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Extinction debt of high-mountain plants under
twenty-first-century climate change
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Quantitative estimates of the range loss of mountain plants
under climate change have so far mostly relied on static
geographical projections of species’ habitat shifts3. Here,
we use a hybrid model* that combines such projections with
simulations of demography and seed dispersal to forecast
the climate-driven spatio-temporal dynamics of 150 high-
mountain plant species across the European Alps. This model
predicts average range size reductions of 44-50% by the end
of the twenty-first century, which is similar to projections
from the most ‘optimistic’ static model (49%). However, the
hybrid model also indicates that population dynamics will lag
behind climatic trends and that an average of 40% of the
range still occupied at the end of the twenty-first century will
have become climatically unsuitable for the respective species,
creating an extinction debt>®. Alarmingly, species endemic to
the Alps seem to face the highest range losses. These results
caution against optimistic conclusions from moderate range
size reductions observed during the twenty-first century as
they are likely to belie more severe longer-term effects of
climate warming on mountain plants.

Many plant and animal species have already been shifting
their ranges in response to the past century’s climatic trends’™’.
In mountains, owing to the altitudinal temperature gradient,
species should primarily move upslope under warming, as has
indeed been frequently documented during the recent decades'®!!
as well as in the palaeorecord'>’. As mountains usually have
conical shapes, upslope movement inevitably results in range loss
and may even lead to ‘mountain-top extinctions’* in extreme
cases. However, previous predictions of the magnitude of such
range and biodiversity losses during the twenty-first century have
been criticized*!® for relying on static ‘niche-based’ modelling
approaches'®, which disregard several processes crucial to range
shifts, notably: propagule dispersal; the establishment and growth

of populations at newly available sites; and the potential (transient)
persistence of declining remnant populations under deteriorating
conditions'”!®. The mistakes that might result from neglecting
these antagonizing processes are not obvious a priori: on the one
hand, dispersal limitation may prevent species from keeping track
with moving climates and hence niche-based predictions might
underestimate real range loss'”?’; on the other hand, remnant
dynamics may actually retard extinction processes, and range
contractions observed during the next decades may thus be less
pronounced than expected from niche-based models'”.

To evaluate the possible effects of these processes on the range
dynamics of mountain plants, here we use a so-called hybrid
model*, which couples niche-based projections of geographical
habitat shifts with mechanistic simulations of local demography and
seed dispersal. The model has a cellular-automaton-type structure:
it represents the study area as a regular grid of sites and simulates
changes in local (that is, per grid cell) species abundance forced by
an annual climatic time series. We applied this model to forecast the
twenty-first-century range shifts of a sample of 150 high-mountain
herb, graminoid and dwarf shrub species at a fine spatial grain
(100 m) across the entire European Alps (Supplementary Table S1),
that is, over an area of about 20 million cells (that is, sites).
Temperature and precipitation time series for the twenty-first
century, predicted by a regional circulation model under the Inter-
governmental Panel on Climate Change A1B scenario, were used
as climatic drivers of these dynamics (Supplementary Methods; we
did not explore further climatic scenarios because of the extremely
high computational demands of the hybrid model simulations).
To account for uncertainties in species-specific parameter values
of dispersal and demography, we ran the hybrid model with two
different sets of parameter values per species, one representing the
lower, and one the upper edge of a plausible interval (Supplemen-
tary Table S1 and Methods). We then compared the simulated range
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Figure 1| Predicted average range size reduction of 150 mountain plant
species of the European Alps during the twenty-first century. The red lines
represent results of hybrid model simulations, the black lines niche-based
projections. Shaded polygons illustrate possible model outcomes within the
extremes set by hybrid models with low (dashed) or high (solid)
demographic and dispersal parameter values; or by niche-based models
under a no-dispersal (dashed) or under an unlimited-dispersal (solid)
scenario. Differences in model predictions for the year 2010 result from a
20-year model burn-in period.

dynamics with two alternative predictions of niche-based models
that assume either that species instantaneously adapt their ranges to
any change in the distribution of suitable sites (‘unlimited dispersal’
scenario), or that they are unable to move beyond the initially
occupied sites (‘no dispersal’ scenario). Unrealistic as they are, these
two scenarios are commonly assumed to delimit the extremes of
possible climate-change-driven range size reductions*.

Averaged across all 150 species, hybrid model simulations
indicate that by the end of the twenty-first century these high-
mountain plants will have lost 44-50% of their present alpine
ranges under high and low values of demographic and dispersal
parameters, respectively (Fig.1). Importantly, these predictions
are not midway between the static niche-based projections under
unlimited (49%) or no-dispersal (82%) assumptions, but close
to or even lower than the former. However, in parallel with
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these surprisingly moderate range contractions, the hybrid model
simulates a rising spatial mismatch between climatically suitable
and occupied sites: the proportion of climatically unsuitable sites
among those occupied by the species will strongly increase during
the next decades (Fig. 2), owing to delayed local extinctions of the
mostly clonal high-mountain plants (Supplementary Table S1 and
Fig. S1). Simultaneously, the proportion of climatically suitable sites
among those unoccupied by the species will also steadily increase
(Fig. 2) because seed dispersal capacities are limited and do not
allow ‘emigrants’ from existing populations to colonize all sites that
will have become suitable as a result of the changing climate. When
restricting range calculations to the subset of climatically suitable
sites, the hybrid model hence makes a much less optimistic forecast
with an average range size reduction of 57-66% until the year
2100. These figures are actually in the middle of the two extremes
set by static model predictions, although still slightly closer to the
unlimited-dispersal scenario.

Range loss will affect species unequally. To quantify this
variation, we also calculated the proportions of species expected
to lose, or gain, a certain percentage of their present range sizes
until the end of the twenty-first century’. Moreover, we divided
the species set into a subalpine (98 sp.) and an alpine (52 sp.)
group; as well as into species endemic to the alpine chain (25
sp.) and more widely distributed species (125 sp.; ref. 21). We
then computed range loss separately for each group. Under the
given climatic scenario, static niche-based models predict that
by the year 2100, 34% and 73% of the species will have lost
>80% of their suitable area under the unlimited or no-dispersal
assumptions, respectively (Fig. 3 and Supplementary Fig. S2). As
with average range contractions, the hybrid model predicts lower
such percentages than even the unlimited-dispersal static model
if range loss calculations are based on all occupied sites (25-31%
of the species, see Fig. 3), but higher percentages if calculations
account for the climatically suitable sites alone (38-52%). In
line with previous findings®, the hybrid model also predicts that
more alpine than subalpine species will lose >80% of their range,
but differences in expected range loss are still more pronounced
between endemic (72-76%) and non-endemic (39-48%) species.
Predictions of complete range loss generally varied in a similar way:
the hybrid model forecasts that 6—8% of the full set of species, 5-6%
of the subalpine species, 8—12% of the alpine species, 3-4% of the
non-endemic species and 20-28% of the endemic species will no
longer occupy any climatically suitable sites by 2100. Hybrid model
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Figure 2 | Spatial mismatch between sites predicted to be occupied and sites predicted to be suitable. a, Percentage of unsuitable sites among those
predicted to be occupied. b, Percentage of suitable sites predicted to remain unoccupied. Sites are 100 m x 100 m cells in a regular grid spanning the
European Alps. Red lines represent hybrid model results with demographic and dispersal parameters set to high (solid) and low (dashed) values,
respectively, the black lines niche-model projections under an unrestricted-dispersal (solid) and a no-dispersal (dashed) scenario. Values are averages
across 150 model species. Suitability was measured by the projections of niche-based models for each species and year.
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Figure 3 | Proportion of species predicted to have lost >80% or 100% of
their range by the end of the twenty-first century. Red bars represent
results from hybrid models with demographic and dispersal parameters set
to high (b, b’) and low (¢, ¢’) values, respectively. Bars b and c refer to loss
calculations based on the number of sites predicted to be occupied, bars b’
and ¢’ to loss calculations based on the number of sites predicted to be
both occupied and still climatically suitable to the species. Grey bars
represent results of niche-based projections under unlimited-dispersal (a)
or no-dispersal (d) assumptions.

predictions for sites occupied irrespective of climatic suitability are
less severe (Fig. 3 and Supplementary Fig. S2), whereas static niche-
based models under the no-dispersal assumption always forecast
higher such percentages. Under an unlimited-dispersal assumption,
however, static models predict that some suitable areas will remain
for each one of the 150 species (Fig. 3). Only with respect to the

number of species predicted to lose their entire Alpine range, niche
models under an unlimited-dispersal assumption hence provide the
expected ‘most optimistic’ forecast.

The hybrid model indicates that the opposing effects of delayed
local population extinctions and lagged migration rates will result
in less severe twenty-first-century range reductions of alpine
plants than expected from static, niche-based model predictions.
However, these apparently ‘optimistic’ forecasts include a large
proportion of remnant populations under already unsuitable
climatic conditions. The persistence of such remnant populations
creates an extinction debt that will have to be paid later unless
species manage to adapt phenotypically or genetically to the
changing climate?? and to the likely associated alterations in
their biotic environments*. Our simulations indicate that such
repayment will take several decades, on average, and might
extend to several centuries for some species and/or populations
(Supplementary Fig. S1). Furthermore, recent evidence of frequent
postglacial migration lags among alpine plants** strongly indicates
that the complementary ‘immigration credit’>—represented by
the accumulating number of suitable, but uncolonized sites—
will not become fully realized for a long time into the future.
This is particularly likely for endemics, which—despite having
often large climatically suitable ranges available**—are often
restricted to those marginal chains of the Alps that had served
as refugia during Pleistocene glaciations®®. Worryingly, most of
these marginal chains have relatively low summit heights, making
their alpine plant populations particularly vulnerable to mountain-
top extinctions”. As indicated by hybrid model simulations, this
paucity of local cold-climate refugia at high altitudes, combined
with low mobility**, puts alpine endemics disproportionally at risk
under climate warming.

Our hybrid model represents considerable progress over purely
static projections of range shifts, and over previous hybrid models
that include only dispersal simulations®®, by providing insights
into the transient dynamics that are likely to dominate the range
responses of plants to climate warming over the next century.
Still, it is by necessity based on simplifying assumptions and
coarse parameter estimates, and also neglects potentially important
factors such as microscale climatic variation®®, extreme climatic
events®, differential climatic sensitivity among individual life-
history stages, wind-speed changes and their dispersal effects®® and
interactions among migrating plant species®. Despite these
caveats, by using two widely contrasting sets of parameter
values our simulations provide a plausible estimate of the span
of twenty-first-century range dynamics of alpine plants. Most
importantly, our results consistently caution against drawing over-
optimistic conclusions from relatively modest range contractions
observed during the coming decades, as these are likely to
mask more severe longer-term warming effects on mountain
plant distribution.

Methods

We fitted niche models'® for 150 plant species by relating occurrence data from
14,040 vegetation plots to one soil and five bioclimatic variables downscaled
to a 100 m spatial resolution. We then projected changing suitability surfaces
until the end of the twenty-first century based on an annual climatic series for
the Intergovernmental Panel on Climate Change A1B scenario (Supplementary
Methods). Initial species distributions for hybrid model simulations were
set by suitability projections under present climatic conditions, converted to
presence/absence using prevalence as threshold. To correct for model predictions
outside the realized range, these projections were filtered by maps of actual species
occurrence in 55 alpine regions®.

Populations of particular 100 x 100 m sites were represented by stage-
(seeds, juveniles, adults) structured cohorts. Population dynamics was driven
by demographic rates (germination, seed bank persistence, juvenile survival,
maturation, fecundity, clonal growth, adult survival). We collected species-specific
data on these rates from databases and literature (Supplementary Table S1). Owing
to remaining parameter uncertainties, we defined for each species and parameter a
low and high value along a credible range (see Supplementary Table S1 and Fig. S3
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for a sensitivity analysis). Finally, we assigned species-specific demographic rate
values to each site of the study area assuming that the rates are functions of site
suitability (Supplementary Methods).

We used mechanistic models to construct wind, exo- and endozoochorous
seed dispersal kernels. For combining the contributions of the three kernels to
overall seed shadows, we assumed either a high (1-5%) or low (0.1-0.5%) share of
the more fat-tailed zoochorous kernels.

Simulated range dynamics finally resulted from the impact of climate-driven
site suitability changes on demographic rates and the consequent growth or
decline of populations, eventual extinction or dispersal-mediated establishment in
hitherto uncolonized sites.
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