; 62%) lose climatically

suitable space. Using the consensus forecast, the 50 endemic

species modelled show a median loss of climatically suitable

space of 12% under full dispersal and 26% under no dispersal

(standard deviations of 208.7% and 72.5%, respectively). Irre-

spective of the dispersal scenario analysed, five species (Cape

clapper lark, pied starling, African rock pipit, southern black

korhaan and sicklewinged chat) are predicted to lose at least

85% of their climatically suitable ranges (Appendix S1). Sixteen

species (32%) are predicted to lose more than 50% of their

climatically suitable ranges under full dispersal assumptions.

Nineteen species (38%) are predicted to show a gain in climati-

cally suitable space (Appendix S1).

Climate change is predicted to have large impacts on species

richness patterns, as substantial changes in species distributions

are predicted under both the full dispersal (Fig. 1b) and no

dispersal (Fig. 1c) assumptions. The north-western and central

regions of South Africa are predicted to lose all climatically

suitable space for all species modelled. Under a no-dispersal

assumption, these patterns remain similar, although species loss

is more acute especially in the north-eastern region of the

country. Much of South Africa is predicted to experience high

rates of species turnover (Fig. 1d). However, no species are pre-

dicted to go ‘extinct’, meaning that there is at least some suitable

climatic space remaining under climate change for all species

assessed.

The IBA network currently captures 31 (97%) out of a total of

32 grid cells with irreplaceability values over 0.5. Following pre-

dicted range changes, the IBA network would capture 53 (83%)

out of a total of 64 grid cells with irreplaceability over 0.5

(Fig. 1f). This means that under climate change there are many

more grid cells with higher irreplaceability values, and that a

greater proportion of these would fall outside of the current IBA

network. In contrast to the currently observed patterns, irre-

placeability patterns for endemic species under the consensus

forecast become highly localized towards the Western Cape and

north-eastern highlands of Lesotho and parts of the Drakens-

berg mountain range (Fig. 1f). Importantly, the options for con-

serving those species nationally decrease. A total of 436 (out of

691) grid cells within the IBA network (64%) have reduced

irreplaceability under the consensus forecast under full dispersal

(future irreplaceability – current irreplaceability = negative).

Highly irreplaceable IBAs that are greatly threatened by

climate change (Fig. 2) are identified in Appendix S3. In terms

of climate change, these are the 11 IBAs (9%) that need renewed

attention for conservation prioritization. The predictions

suggest that some species (29; 58%) will no longer occur in the

IBAs which they currently find suitable. In total, 47 (41%) of

IBAs lose some species, while 37 (29%) show no change and 39

(30%) gain some species. A large number of IBAs also show

more than 50% species turnover (77%; 95 IBAs).

DISCUSSION

The impacts of climate change are likely to be severe, as endemic

species richness patterns are predicted to undergo large shifts by

2070–2100 (Fig. 1). All of the five species that are predicted to

undergo a loss of more than 85% of their climatically suitable

spaces (irrespective of dispersal ability) are currently listed as

‘not threatened’ using IUCN criteria (Appendix S1; IUCN,

2006). This emphasizes the need for threatened species lists to

incorporate vulnerability to climate change (Bomhard et al.,

2005; IUCN, 2006). Our predictions indicate that bird ranges

Table 1 Area under the curve (AUC) and true skill statistics
(TSS) for the 50 bird species for each model (min = minimum,
me = mean and max = maximum values of AUC or TSS
statistics). Calibration refers to the 70% dataset used to fit the
models, Evaluation is the 30% dataset used to evaluate the fitted
models, and Original combines both (Calibration + Evaluation)
datasets.

AUC

Calibration Evaluation Original

Me Min Max Me Min Max Me Min Max

GLM 0.94 0.77 0.99 0.93 0.75 1.00 0.94 0.76 0.99

GAM 0.95 0.80 0.99 0.94 0.77 1.00 0.95 0.80 0.99

CTA 0.92 0.75 0.98 0.87 0.71 0.96 0.91 0.75 0.96

ANN 0.95 0.85 1.00 0.93 0.82 0.99 0.95 0.84 0.99

GBM 0.98 0.90 1.00 0.94 0.80 1.00 0.97 0.87 1.00

RF 1.00 1.00 1.00 0.94 0.79 1.00 0.99 0.96 1.00

MDA 0.93 0.79 0.99 0.91 0.75 0.99 0.93 0.78 0.98

MARS 0.95 0.83 0.99 0.93 0.77 1.00 0.94 0.82 0.99

TSS Calibration Evaluation Original

GLM 0.78 0.43 0.94 0.78 0.43 0.98 0.77 0.43 0.93

GAM 0.80 0.50 0.95 0.79 0.43 0.99 0.79 0.47 0.95

CTA 0.77 0.50 0.94 0.68 0.38 0.87 0.74 0.46 0.88

ANN 0.81 0.54 0.96 0.77 0.47 0.97 0.79 0.52 0.95

GBM 0.87 0.65 0.99 0.77 0.45 0.99 0.83 0.59 0.98

RF 1.00 1.00 1.00 0.78 0.43 0.99 0.92 0.83 0.99

MDA 0.74 0.47 0.91 0.71 0.36 0.93 0.73 0.43 0.90

MARS 0.79 0.53 0.95 0.76 0.42 0.99 0.78 0.49 0.94

GLM, generalized linear model; GAM, generalized additive model; CTA,
classification tree analysis; ANN, feed-forward artificial neural networks;
GBM, generalized boosted model; RF, random forests; MDA, mixture
discriminant analysis; MARS, multivariate adaptive regression spline.
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will probably shift eastward, southward and toward the escarp-

ment regions in the interior of the country. Regions in the arid

north-west of the region show particularly high rates of species

range change, consistent with other studies for the region on a

range of taxa (plants, reptiles, invertebrates, mammals: Erasmus

et al., 2002; Midgley et al., 2002; Broennimann et al., 2006;

Foden et al., 2007). This region is predicted to have a climate

unlike anything currently experienced in South Africa and none

of the endemic birds considered here are likely to find it suitable.

There is a pronounced east–west aridity gradient in South Africa

with a decline in bird species richness in that direction. This is

largely in response to primary productivity, in turn determined

by energy and water availability (van Rensburg et al., 2002). For

South Africa, consensus climate change models predict the

entire country to become warmer, with an increase in precipi-

tation in the east and decreased precipitation in the western

parts. There is variation in the ability of the models to predict

the boundary between the areas of rainfall increase and

decrease. This decline in precipitation for the north-western

part of the country (IPCC, 2007) suggests that predicted bird

responses are a realistic reflection of the impacts of climate

change.

In the long term, the current South African IBAs network is

predicted to become less effective for conserving endemic birds

due to range shifts induced by climate change. For example,

current large protected areas, among them the Kruger National

Park, and proposed conservation areas like the Grassland Bio-

sphere Reserve (both of which are IBAs) are likely to be greatly
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Figure 1 (a) Current species richness
of the 50 bird endemic species assessed.
(b) Modelled future bird species richness
based on a consensus forecast created
from 16 models and four climate change
models for the period 2070–2100 under
a full dispersal assumption. (c) Modelled
future bird species richness based on an
identical consensus forecast constrained
by a no-dispersal assumption, meaning
that species will only occupy areas that
are both currently suitable and predicted
to be suitable in future. (d) Bird species
turnover per grid cell. (e) Current
irreplaceability patterns for 50 endemic
bird species (Important Bird Area
locations are in black). (f) Future
irreplaceability patterns based on a
consensus forecast under a full dispersal
assumption. South Africa (SA), Lesotho
(LS) and Swaziland (SW) are indicated
in grey. White squares indicate the
absence of all species analysed.
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Figure 2 Important Bird Area (IBA) irreplaceability values
plotted against projected species loss. Sites with higher
irreplaceability values (H as opposed to L, i.e. low) can be viewed
as having higher conservation value. The horizontal axis depicts
the degree to which the conservation targets at a site are
vulnerable to species loss caused by climate change. Priority sites
in terms of climate change are those with high irreplaceability and
under high threat (HH). These 11 IBAs are in identified in
Appendix S3. Note that many IBAs are not highly irreplaceable,
but are highly threatened by climate change (the LH quadrant).
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affected by climate change (Appendix S3). Given the rapidly

increasing observed rates of global CO2 emissions (Raupach

et al., 2007), it is likely that the resulting patterns of local climate

change will continue to result in reduced effectiveness of prior-

ity conservation areas, IBAs included. This again reaffirms that a

drastic decrease in global carbon emissions is necessary to safe-

guard species. Failing that, it underscores the need for protected

area management, and IBA design, to incorporate climate

change because the geographical areas that are currently impor-

tant for conservation are very likely to change (Lee & Jetz, 2008).

Modelling results suggest that climate change decreases the

climatically suitable ranges of many of the endemic species

analysed. This increases the irreplaceability of the regions which

remain suitable for them, since they are the only sites still har-

bouring those assemblages. This observation explains Fig. 1(f);

irreplaceability patterns for endemic species under the consen-

sus forecast become highly localized. This trend is disconcerting,

as it means there are fewer opportunities for conservation as the

bioclimatically suitable space for many species is condensed into

an ever smaller area. It can be argued that these ‘irreplaceable

refugia’ are key sites for conservation attention, as they retain the

bioclimatically suitable space for many of the endemics analy-

sed. Some IBAs are located in these regions, but those IBAs only

have a small proportion of their total area under formal protec-

tion, so their conservation status is uncertain (see Appendix S1).

These irreplaceable refugia are located mainly along the escarp-

ment regions across southern Africa, emphasizing the crucial

role of altitudinal gradients and mountainous regions as buffers

against climate change. Dispersal abilities and unfavourable land

use will determine the extent to which these refugia are utilized,

but these predicted range shifts serve as hypotheses for further

testing and monitoring, not only for the region but also to test

ideas concerning altitudinal shifts in species ranges.

Irreplaceability is a frequently used measure of conservation

importance (Margules & Pressey, 2000), but it has rarely been

used in conservation assessment analyses that incorporate

climate change, perhaps because it is subject to a variety of

caveats. Irreplaceability is dependent on how species are distrib-

uted throughout the landscape, so an area that contains several

range-restricted species will have a high irreplaceability. There-

fore, the irreplaceability analyses used in this study may be par-

ticularly sensitive to modelling outputs, since relatively small

changes in the predicted species distributions will have a con-

comitant large effect on the irreplaceability value. The results

should be seen as indicative of broad trends, without focus on

particular irreplaceability values. However, if interpreted as

done here, we suggest that irreplaceability is potentially useful in

identifying key areas that are especially vulnerable to climate

change and is useful for identifying those regions that may pos-

sibly form refugia in future.

While an ensemble of models can be seen as a rapid and

useful approach for investigating broad-scale patterns of the

impacts of climate change, it is no substitute for creating ‘better’

models. Our approach still suffers from the same methodologi-

cal problems that have been dealt with comprehensively else-

where (e.g. Pearson & Dawson, 2003; Opdam & Wascher, 2004;

Guisan & Thuiller, 2005; Araújo & Guisan, 2006; Araújo & New,

2006; Araújo & Rahbek, 2006; Broennimann et al., 2006; Austin,

2007; Thuiller, 2007). Also, we report broad patterns – but

species responses are likely to be idiosyncratic, which is rarely

addressed in ensemble modelling studies (Araújo et al., 2005;

Thuiller et al., 2005). There is added uncertainty introduced

between and within climate change models (Beaumont et al.,

2007). Here, however, pattern generation remains similar across

models, reaffirming that the consensus forecast represents an

adequate representation of the likely impacts of climate change.

Ideally, alternative emission scenarios need to be incorporated to

explore development and energy policy trajectories, but such

data are currently not available for the region. However, given

the currently increasing observed rates of global CO2 emissions

(Raupach et al., 2007), on which the ‘business as usual’ A2 SRES

scenario is based, our analysis is by no means an overestimate as

this scenario is considered as reasonably credible in the future

(Broennimann et al., 2006). Our analysis also uses climate

change data over a relatively long time-scale. It could be argued

that shorter time periods or the incorporation of projected ‘time

slices’ may be more appropriate for conservation assessments

since many other proximal factors will also affect species in the

near future. In our case the choice of datasets mainly reflects the

lack of more appropriate data and, given this limitation, it is

important to see our study as a ‘conservation assessment’ and

not as a ‘conservation planning’ study. Nonetheless, this analysis

gives an indication of likely changes in the coming decades.

The use of ensemble modelling methods in this study pro-

vides an improvement over earlier modelling techniques in

reducing uncertainty and increasing accuracy by selecting the

most consensual projections (Araújo et al., 2005). The message

from our analysis is clear. We have identified key IBAs that are

particularly vulnerable to climate change and reiterate that

climate change will have large impacts on endemic birds in

South Africa. Consequently, it is essential to explore and refine

methods for incorporating the impacts of climate change into

conservation plans.
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Appendix 1 Component loadings of the principal components
analysis (PCA) of the 64 model combinations from the consensus
forecast for 50 endemic bird species from 16 models and four
climate change models. Only the first nine highest loading models
are shown here (all the modelling results are displayed in
Appendix S2). Model names follow the convention climate
change model, niche model and evaluation method e.g.
CCAM.GBM.ROC refers to the CCAM climate change model, the
GBM niche model and the ROC transformation method. See text
for details on models and transformations.

Model PC1 PC2 PC3 PC4 PC5

Cumulative variance

explained (%)

46.78 52.93 56.74 58.86 60.25

CCAM.GBM.ROC -0.138 0.077 -0.073 0.042 -0.005

MM5.GBM.ROC -0.138 0.077 -0.073 0.042 -0.005

PRECIS.GBM.ROC -0.138 0.077 -0.073 0.042 -0.005

CCAM.GBM.TSS -0.138 0.084 -0.068 0.038 -0.020

MM5.GBM.TSS -0.138 0.084 -0.068 0.038 -0.020

PRECIS.GBM.TSS -0.138 0.084 -0.068 0.038 -0.020

CCAM.CTA.TSS -0.137 0.066 -0.007 0.041 -0.008

MM5.CTA.TSS -0.137 0.066 -0.007 0.041 -0.008

PRECIS.CTA.TSS -0.137 0.066 -0.007 0.041 -0.008

CCAM, conformal-cubic atmospheric model; MM5, fifth generation
mesoscale model; PRECIS, Providing REgional Climates for Impacts
Studies; GBM, generalized boosted model; CTA, classification tree
analysis; ROC, receiver operating characteristic; TSS, true skill statistic.
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