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        Introduction 

 The basic concept underlying species occurrence modelling is 
the definition of the ecological niche: each species is found 
within a specific range of environmental variables which enable 

individuals to survive and reproduce ( Austin, 2002 ). Species 
occurrence can be predicted through the identification of appro-
priate environmental variables, commonly referred to as habitat 
suitability models (HSM;  Guisan & Thuiller, 2005 ): the rela-
tionships are generalized from a sample of observations where 
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species presence is matched with specific values for the envi-
ronmental variables. This concept has been increasingly applied 
to the predictive mapping and ecological determinants of the 
distribution of disease vectors such as insects (e.g.  Rogers  et al. , 
1996 ) or ticks (e.g.  Cumming, 2000 ). Concerns about the im-
pact of forecast climate change on the distribution of disease 
vectors indicate a need to evaluate the influence of various tech-
niques on the modelling process and the final output. 

 Data availability is a major constraint in building large-scale 
models of species distribution ( Osborne  et al. , 2001 ) as induc-
tive modelling requires a large amount of optimally assessed in-
formation in order to predict species occurrence ( Hirzel & 
Guisan, 2002 ). Although vast stores of presence-only data exist 
for health-threatening arthropods, absence data are rarely avail-
able, or they may be of questionable value in many situations. 
Algorithms that use presence/absence data better fit the ex-
pected distribution of a given organism. Alternatively, and at the 
cost of restrictive assumptions, absence data may be generated 
in the form of pseudo-absences which refer to areas for which 
no definite information regarding species occurrence is availa-
ble and which are therefore assumed to be unsuitable in terms of 
provision of statistical data upon which analyses may be based 
( Wintle  et al. , 2005; Guisan  et al. , 2006 ). 

 As larger areas are modelled, it is highly likely that heteroge-
neity in the predictor variables will increase. There are indica-
tions that the performance of models is affected by several 
species-specific geographic attributes, such as latitudinal range, 
marginality, prevalence in the ecological sense and rarity 
( Brotóns  et al. , 2004; Segurado & Araújo, 2004; Luoto  et al. , 
2005 ). Therefore, variables restricting the distribution of a tick in 
a given area may have different roles in geographically separate 
sites. Although different modelling techniques have been used 

for the prediction of tick distribution, none, to our knowledge, 
have investigated systematically how variation in the geographi-
cal distribution of the target species and the use of different por-
tions of the environmental niche affect modelling outcomes. 

 The purpose of this study was to compare the performance of 
different models in predicting the distribution of the tick 
 Boophilus decoloratus  (Koch, 1844) in Africa based on pres-
ence/absence or presence-only data, as a baseline for further de-
velopments in modelling tick distribution. Particular attention 
was devoted to exploiting the distribution of the tick in ecologi-
cal clusters (a technique known as data partitioning) in an at-
tempt to build more accurate, partial models.  

  Materials and methods 

  The dataset 

 The distribution of  B. decoloratus  in Africa has been docu-
mented since the beginning of the 20th century. For this study, a 
dataset with relatively recent, geo-registered and accurate tick 
records which allow for comparison with contemporary climate 
was used. This study was based on the compilation of previ-
ously published records of economically important African 
ticks (International Consortium of Ticks and Tick-borne Dis-
eases, 2004    ). A total of 1304 records of presence, recorded be-
tween 1970 and 2000, were selected as suitable for this study 
(   Fig.   1 ). These records represent accurate determinations and 
unambiguously refer to pairs of co-ordinates. The basic geo-
graphical unit for this work was a 5 × 5-km cell. The tick was 
considered as present in the cell if at least one record fitted 
within the limits of that cell. 

    

     Fig.   1.     Map of Africa, displaying (A) presence records (point localities) for  Boophilus decoloratus  and (B) presence records for other tick species of 
domestic animals over the region of study, used as negative sites for the target species.   
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 A set of absence data was obtained using the following ap-
proach. The complete set of tick records for Africa including all 
species of veterinary interest was used. The tick was considered 
to be absent in a given cell if records existed for other tick spe-
cies in the cell.  Figure   1  shows the spatial distribution of records 
used in the current study.  

  Clustering 

 The main goal of this study was to determine if the building 
of partial models for geographically separate   populations of tick 
species could have a role in improving model performance. 
Thus, the complete set of records was used as a whole (herein 
called  ‘ complete models ’ ) or split into subsets of tick records 
collected within separate regions ( ‘ cluster models ’ ). 

 A multivariate clustering method was used to classify the 
habitat into categories. Multivariate clustering based on maps of 
abiotic variables has been used previously to produce a spec-
trum of quantitative eco-regions for vegetation (e.g.  Lobo  et al. , 
1997; Hargrove & Hoffman, 2005 ). These statistically gener-
ated eco-regions capture regional environmental differences 
summarizing local conditions in terms of gradients and clines. 
The environmental data selected to produce the eco-regions re-
ferred to monthly normalized difference vegetation index 
(NDVI) values, at 1-km resolution, obtained between 1992 and 
2002. Principal components analysis (PCA) was performed on 
the image composed of the 12 monthly NDVI values to reduce 
variability and correlation between monthly variables. Then, an 
unsupervised classification was performed on the values of the 
three first principal components (reported as significant in the 
matrix of loadings) to produce a set of clusters. Mahalanobis 
distance was used as a measure of dissimilarity and the weighted 
pair-group average was selected as an amalgamation method to 
produce the clusters, maximizing the distance between cluster 
centroids and minimizing the distance within points of the same 
cluster. Tick records collected  ‘ within ’  each cluster were con-
sidered to pertain to that particular cluster and were modelled 
separately.  erdas imagine  software (Erdas, Inc., Norcross, GA, 
U.S.A.  ) was used for all statistical procedures.  

  Predictor variables for tick habitat suitability 

 A grid-based dataset at a resolution of 5 km was used, in ac-
cordance with the grid for presence/absence tick data. The fol-
lowing 19 variables, obtained from the WorldClim dataset 
(Museum of Vertebrate Zoology, Berkeley, CA, U.S.A.  ), were 
used for predictive mapping  : 

    (1)    annual mean temperature;  
   (2)     mean diurnal range (mean of monthly [maximum 

temperature − minimum temperature]);  
   (3)    isothermality (2/7*100);  
   (4)    temperature seasonality (standard deviation*100);  
   (5)    maximum temperature in the warmest month;  
   (6)    minimum temperature in the coldest month;  
   (7)    temperature annual range (item 5 minus item 6);  

    (8)    mean temperature for the wettest quarter;  
    (9)    mean temperature for the driest quarter;  
   (10)    mean temperature for the warmest quarter;  
   (11)    mean temperature for the coldest quarter;  
   (12)    annual precipitation;  
   (13)    precipitation for the wettest month;  
   (14)    precipitation for the driest month;  
   (15)    precipitation seasonality (coeffi cient of variation);  
   (16)    precipitation for the wettest quarter;  
   (17)    precipitation for the driest quarter;  
   (18)    precipitation for the warmest quarter, and  
   (19)    precipitation for the coldest quarter.   

 All   19 variables were initially entered for every model. The 
best subset of variables was then selected by backwards and 
forwards substitution and elimination of every combination of 
variables. The influence of these climate conditions on the geo-
graphical range of the studied tick has been reported previously 
( Estrada-Peña  et al. , 2006a ).  

  Models 

 It is outwith the scope of this paper to evaluate every model 
capable of producing HS-predictive maps. Five different models 
commonly used to derive HS maps were tested. Two approaches 
that rely on presence/absence data (the generalized additive 
model [GAM], non-linear discriminant analysis [DA]) and three 
that use only presence data (the genetic algorithm for rule-set 
prediction [GARP], ecological niche factor analysis [ENFA], 
the Gower metric) were selected. A summarized description of 
each model follows. Readers should refer to the bibliography 
for exhaustive information about these procedures. 

 Generalized additive models implemented in the generalized 
regression analysis and spatial prediction (GRASP) framework 
( Lehmann  et al. , 2003 ) were tested. The GAM is a non-parametric 
extension of the commonly used generalized linear model and 
makes no assumption on the form of the species ’  response 
curves. It has been successfully applied for different species 
and contexts ( Guisan  et al. , 2002; Araújo  et al. , 2005   ;  Thuiller 
 et al. , 2006 ). 

 Discriminant analysis is a broad class of methods concerned 
with the development of rules for assigning unclassified objects/
specimens to previously defined groups. A linear or non-linear 
discriminant function is used to assign an observation to one of 
a set of groups taking a vector of observations from a specimen 
and multiplying it by a vector of coefficients to produce a score 
which is used to classify the specimen as belonging to a group. 
Non-linear DA, as used here, has been used previously to pre-
dict the distribution of tsetse flies ( Rogers  et al. , 1996; Robinson 
 et al. , 1997 ). 

 The GARP ( Stockwell & Peters, 1999 ) was tested as a pres-
ence-only model. The GARP evaluates non-random associations 
between environmental characteristics of localities of known oc-
currence vs. those of the overall study region to produce a heter-
ogeneous rule-set characterizing the species ’  ecological 
requirements. The GARP is designed to work with presence-
only data; absence information is included via sampling of 
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pseudo-absence points. The change in predictive accuracy from 
one iteration to the next is used to evaluate whether a particular 
rule should be incorporated into the model, and the algorithm 
runs until convergence. The GARP has been extensively used for 
predicting the colonization success of invasive species and HS 
maps of disease vectors ( Peterson, 2003 ). 

 Ecological niche factor analysis is an approach that uses 
presence-only data in a multivariate space of environmental 
variables ( Hirzel  et al. , 2002 ). This technique is based upon 
computation of the factors explaining the major part of species 
environmental distribution. An HS index for each cell is pro-
duced as a value inversely proportional to the weighted mean 
distance of the cell to the median of each ENFA factor, normal-
ized in such a way that the suitability index ranges from 0 to 1. 
This type of analysis has been successfully applied for habitat 
assessment of some species ( Brotóns  et al. , 2004; Engler  et al. , 
2004 ). One of the niche measures derived from ENFA in subse-
quent calculations (see below) was used. The first component of 
ENFA factorial evaluation (called the marginality factor) ex-
plains how far the species ’  optimum environment is from the 
average environmental conditions (hereafter called  ‘ global 
data ’ ) defined by all cells not previously excluded. 

 The Gower metric procedure assigns each cell in the output 
layer an average multidimensional similarity index pertaining to 
that cell and the closest presence cell in the training set ( Carpenter 
 et al. , 1993 ) using presence-only data. The higher the output (in 
the range of 0 – 1), the higher the similitude between the point 
and the set of actual captures in the training set, and hence the 
higher the suitability of the range of climate values for the tick 
species. Gower metric has not been extensively used recently, 
but it remains a useful approach for presence-only data ( Miles  
et al. , 2005; Pearson  et al. , 2006 ).  

  Development and evaluation of the models 

 Models were developed with a random training set of tick 
records (cells) and checked against an evaluation set (50% of 
records each). The whole set of climate layers was initially en-
tered to train the models. In cluster-derived models, training and 
evaluation sets were derived for each cluster. Cluster models 
were used to compute the HS for the target tick species in three 
different ways. In the first, HS was computed separately for 
each single cluster and then predictive maps were  ‘ patched ’  to-
gether. The second approach evaluated the HS for the whole ter-
ritory with every partial model derived from each cluster and 
then averaged the final HS as the mean of the output of every 
cluster model ( ‘ cluster-averaged ’  models). The third was in-
tended to produce a weighted output according to the size of 
each cluster (R = percentage of the total area in the zone of 
study), the prevalence (P) of the tick in the cluster (percentage 
of cells in the grid with confirmed tick presence within the clus-
ter) and the marginality (M) of tick distribution in the cluster 
(obtained from ENFA, as described above). Thus, the weighting 
factor ( Estrada-Peña  et al. , 2006b ) has the form: 

 W R P /M.= ( )×     

 The HS in this case was built according to the equation: 
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 where HS is the habitat suitability for the focal cell, H  i   is the 
value obtained for that cell from the partial coefficient as ob-
tained from  i th cluster, and w  i   is the weight assigned to the  i th 
cluster. This approach is referred to here as  ‘ cluster-weighted ’ . 

 Model performance using both presences and absences (gen-
erated as described above) from the tick database was assessed, 
even if the algorithm used presence-only data. The evaluation of 
performance measures first required the derivation of matrices 
of confusion that identified true positive, true negative, false 
positive and false negative. Sensitivity is based on the concept 
of true-presences misclassification and is calculated as 100% of 
false negatives. From the confusion matrix we calculated the 
area under the curve (AUC) of a receiver operating characteris-
tic (ROC) plot of sensitivity against (1 − specificity) ( Swets, 
1988 ). Sensitivity is defined as the proportion of true positives 
correctly predicted, whereas specificity is the proportion of true 
negatives correctly predicted ( Fielding & Bell, 1997 ). The AUC 
was obtained from a customized function in  s-plus  software (In-
sightful Corp., Seattle, WA, U.S.A.).  

  Influence of cluster features on modelling performance 

 The effects of tick prevalence and marginality at each indi-
vidual cluster, together with the effects of cluster size and its 
fragmentation (number of geographically separate patches con-
forming to a single cluster) as defined using Shannon ’ s even-
ness index ( Turner, 1990 ), on the performance of each model 
were tested by means of Spearman ’ s rank correlation at cluster 
level. Demonstration of the existence of different limiting fac-
tors in the climate suitability for the tick at each individual clus-
ter was also important. Climate variables ranked by each model 
as most important in predicting suitability for the tick at cluster 
level were considered the most limiting. A canonical analysis 
was performed between clusters and the most limiting climate 
factor for the tick in each cluster. Each cluster was plotted ac-
cording to its position within the two first main NDVI-derived 
PCA axes, together with the position of the limiting climate fac-
tors, obtained from the canonical analysis, to facilitate under-
standing of the causes affecting environmental suitability for the 
tick within each cluster.   

  Results 

 A total of 25 categories, including water, were obtained through 
PCA analysis of monthly NDVI values.    Figure   2  shows the geo-
graphical range of each cluster over the African continent. The 
first principal axis was strongly related to total NDVI and the 
second principal axis to NDVI variability (seasonality). The 
third axis was loaded with NDVI values for the period April –
 September. Together, the first and second axes accounted for 82% 
of total variability and the three axes together accounted for 91% 
of variability.    Figure   3  shows the prevalence and marginality of 
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     Fig.   3.     (A) Prevalences of  Boophilus decoloratus  by cluster, obtained as the number of positive cells and total number of cells in the cluster. (B) Levels 
of marginality of the tick in each cluster, obtained from ecological niche factor analysis.   

         Fig.   2.     Arbitrary colours showing the clus-
ters detected over the region of study accord-
ing to normalized difference vegetation index 
seasonal dynamics and classification of the 
three main axes of principal components 
analysis.   
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 B. decoloratus  in the clusters. The highest tick prevalence was 
detected in wide areas of central Africa, the mountains of Ethio-
pia and in western Africa, corresponding with vegetation cate-
gories 18, 20, 22 and 25. Marginality was negatively correlated 
with these areas of highest prevalence. Marginality was lowest 
in a wide strip across the continent in central Africa. The highest 
area of marginality corresponded to a narrow strip in the Sahe-
lian transition zone. 

 In general terms, complete models produced a lower sensitiv-
ity and predictive performance (AUC) than cluster-derived 
models (   Table   1 ). Best performance in complete models was ob-
tained in the GARP and Gower metric models. Performance 
was greatly enhanced using cluster-derived models, but differ-
ent results were obtained according to the clustering method. In 
single clusters, GAM performed better, whereas GAM and DA 

produced the highest AUCs in averaged and weighted clusters. 
In the whole set of cluster models, the single-cluster method 
provided the best modelling approach for all the algorithms and 
the weighted approach provided the next best. 

 In complete models (   Fig.   4 , upper row), both GAM and GARP 
clearly overestimated tick distribution, performing with high sen-
sitivity but at the cost of many false positives. However, DA and 
ENFA underestimated tick distribution in some parts of its range. 
The Gower metric procedure overestimated tick distribution in its 
southern range, but produced an adequate result for central re-
gions of Africa. There was a drastic change in the output of clus-
ter-weighted models compared with other methodologies. 
 Figure   4  (lower row) shows the visual output of cluster-weighted 
models, with better agreement between actual and predicted dis-
tribution as detected by AUC values for most of the algorithms. 

     Table   1.     Sensitivity and area under the curve of the modelling algorithms for complete models and for cluster-based models (single, averaged and 
weighted).     

  Model

Complete Single cluster Averaged cluster Weighted cluster  

Sens AUC Sens AUC Sens AUC Sens AUC    

GAM 0.74 0.61 0.73 0.92 0.74 0.83 0.67 0.89  
DA 0.64 0.66 0.72 0.90 0.75 0.87 0.77 0.90  
GARP 0.69 0.71 0.62 0.80 0.69 0.75 0.48 0.78  
ENFA 0.59 0.58 0.71 0.84 0.69 0.76 0.55 0.78  
Gower 0.61 0.69 0.69 0.90 0.70 0.83 0.62 0.86  

   Sens, sensitivity; AUC, area under the curve; GAM, generalized additive model; DA, discriminant analysis; GARP, genetic algorithm for rule-set pre-
diction; ENFA, ecological niche factor analysis; Gower, Gower distance.      

    

     Fig.   4.     Visual output of habitat suitability obtained from the different modelling algorithms in the prediction of the distribution of  Boophilus decolora-
tus  in Africa. (A) Generalized additive model. (B) Discriminant analysis. (C) Genetic algorithm for rule-set prediction. (D) Ecological niche factor 
analysis. (E) Gower distance. The upper row shows the complete models (developed, tested and performed on the whole set of positive and negative 
records). The lower row shows outputs obtained using the cluster-weighted approach.   
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     Table   3.     Spearman ’ s rank correlation of sensitivity and area under the 
curve values of every model obtained individually for each normalized 
difference vegetation index-derived cluster, as affected by values of area of 
clusters, prevalence, and marginality of  Boophilus decoloratus,  and Shan-
non ’ s evenness index in each cluster. Significant values are shown in bold.     

  Model Area Prevalence Marginality
Shannon ’ s 
index    

Sensitivity GAM 0.064  0.001  0.003 0.514  
DA 0.191  0.000  0.000 0.945  
GARP 0.209  0.013  0.021 0.933  
ENFA 0.021  0.002  0.005 0.900  
Gower 0.238 0.064 0.086 0.831  

AUC GAM 0.189  0.031  0.042 0.651  
DA 0.105  0.000  0.000 0.478  
GARP 0.066  0.001  0.001 0.530  
ENFA 0.326  0.005  0.009 0.824  
Gower 0.923  0.011  0.014 0.153  

   AUC, area under the curve; GAM, generalized additive model; DA, 
discriminant analysis; GARP, genetic algorithm for rule-set prediction; 
ENFA, ecological niche factor analysis; Gower, Gower distance.      

 A relationship was observed between the performance of the 
modelling algorithms as individually obtained from the clusters 
of NDVI values and different variables associated with clusters 
(   Table   2 ). All the algorithms performed less well when applied 
to areas of low tick prevalence or high marginality. Spearman ’ s 
rank correlation (   Table   3 ) shows that both sensitivity and AUC 
were significantly affected by the prevalence and marginality of 
the tick in a given cluster. However, model performance did not 
correlate with total area of the cluster or Shannon ’ s index.  

  Discussion 

 Predictive modelling of the geographic distribution of health-
threatening arthropods, based on environmental conditions, 
constitutes an important technique in analytical epidemiology. 
Considerable concern exists about the possible spread in re-
sponse to forecast climate change of some arthropods and the 
diseases they carry (e.g.  Sutherst, 2001 ). However, the weakest 
points in predicting distribution are data availability and the ap-
plication of algorithms to increasingly larger regions (e.g. entire 
continents). Although vast stores of presence-only data exist, 
absence data are rarely available, especially for poorly sampled 
regions. Occurrence data for most tick species were recorded, in the 
best cases, through local sampling schemes and the great majority 
of these data consist of presence-only records from museum 
 collections. The main problem with such occurrence data is that the 
intent and methods of collecting are rarely known, so that absences 
cannot be inferred with certainty. These data also have associated 
errors and biases, reflecting the frequently unsystematic manner in 
which samples were accumulated. Even when absence data are 
available, they may be of questionable value in many situations 
because sampling intensity in space and time may be non-random. 
All these reasons indicate the need to evaluate algorithms based on 
presence-only data because of the inherent problems in obtaining 
accurate data for absences for large regions. 

 Models that work with both presence and absence data are 
better than those that use presence-only data.  Brotóns  et al. 
 (2004)  showed that predictions derived from generalized linear 
models (GLM) are more accurate than those from ENFA when 
accurate absence data are available.  Zaniewski  et al.  (2002)  ar-
gued that pure presence-only methods are more likely to predict 
potential distributions that more closely resemble the funda-
mental climate preferences of the species, whereas presence/ab-
sence modelling is more likely to reflect the present natural 
distributions derived from the realized niche. As presence-only 
methods do not take into account the areas from which the spe-
cies might be absent, they are less conservative in estimating the 
niche. Methods based on presence-only data appear to fully 
cover habitat modelling when the main objective is to identify 
overall suitable areas for a given species ( Pearson  et al. , 2006 ). 
If a complete and accurate set of absences is available, and as-
sumptions of equilibrium are not violated, presence/absence 
methods should be prioritized because they better capture the 
ecological relationships of the species with the niche ( Brotóns 
 et al. , 2004; Guisan & Thuiller, 2005 ). 

 This study argues that the dividing of tick records from a 
large region (a continent) into clusters is a useful tool to enhance 
model performance. Although the concept of intraspecific niche 
differentiation in the field of predictive mapping has been pro-
posed previously ( Osborne & Suárez-Seoane, 2002; Peterson & 
Holt, 2003; Guisan  et al. , 2006; Murphy & Lovett-Doust, 2007 ), 
this study demonstrates its usefulness in assessing climate suit-
ability for ticks with the detection of clusters based on ecologi-
cal grounds. The use of NDVI as a proxy to build ecosystem 
units is increasingly applicable. Remote sensing is a valuable 
tool that can be used to describe the spatial heterogeneity of ec-
osystems functioning at regional and global scales ( Lobo  et al. , 
1997 ). Biomes (clusters) are not predefined but emerge as dis-
tinct combinations of plant dominant types, which are governed 
by climatic parameters that, in turn, also regulate the lifecycle of 
ticks. This method has been used to reappraise ecoclimatic re-
gions in the U.S.A. (Loveland  et al. , 1991), Africa ( Mayaux  
et al. , 2004 ) and Europe ( Metzger  et al. , 2005 ). It is most impor-
tant that definitions based on remotely sensed data are objective 
and repeatable, and that these NDVI-derived values define fea-
tures of the tick lifecycle ( Estrada-Peña  et al. , 2006a , 2006b). 
Reducing the number of variables while retaining the original 
variability of the whole dataset using PCA has also been re-
ported as a useful tool in the management of NDVI values ( Du-
chateau  et al. , 1997; Metzger  et al. , 2005 ) for incorporating 
variation into adequate environmental structures. Thus, NDVI-
derived clusters of habitat are useful for dividing up habitat over 
wide regions and for describing the functional features of the 
respective clusters, while retaining an understanding of the hab-
itat ’ s overall impact on the tick lifecycle  . 

 Some cluster features clearly affect model performance. Both 
sensitivity and AUC clearly depend on the prevalence and mar-
ginality of the tick within each cluster. It is obvious that predic-
tion will have poor sensitivity in areas where the tick is 
uncommon  . However, even if the tick is well represented in a 
cluster, the distance between the species ’  optimum conditions 
and prevailing environmental conditions in the cluster (as meas-
ured by marginality) will bias the algorithm ’ s response. It is 
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interesting to note that algorithm performance depends on 
neither the size of the cluster nor its fragmentation. Furthermore, 
the most limiting climate variables for building the best predic-
tive output for each cluster were defined differently by the vari-
ous models. This both indicates the influence of different 
limiting variables in different parts of the geographical range of 
the tick and supports the use of cluster-derived models to cap-
ture the best set of local predictive conditions. 

 Clusters as defined here should be considered as dynamic en-
tities that can shift in geographic space according to ecological 
forces operating on the tick population and longterm changes in 
climate. The effect of the ecological plasticity of the tick popu-
lation to prevailing climate conditions requires critical assess-
ment in terms of both tick ecology and predictive mapping and 
is considerably important in the invasive behaviour of some tick 
species ( Estrada-Peña  et al. , 2007 ). This methodology is also 
applicable to the tracking of longterm ecological changes caused 
by climate conditions. When absence data are available, both 
DA and GAM produce a better inference than algorithms based 
on presence-only data. In any case, spatial partitioning of the 
data is clearly necessary to improve predictions of models where 
regional niche variation occurs or for wide-ranging species. The 
inclusion of prevalence and marginality values in cluster-
weighted models, although it reduces the final statistical output 
of the model, allows for deeper ecological significance  .    
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