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Abstract To successfully protect native biodiversity

from the effects of biological invasions, local conser-

vation priorities must be established. For this purpose,

fine-grained species distribution data is required but

often unavailable. We present a new approach to

obtain fine-grained predictions of invasion through the

development of downscaled invasion maps based on

coarse-grained distribution data. The framework is

illustrated for the alien invader Acacia dealbata in the

Northwest of Portugal. The analytical design was

divided in five steps: (1) three individual coarse-

grained models were calibrated and their spatial

predictions were downscaled into fine-grained models

using three different downscaling techniques; (2) a

Downscaling Consensus Map was built by spatially

combining the predictions from those three models;

(3) using coarse-grained (1 km2) or fine-grained

(0.04 km2) datasets, two different models were fitted

and spatially projected; (4) for each spatial resolution,

Conservation Value maps were produced, based on the

spatial combination of the protection networks repre-

sented in the region; and (5) the spatial conflicts

between the predicted distribution of the invader and

Conservation Value maps were calculated and com-

pared for the several invasion maps. The downscaled

models showed high predictive performance

(AUC [ 0.9). The spatial projections of the different

models revealed a general similarity among projec-

tions from all modelling techniques, for both the

patterns of invasion and the conflicts with conserva-

tion areas. The possibility of obtaining detailed and

reliable predictions based on coarse-grained distribu-

tion data could avoid costly fieldwork to collect fine-

grained distribution data while effectively supporting

the management of invasions at the appropriate scales.
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Genéticos, Predictive Ecology (PRECOL) research group,

Campus Agrário de Vairão, Universidade do Porto,

4485-601 Vairão, Portugal

D. Georges � W. Thuiller

Laboratoire d’Ecologie Alpine, CNRS-UMR 5553,
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Introduction

Biological invasions are known to be one of the major

drivers of global change (Chytrý et al. 2012; Sala et al.

2000; Vilà and Ibáñez 2011) acting at several spatial

scales, and multiple ecological and biological levels

(e.g. ecosystems, habitats, species; Ohlemüller et al.

2006; Seipel et al. 2012; Walther et al. 2009; Weaver

et al. 2012). The most important negative impacts of

biological invasions include changes in ecosystems

structure and functioning (Theoharides and Dukes

2007; Thuiller et al. 2007), decrease in native biolog-

ical diversity, and homogenization of species pools,

and several downstream economic losses (Giorgis

et al. 2010; Le Maitre et al. 2011; Vilà et al. 2010;

Vitousek et al. 1997). After the establishment of

invasive alien species on a given area, eradication

measures are difficult to implement, and time and cost

consuming (Gallien et al. 2012; Genovesi 2005).

Anticipating and preventing the introduction of inva-

sive alien species into a specific region is therefore

considered the most cost-effective way of managing

biological invasions (Broennimann and Guisan 2008;

Gallien et al. 2012; Hulme 2006).

Species distribution models (hereafter SDMs) are

an effective method to anticipate future invasive

species introductions since they establish a statistical

relationship between species occurrence and environ-

mental data (Elith and Leathwick 2009; Guisan and

Thuiller 2005). In the last decade, SDMs have been

applied in several different contexts, e.g. to create

tools in conservation planning (Araújo et al. 2011), to

identify ecological requirements of invasive alien

species and environmental drivers of distributions

(Gallien et al. 2012; Vicente et al. 2010), and to

forecast the potential distribution of invasive alien

species under future environmental scenarios (e.g.

climate and land use changes; Roura-Pascual et al.

2004; Vicente et al. 2011).

Recently, increasing attention has been devoted to

the study of invasions across multiple scales, to

determine which particular processes drive invasions

at each relevant scale (Pauchard and Shea 2006; Seipel

et al. 2012). Methodological advances in SDMs such as

the combined predictive modelling framework (CPM;

Vicente et al. 2011), which uses subsets of predictors

classified by their scale of influence, have contributed to

provide more informative spatial projections of species

distributions (Boulangeat et al. 2012; Gallien et al.

2012). Additionally, ensemble modelling promoted

high improvements compared to SDMs fitted with a

single technique (Araújo and New 2007), reducing their

predictive uncertainty (Thuiller et al. 2009), since it

combines the projections of several different modelling

methods into a final prediction that enhances the

agreement of predictions (Elith et al. 2010).

The spatial scale to address a research study should

reflect the objectives of the task, for example conti-

nental or global scales must be considered when

macroecological or global changes are the focus of the

study, whereas local and regional scales must be

considered when detailed ecological processes or

conservation planning and management are the main

objective (Elith and Leathwick 2009). Coarse resolu-

tion datasets are most frequently available for species

distribution data (e.g. distribution atlases, opportunis-

tic records, herbarium collections; McPherson et al.

2006) as well as for environmental information

(General Circulation Models, e.g. WorldClim; Hij-

mans et al. 2005; land cover maps e.g. Corine Land

Cover; Caetano et al. 2009). The use of coarse

resolution data to address fine-scale ecological prob-

lems can however lead to misinterpretations of the

results and to dubious conclusions (Guisan and

Thuiller 2005). Available data on invasive alien

species distribution and/or environmental factors are

frequently too coarse for local conservation actions,

because they don’t permit to detect small vegetation/

habitat types patches potentially threatened by inva-

sive plants (Araújo et al. 2005; Barbosa et al. 2010;

Rouget 2003). To overcome this problem, environ-

mental and distribution data should be collected at

higher spatial resolutions (e.g. to calibrate fine-scale

SDMs), but this solution requires a costly compre-

hensive sampling design (Barbosa et al. 2010).

Downscaling methods have been proposed to

overcome the problem of coarse data, allowing the

detection of fine-grained environmental patterns using

the combination of coarse-grained species occurrences

and fine-grained environmental data (Araújo et al.

2005; Keil et al. 2013). In recent years, several

downscaling approaches for species distribution mod-

els have been proposed: the direct approach (Araújo

et al. 2005; Barbosa et al. 2010; McPherson et al.

2006); the iterative approach (McPherson et al. 2006);

the point sampling approach (McPherson et al. 2006);
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the centroids approach (Bombi and D’Amen 2012;

Lloyd and Palmer 1998); the envelope approach

(Bombi and D’Amen 2012); the clustering approach

(McPherson et al. 2006); the hierarchical approach

(Pearson et al. 2004); and the hierarchical Bayesian

modelling approach (Keil et al. 2013).

Although several studies have applied and com-

pared downscaling approaches (Bombi and D’Amen

2012; McPherson et al. 2006), to our knowledge

there is no study based on coarse-resolution species

data that combines the outcomes of different down-

scaling techniques into a robust consensus projection

map (Downscaling Consensus Map; i.e. combination

of different downscaling outputs into a single map).

The reasoning behind the development of a Down-

scaling Consensus Map is similar to the one behind

the development of ensemble modelling. We hypoth-

esis that the combination of outputs of different

downscaling approaches into a consensus map might

help reduce predictive uncertainties of single down-

scaling approaches. Therefore, the general objective

of this work is thus to develop downscaled invasion

probability maps from coarse-grained model projec-

tions to obtain spatial projections of invasion prob-

ability useful for local management actions. We

illustrate our approach with the invasive alien plant

species Acacia dealbata (silver wattle), one of the

most problematic woody species in South-western

Europe (Lorenzo et al. 2010), and specifically in the

protected areas of the study area. Projections from

coarse-grained SDMs, based on 1 km2 pixel species

occurrence data, were downscaled by combining

results from several downscaling methods into a

consensus projection map. It resulted in four possible

combinations of predictions (Type III—Presence

predicted by three approaches; Type II—Presence

predicted by two approaches; Type I—Presence

predicted by one approach; and Type 0—Absence

predicted by all approaches). The projections of the

consensus map were compared with projections from

a fine-grained model calibrated using independent

fine resolution occurrence data (0.04 km2). Finally,

we use the Downscaling Consensus Map ability to

determine possible conflicts between A. dealbata and

natural protected areas, comparing those conflicts

with those obtained with the independent fine-

grained model.

Methods

Study area

The study area is a region heavily invaded by alien

plants, located in the extreme Northwest of Portugal

(Fig. 1). It covers an area of 3,462 km2 and is located

at the transition between the Euro-Siberian (‘‘Atlan-

tic’’) and the Mediterranean biogeographic regions

(Costa et al. 1998). The region is topographically

heterogeneous, with elevation ranging from sea level

(in the west) to 1,450 m a.s.l. in the eastern mountains,

resulting in marked variations of environmental con-

ditions. The annual mean temperature ranges from

about 9 �C to about 15 �C, and the mean total annual

precipitation varies between about 1,200 mm in the

lowlands to about 3,000 mm in the eastern mountain

summits (Vicente et al. 2011). The heterogeneity of

the area, in terms of topography and climate, is

demonstrated by a wide variety of land uses and

vegetation covers (e.g. vineyards, olive groves, pine

forests, oak forests, grasslands; Caetano et al. 2009).

Test species

Acacia dealbata Link., known as silver wattle, is a

woody plant species from the Leguminosae family and

native to Australia and Tasmania (Lorenzo et al. 2010).

Australian Acacia species are problematic plant invad-

ers in many parts of the world (Le Maitre et al. 2011). A.

dealbata was introduced in Europe in the 1820s

(Carballeira and Reigosa 1999), and it has become very

common in Mediterranean countries where it can be

found both in the wild (as an invader in disturbed forests

and scrublands) and grown as an ornamental plant

(Lorenzo et al. 2010). A. dealbata has a high colonizing

ability leading to low cover of undergrowth species.

This is mainly because of its capacity to produce large

amounts of seeds (Lorenzo et al. 2010), the germination

of which is stimulated by fire, and to occur in dense

populations eliminating native vegetation by preventing

its regeneration (e.g. through competition for resources;

Lorenzo et al. (2010) and by allelopathic interference;

Marchante et al. 2011). In our region of interest, the

species is widespread and is projected to further expand

its current distribution under future climate and land use

change scenarios (Vicente et al. 2011).
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Sampling strategy

Two independent occurrence datasets for A. dealbata

were used in this study as response variables for SDMs

calibration (see Fig. 2): a coarse-grained set (1 km2)

and a fine-grained set (0.04 km2).

The coarse-grained occurrence set (1 km2) was

obtained from data compiled in previous surveys

(Vicente et al. 2010, 2011). These surveys were

conducted between March and April 2008 (comple-

mented with surveys in 2010 and 2011). The data were

collected using a stratified random sampling strategy

described in Vicente et al. (2010).

Independently, the fine-grained occurrence dataset

(0.04 km2) was collected through field surveys,

between January and March 2012, during the species’

blooming period. To gather the 0.04 km2 dataset, we

first used the previously obtained coarse-grained

occurrence dataset to calibrate a distribution model

for A. dealbata (with 1 km2 resolution).Climate was

used as the only source of environmental explanatory

variables, since it’s the primary determinant of alien

invasions in the region (Vicente et al. 2010). Cells

predicted as suitable for species presence (in the

previously calibrated 1 km2 model) were stratified

based on the percentage of artificial forest cover and on

the landscape edge density (9 final strata; for more

details see Appendix A1on Online Resource 1). We

used an equal-stratified sampling design to randomly

select 20 plots of 0.04 km2 size (200 9 200 m cells) in

each stratum. In each of the 0.04 km2 cells, presence or

absence data for A. dealbata was collected, with a fixed

sampling effort established (about 30 min per cell).

For each of the two independent datasets and to

minimize geographic aggregation, we removed from the

initial datasets, occurrences geographically less distant

to their closest neighbour than a given threshold distance

(Clark and Evans (1954) aggregation index R). We

proceeded iteratively until the aggregation index

reached a value R & 1 (occurrences not clustered).

To avoid biases due to edge effects, we computed the

Clark and Evans index with the correction proposed by

Donnelly (1978). The computation was done in R using

the spatstat package. The final occurrence datasets for A.

dealbata used for model fitting included 138 records (69

presences, 69 absences) for each of both spatial

resolutions (1 and 0.04 km2).

Environmental variables

First, we selected variables that, according to expert

knowledge and to previous reporting in the scientific

literature (Lorenzo et al. 2010; Vicente et al. 2010,

2011, 2013a, b), can act as determinants of the ecology

and distribution of the test species. To avoid correla-

tion between selected variables, we tested for pair-

wise correlations using Spearman’s rho correlation

coefficient, and only variables with correlation lower

Fig. 1 The study site

Minho is located in

northwest Portugal in

southwestern Europe (a) on

a western edge of the Iberian

Peninsula (b). The elevation

of Minho varies from sea

level on the west coast to

1,450 m above sea level in

the eastern portion (c)
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than 0.6 were considered (Elith et al. 2006). In the case

of correlated pairs of variables, we chose the variable

with the most direct ecological impact (based on

expert knowledge of the actual distribution of the

species) on plant species distribution (Guisan and

Thuiller 2005). This analysis yielded a final set of nine

environmental variables to fit the SDMs (Table 1):

two climatic variables (Minimum Temperature of

Coldest Month, and Annual Precipitation), two land

cover/landscape composition variables (percentage

cover of broadleaf forests, and percentage cover of

artificial forests), one geological variable (percentage

of granites), one fire regime related variable (total

number of fires between 1990 and 2009), and three

landscape structure metrics (density of local hydro-

graphical and road network, mean shape index and

edge density; for more detailed information see

Appendix A2 on Online Resource 1).

Fig. 2 Analytical framework for modelling and downscaling

the distribution of A. dealbata and assess the conflicts with

CV areas. Using coarse-grained datasets, models a, b and c were

downscaled using three different downscaling approaches (Step

1). A Downscaling Consensus Map was then built by spatially

combining the predictions of the models obtained by the

downscaling approaches, resulting in four responses: Type III-

presence predicted by the three approaches, Type II-Presence

predicted by two approaches, Type I-presence predicted by one

approach and Type 0-absence predicted by three approaches

(Step 2). Using coarse-grained datasets and fine-grained

datasets, a Coarse-grained and a Fine-grained model were

calibrated and projected for A. dealbata using the combined

predictive modelling approach (Vicente et al., 2011), resulting

in four predicted responses: Type A—Suitable regional

conditions and local habitat, Type B—only suitable regional

conditions, Type C—only suitable local habitat, and Type D—

unsuitable regional conditions and local habitat (Step 3).

Conservation value (CV) was mapped by combining Natura

2000 sites and Natural Parks each classified into four classes

ranging from no protection value to high protection value (Step

4). Finally, spatial conflicts between the predicted distribution of

the species (A, B, C and D, or III, II, I and 0) and CV were

calculated (Step 5)

A novel downscaling approach to predict plant invasions
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Analytical framework

The analytical design was divided in five major steps,

as illustrated in Fig. 2:

Step 1. Using coarse-scale datasets (1 km2), we

built three individual distribution models applying the

ensemble forecasting framework of biomod2 package

(Thuiller et al. 2009; available at http://cran.r-project.

org/web/packages/biomod2/index.html) in the statis-

tical software R (R Development Core Team 2012).

These three final ensemble models were based on the

combination of nine available algorithms in biomod2

and using the available nine environmental predictors

(for more details see biomod2 help files and vignettes).

Each individual model was calibrated using 80 % of

available data. The area under the curve (AUC) was

then calculated on the 20 % of remaining data. This

cross-validation procedure was repeated 30 times.

Only models with AUC [ 0.7 were kept to build

ensemble models. Kept individual model predictions

were then used to produce a single ensemble model

using the Mean (all) consensus method (i.e. decreases

the predictive uncertainty of single-models by calcu-

lating the mean value of the predictions ensemble; see

Marmion et al., 2009). The Mean (all) consensus

method was used because it provides more robust

predictions than single-models or other consensus

methods (Marmion et al. 2009). Finally, model pro-

jections were reclassified into presence-absence using

a threshold maximizing the percentage of presences

and absences correctly predicted (i.e. the probability

where sensitivity = specificity; Liu et al., 2005). The

final output distribution was then downscaled into

fine-grained distribution models (0.04 km2) using

three different methods:

– Model a, downscaled using the Direct Approach

(Araújo et al. 2005; McPherson et al. 2006; Bombi

and D’Amen 2012), that projects the distribution

of a calibrated coarse-grained distribution model

into a fine-grained projection, assuming that

species distributions at finer scales (0.04 km2)

are influenced by the same processes as at coarser

scales (1 km2).

– Model b, downscaled using the Centroids

Approach (Lloyd and Palmer 1998; Bombi and

D’Amen 2012), uses the centroids of all sampled

presence pixels and the centroids of all unoccupied

sampled pixels; the environmental conditions at

the finer resolution (0.04 km2) were sampled for

these centroids and used to calibrate and project

the models, obtaining fine-grained predictions.

– Model c, downscaled using the Envelope Approach

(Bombi and D’Amen 2012; Bombi et al. 2012), in

which 69 points of presence were randomly

generated within the 1 km2 sampled presence

pixels, and 69 points of absences were randomly

generated within the 1 km2 sampled absence

pixels. These points were then used to extract

fine-grained environmental information that was

used to calibrate and project fine-grained models.

Step 2 Spatial projections of the fine-grained

models (a, b, and c) were combined to create a

Downscaling Consensus Map, resulting in four pos-

sible combinations: presence predicted by the three

approaches (Type III), presence predicted by two

approaches (Type II), presence predicted only by one

approach (Type I), and absence predicted by all

approaches (Type 0).

Step 3 Using the ensemble forecasting framework

applied previously in Step 1, a Coarse-grained (1 km2)

and a Fine-grained (0.04 km2) combined predictive

models (Vicente et al. 2011) were fitted for the current

distribution of A. dealbata. In this combined model-

ling procedure, separate models were fitted using

Table 1 Environmental variables used in the different models,

grouped into environmental types that reflect their ecological

meaning, and their scale of variation in the test region (Vicente

et al. 2011; for more details see Appendix A2 on Online

Resource 1)

Environmental

types

Environmental variables Scale of

variation

Climate BIO6 (minimum temperature

coldest month)

Regional

BIO12 (annual precipitation)

Landscape

composition

pBlFor (% cover of broadleaf

forests)

Local

pArtFor (% cover of artificial

forests)

Geology pGra (% of granites)

Fire regime NumFir (total number of fire

occurrences between 1990

and 2009)

Landscape

structure and

function

DHidRoadNe (density of local

hydrographic and roads

network)

MSI (mean shape index)

ED (edge density)
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either ‘‘regional’’ (partial regional model) or ‘‘local’’

(local partial model) predictors (see Table 1; Scale of

variation), and a final model was obtained by spatially

overlapping the two partial model projections (Vicen-

te et al. 2011), resulting in four possible combinations:

suitable regional conditions and local habitat (A), only

suitable regional conditions (B), only suitable local

habitat (C), and unsuitable regional conditions and

local habitat (D). The Coarse and Fine-grained

combined models were created to spatially compare

and validate the outputs obtained by the Downscaling

Consensus Map (Step 2).

Step 4. For each spatial resolution (1 km2 and

0.04 km2), we produced Conservation Value (CV)

maps based on the two nature protection networks

present in the region: the European Natura 2000

network, and the National Natural Parks network (see

Appendix A3 on Online Resource 1 for more details).

Step 5. We calculated and compared the spatial

conflicts between the predicted distribution of A.

dealbata (obtained in Steps 2 and 3) and the CV maps

(at coarse and fine scales). We obtained six possible

conflict outputs: (i) combinations of highest concern,

where A. dealbata has suitable regional conditions and

local habitat available (type A or III) and the CV is

high or medium; (ii) probable conflict with low

conservation relevance, where the species has suitable

regional conditions and local habitat available (type A

or III) but the CV is low; (iii) conflict possible but

uncertain, with conservation relevance, where the

species has only suitable regional conditions or local

habitat available (type B or II; C or I) but the CV is

high or medium; (iv) conflict possible but uncertain,

with low conservation relevance, where the species

has only suitable regional conditions or local habitat

available (type B or II; C or I) and the CV is low;

(v) areas without conflict (no CV) but invader species

predicted to be potentially present; and (vi) areas of

lowest concern, where the invasive species is pre-

dicted to be absent (type D or 0).

Results

Downscaling the potential distribution of A.

dealbata

The performances of all three downscaling approaches

were considered very high, with AUC values above

0.9 (Table 2). The number of pixels predicted as

presences were clearly higher for the Centroids

Approach (53,701 presences) and for the Envelope

Approach (52,513 presences) than those predicted in

the Direct Approach (29,441 presences), which thus

yielded more conservative projections of the potential

distribution of the focal invasive plant.

The two combined models (Fine-grained and

Coarse-grained) and the Downscaling Consensus

Map predicted different proportions of suitable habitat

for A. dealbata in the test region (Table 3). Areas with

suitable regional conditions and local habitat (Type A)

were the predominant response type predicted by the

Coarse-grained Combined Model (42 % of the total

area). Conversely, in the Fine-grained Combined

Table 2 Predictive accuracy of the ensemble models (mea-

sured as the area under the curve, AUC) for the three used

downscaling approaches, and the number of pixels (1 pix-

el = 0.04 km2) predicted as presences and absences in each

ensemble model (for more information see Appendix A4 on

Online Resource 1)

Downscaling approach AUC Presence Absence

Model a—direct approach 0.952 29,441 52,734

Model b—centroids approach 0.943 53,701 28,474

Model c—envelope approach 0.966 52,513 29,662

Table 3 Percentage of the study area predicted for each of the

four response classes in combined models (A = Suitable

regional conditions and local habitat, B = Only suitable

regional conditions, C = Only suitable local habitat, and

D = Unsuitable regional conditions and local habitat), for the

two combined models (Fine-grained and Coarse-grained

Combined Models) and for the Downscaling Consensus Map

(III = Presence predicted by all downscaling approaches,

II = Presence predicted by two downscaling approaches,

I = Presence predicted by one downscaling approach, and

0 = Absence predicted by all downscaling approaches)

Combined model Type A

(%)

Type B

(%)

Type C

(%)

Type D

(%)

Fine-grained

combined model

13 35 10 42

Coarse-grained

combined model

42 18 12 28

Consensus model Type

III (%)

Type

II (%)

Type I

(%)

Type

0 (%)

Downscaling

consensus map

31 28 16 25
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Model, areas with unsuitable conditions (Type D) was

the predominant projection (42 %), while areas with

suitable regional conditions and local habitat (Type A)

were predicted to occur in only 13 % of the total area.

In the Downscaling Consensus Map, the presence of A.

dealbata was predicted by the three downscaling

approaches (Type III) for almost one-third of the total

area (31 %), while the areas where all three

approaches predicted absences (Type 0) covered a

quarter of the total area (25 %). Overall, the Fine-

grained Combined Model thus yielded more

conservative projections for the distribution of the

focal invader.

The three downscaling procedures yielded gener-

ally comparable spatial projections for A. dealbata

(Fig. 3a–c). Comparing the projections of the different

approaches, the Direct Approach (Fig. 3a) provided a

more spatially scattered projection of presences and

absences than the other two approaches. Conversely, the

Centroids Approach (Fig. 3b) produced a more aggre-

gated projection for presences (and absences) than the

two other downscaling approaches. In the Envelope

Fig. 3 Downscaled spatial projections for A. dealbata using

three different downscaling approaches: direct approach (a),

centroids approach (b), and envelope approach (c). spatial

projections of the different suitability models obtained for A.

dealbata: downscaling consensus map (d), fine-grained com-

bined model (e), and coarse-grained combined model (f)

R. F. Fernandes et al.
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Approach (Fig. 3c) the spatial projections are compara-

ble (though less dense) to the Centroids Approach map

(Fig. 3b). The spatial projections of the different

suitability models (Fig. 3) presented an overall similarity

between projections of species presence in the Down-

scaling Consensus Map (Fig. 3d) and projections of

suitable conditions in the combined models (Fig. 3e and

f), despite the more conservative projections obtained

with the Fine-grained Combined Model (cf. Table 3).

Spatial conflict between conservation value and A.

dealbata invasion

Different levels of potential spatial conflicts were

obtained through the spatial combination of the

distribution predictions of A. dealbata and CV maps

(Table 4). Areas of highest concern and of probable

conflict with low conservation relevance were more

predicted by the Downscaling Consensus Map (1.4

and 3.9 % of the total area, respectively) and by the

Coarse-grained Model (1.1 and 3.8 %, respectively).

The lower values predicted by the Fine-grained Model

(0.8 and 1.9 % of the total area, respectively), were in

agreement with the more conservative distribution

projections described above. The Fine-grained Model

also predicted smaller areas of no conflict but invader

present (46.2 %) and larger areas of lowest concern

(invader absent; 41.7 %).

Considering the spatial patterns of conflict in the test

area (Fig. 4a–c), the areas of major concern are located

in the eastern lowlands, where high conservation value

areas (Peneda-Gerês National Park) spatially coincide

with predicted suitable conditions for A. dealbata.

Areas of no conflict but invader present and of lowest

concern were, for the three different conflict maps/

scenarios, the predominant predictions and with gen-

erally coincident spatial patterns. When comparing the

two fine-grained projections, the areas of highest

concern predicted by the Downscaling Consensus

Map (Fig. 4a) are more aggregated in the main river

valleys than those predicted by the fine-grained model

(Fig. 4b). The spatial combination of the fine-grained

CV map (Fig. 4d) with the areas predicted as of highest

concern by the Downscaling and the Fine-grained

models simultaneously (Fig. 4e) revealed that there are

important areas, inside Portugal’s single National Park,

predicted as of highest concern (Fig. 4f).

Discussion and conclusions

Improving predictions of invader distribution

through downscaling

The prediction of the spatial (and temporal) patterns of

invasion by alien species is particularly useful when

made at relevant scales to support conservation and

management actions (i.e. at ‘‘local’’ scales; Barbosa

et al. 2010). However, in most cases, the quality of

available distribution data is incompatible with such

needs. Downscaling techniques are a promising

approach to overcome this problem and translate

coarse-grained data into fine-grained predictions

(Araújo et al. 2005; Bombi et al. 2012).

Table 4 Percentage of the area of possible spatial conflict

between A. dealbata predicted invasion and the areas with

conservation value (CV map), for each combination of spatial

conflict: Highest concern (response Type A or III and high

protection value), Probable conflict with low conservation

relevance (response Type A or III and low protection value),

Conflict possible but uncertain, with conservation relevance

(response Type B or C (II or I) and high or medium protection

value), Conflict possible but uncertain, with low conservation

relevance (response Type B or C (II or I) and low protection

value), No conflict but invader present (response Type A, B or

C (III, II or I) and no protection value), and Lowest concern,

with invader absent (response Type D or 0)

Invasion and

CV conflicts

Highest

concern

(%)

Probable conflict

with low

conservation

relevance (%)

Conflict possible but

uncertain, with

conservation relevance

(%)

Conflict possible but

uncertain, with low

conservation relevance

(%)

No conflict

but invader

present (%)

Lowest

concern

(invader

absent) (%)

Downscaling

conflicts

1.4 3.9 2.4 4.2 62.9 25.2

Fine-grain

conflicts

0.8 1.9 4.1 5.4 46.2 41.7

Coarse-grain

conflicts

1.1 3.8 2.2 3.3 61.5 28.1
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Over the last decade, several species distribution

downscaling approaches have been proposed: the

direct approach (Araújo et al. 2005; McPherson et al.

2006); the centroids approach (Bombi and D’Amen

2012; Lloyd and Palmer 1998); or the envelope

approach (Bombi and D’Amen 2012). However, even

if the results from the different techniques can

sometimes be quite different (e.g. Bombi and D’Amen

2012; McPherson et al. 2006), to our knowledge so far

no study has tried to combine those results into a final

consensus projection.

Here we developed a framework that integrates the

predictions of three different downscaling approaches

into a single consensus map. We used the same three

downscaling approaches that Bombi and D’Amen

(2012) compared in their work, also achieving excel-

lent predictive accuracy for our downscaled models. In

their study, Bombi and D’Amen (2012) highlighted

that different errors and assumptions characterize and

influence the different downscaling approaches. These

errors and assumptions can explain the observed

differences in the spatial projections of our downscaled

Fig. 4 Spatial conflict between the three A. dealbata invasion

projections/scenarios and the corresponding CV map: down-

scaling consensus map and fine-grained CV map (a); fine-

grained combined model and fine-grained CV map (b); Coarse-

grained Combined model and coarse-grained CV map (c). Detail

of the highest concern spatial conflicts: fine-grained CV map

(d), spatial conflicts of highest concern predicted simulta-

neously by the downscaling consensus map and the fine-grained

combined model (e), and areas of spatial conflict of highest

concern, viewed in detail for the Peneda-Gerês National Park (f)
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models (e.g. the more scattered projections of the

Direct Approach when compared to the other

approaches; see Fig. 3). Considering those different

assumptions and sources of error, some choices can be

made to produce more accurate downscaled predic-

tions, such as the quality, accuracy and number of

occurrence data, the species niche range, the choice of

the modelling technique and the selection of environ-

mental variables (Bombi and D’Amen 2012).

Several studies attributed great importance to the

use of accurate occurrence data to explain the

success (Bombi and D’Amen 2012; Bombi et al.

2012; Lloyd and Palmer 1998) or the failure

(Collingham et al. 2000; McPherson et al. 2006) of

the downscaling processes. In our work we used

accurate (though coarse-grained) occurrences, with

low spatial correlation and representative of the

environmental variations in our study area. This may

have improved the performance of our downscaled

models since factors that could lead to poor model

calibration (e.g. areas unevenly sampled or data

consisting of biased or sparse presence/absence

records; Collingham et al. 2000; McPherson et al.

2006) were taken into account. The choice of

modelling techniques is also an important factor to

explain the good performances of downscaled mod-

els, so we used an ensemble forecasting approach to

calibrate our models to take into account the

uncertainties of the different modelling techniques,

resulting in more accurate final projections (Araújo

and New 2007; Bombi et al. 2012; Thuiller et al.

2009). The use of this ensemble forecasting approach

was important in our work because, as Bombi and

D’Amen (2012) noted, different modelling tech-

niques can influence in different ways the accuracy

of the downscaling approaches. Finally, the selection

of environmental variables also influences the results

of the downscaling process (Barbosa et al. 2003;

Bombi and D’Amen 2012; Lloyd and Palmer 1998).

Therefore, it is important to determine which factors

can determine the species distribution at coarse and

fine scales. The use of variables important at finer

scales (e.g. land-use) can also improve fine-grain

predictions (Araújo et al. 2005; Bombi and D’Amen

2012; Pearson et al. 2004). Our downscaling frame-

work performed well also due to the use of

ecologically significant environmental variables to

explain the distribution of A. dealbata at the several

relevant scales (see Vicente et al. 2011).

Despite of the choices that can be made to improve

the performance and accuracy of the downscaling

procedures (and the different model projections pro-

duced in the process), there are no ‘‘rules of thumb’’ to

choose the downscaling approach based on their

different errors and/or assumptions (Bombi and

D’Amen 2012). The similarities observed between

our Downscaling Consensus Map and the Fine- and

Coarse-grained projections suggest that the new

framework accurately predicted the fine-grain distri-

bution of A. dealbata in our study area, using coarse-

grain distribution data, while ensuring that the

strengths and weaknesses of each downscaling tech-

nique were taken into account.

Improving prediction and management of conflicts

with protected areas

Protected areas globally are important refuges of

native biodiversity, particularly for species with high

conservation value, and also for providing many

valuable ecosystem services (Beaumont et al. 2009).

Over the last few years, Species Distribution Models

have been widely used to predict the expansion of

invasive alien species into protected areas and their

potential impacts on biodiversity and ecosystem

services (e.g. Kleinbauer et al. 2010; O’Donnell

et al. 2012; Vicente et al. 2013a, b), however in most

cases using a spatial resolution incompatible with

local conservation and management needs.

Downscaling procedures have been used in previ-

ous studies to: predict the distribution of invasive

species at finer scales (Collingham et al. 2000); assess

the importance and applicability of downscaling

approaches to predict the distribution of threatened

species (Barbosa et al. 2003, 2010); assess the

limitations and potentialities of different downscaling

approaches (Bombi and D’Amen 2012; Keil et al.

2013; McPherson et al. 2006); or discuss the impor-

tance and implications of using downscaling

approaches for conservation planning (Araújo et al.

2005). To our knowledge, our study is the first to use

downscaling approaches to predict the distribution of

an invasive species at finer scales with the aim of

predicting its potential conflicts with protected areas

(or other areas of conservation relevance) and thereby

contributing to manage those conflicts. Bombi et al.

(2012) focused on identifying priority areas for

conservation of indigenous species, and concluded
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that with accurate downscaling processes the identi-

fication of local priority areas with high spatial

resolution was possible, even when using coarse-

grained distribution data. In our study we have reached

a similar conclusion, since conflict predictions from

our Downscaling Consensus Map (based on coarse

distribution data) presented a spatial pattern generally

comparable to the one predicted by the Fine-grained

Model (see Fig. 4). In fact, our downscaling frame-

work could predict spatial patterns of conflicts similar

to those predicted using fine-grain distribution data,

making this a suitable approach to obtain models for

conservation actions in those areas that are more prone

to invasion.

The Convention on Biological Diversity proposed

three steps for the management of alien invasive

species: prevention, eradication, and, if the first two

steps fail, control (Secretariat to the Convention on

Biological Diversity 2005). It has been recognized that

prevention is the most cost-effective way to manage an

invasion by an alien species (Broennimann and Guisan

2008; Gallien et al. 2012; Hulme 2006). It is also

known that for local conservation and management

actions to become successful at protecting native

biodiversity, their application must be designed with

high spatial detail (Barbosa et al. 2003; Bombi et al.

2012). In our study, we created a fine-grained map of

the spatial conflict between the potential distribution

of the invasive A. dealbata and areas with conserva-

tion value. Our results can be useful to help implement

management and monitoring actions to prevent

(through early detection) the establishment of invasive

alien species in areas where species and habitats of

high conservation value could become threatened by

changes in landscape and habitat quality, and to

identify areas of high concern that should be consid-

ered as the primary target areas against invasions.

Focusing the application of scarce resources in those

areas of highest concern can contribute to the success

of invasion control measures as well as to the overall

cost-efficiency of both management and monitoring.
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