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A B S T R A C T   

Classifying organisms has a wide use and a long history in ecology. However, the meaning of a ‘group of or-
ganisms’ and how to group organisms is still the subject of much theoretical and empirical work. Achieving this 
long quest requires simplifying the complexity of species niches for which relevant morphological, behavioural, 
biochemical or life-history traits are often used as relevant proxies. Soil fauna is highly diverse and many 
classifications have been proposed to synthesize both the response of soil organisms to their environment and 
their effect on soil functioning. Here, we provide a critical overview of the characteristics and limitations of the 
existing classifications in soil ecology, and propose clarifications and alternatives to current practices. We 
summarise the similarities and differences in how classifications have been created and used in soil ecology. We 
propose a harmonization of the current concepts by properly defining ‘guilds’, ‘functional groups’ and ‘trophic 
groups’ as subcategories of ‘ecological groups’, with different purposes and distinguishing criteria. Finally, based 
on these concepts, we suggest a common framework to define classifications based on functional traits that al-
lows a better and unified understanding of changes in soil biodiversity and ecosystem functioning.   

1. Introduction 

Classifying organisms has a long history in ecology (MacArthur and 

Levins, 1964) because defining groups is a common practice that “allows 
a context-specific simplification of the real world” (Gitay and Noble, 
1997). Species sharing certain morphological, ecological or life history 
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similarities are likely to play comparable functional roles (Pigot et al., 
2020; Winemiller et al., 2015). 

However, the objectives for creating a group of organisms and how to 
assemble organisms into homogenous groups are still the subject of 
much theoretical and empirical work in ecology (e.g. Simberloff and 
Dayan, 1991; Wilson, 1999; Jaillard et al., 2018; Bottinelli and Capo-
wiez, 2021). Clustering species into groups with similar response to the 
environment or similar impact on ecosystem functioning implies iden-
tifying the degree of overlap in at least one dimension of their ecological 
niche, defined as an n-dimensional hypervolume (Hutchinson, 1957). 
Achieving this goal requires simplifying the complexity of the niche into 
synthetic axes. Organism traits are often taken as proxies for such niche 
axes (Violle and Jiang, 2009). For instance, in plant ecology, species are 
generally classified on the basis of their similarity of traits (Grime, 
1977). This approach could be applied to any kind of organisms, and is 
relevant to describe cryptic underexplored organisms, such as soil fauna. 

Soil organisms strongly influence soil processes and hence the 
functioning of terrestrial ecosystems (Lavelle et al., 2006; Dignac et al., 
2017). With the world’s ecosystems experiencing ongoing global 
changes, the maintenance of ecosystem functionality urgently requires 
an understanding of how changes in soil invertebrate diversity could 
affect soil functioning (Eisenhauer et al., 2019). However, studying soil 
fauna remains a challenge (i) due to the huge diversity of soil organisms, 
(ii) because only a tiny fraction of the actual diversity has been identi-
fied (Decaëns, 2010), and (iii) we know little about the biology of most 
taxa (Orgiazzi et al., 2016). Realizing that some organisms share similar 
features, clustering species into groups has been a regular practice for 
monitoring and predicting the response of soil fauna to natural and 
anthropogenic disturbances as well as their effects on soil functioning 
(Gisin, 1943; Lavelle, 1997; Bouché, 1977; Bongers and Bongers, 1998; 
Brussaard, 2012; Briones, 2014). 

When considering the soil fauna as a whole, organisms are often 
classified (i) by taxonomy (hereafter called ‘clades’, e.g. Lumbricidae, 
Collembola, or Nematoda), (ii) according to their body size (i.e. macro-, 
meso- and micro-fauna; Swift et al., 1979; Gobat et al., 1998; Gongalsky 
et al., 2021), (iii) into trophic groups to aid the analysis of food webs (e. 
g. predatory mites, bacterivorous nematodes; de Ruiter et al., 1996; 
Sechi et al., 2015; Bloor et al., 2021), or (iv) according to their functional 
role, for example the soil ecosystem engineers (i.e., organisms that 
directly or indirectly modulate the availability of resources to other 
species, by causing physical state changes in biotic or abiotic materials) 
(Lavelle et al., 1997). Some classifications are widely used, such as the 
earthworm ecological categories (Bouché, 1977), terrestrial isopod 
groups (Schmalfuss, 1984), Collembola life forms (Gisin, 1943), nema-
tode functional guilds (Bongers and Bongers, 1998), the ‘cp’ and ‘pp’ 
nematode groups (Bongers, 1990, 1999), ant functional groups 
(Andersen, 1995), termite feeding guilds (Donovan et al., 2001) or the 
soil functional groups defined by Lavelle and Spain (2001). These groups 
have been defined to summarize similar responses to their environment 
(e.g. Gisin, 1943) or effects on soil functioning (Lavelle et al., 2007). 

However, there is a lack of an overarching framework for classifying 
the soil fauna traditionally operated with very broad groups, such as 
‘litter transformers’, ‘ecosystem engineers’ and ‘micropredators’ (War-
dle, 2002), ignoring diversity of responses and functions within these 
groups. Only recently, a more detailed overarching classification that 
merged existing group-specific classifications using a hybrid taxonomic- 
and-trait approach was suggested (Potapov et al., 2022a). However, the 
definition of groups in the classifications listed above depends on the 
appreciation by specialists of the main role of the organisms. For 
example, Lavelle (1997) included macroinvertebrates as ecosystem en-
gineers, whereas Brussaard (2012) added fungi to this group. This is an 
example to underline that the definition of functional groups dramati-
cally depends on the knowledge and point of view we have on soil or-
ganisms. In addition, mixing groups that have been defined for different 
clades would be meaningful if these groups were initially defined using 
similar traits or ecological preferences, hence representing the same 

axes of the niche. In practice though, mixing such groups in multi-taxa or 
multi-trophic approaches is not rare (Henneron et al., 2015; Ohlmann 
et al., 2018). For example, drawing conclusions from similar responses 
to an environmental constraint or disturbance for Collembola life forms 
and nematode trophic guilds may have feet of clay since they do not 
inform the same part of their respective niche (i.e. habitat and trophic 
dimensions, respectively). In multi-taxa or food web approaches, species 
attribution to a group may vary between studies (Henneron et al., 2015; 
Martinez-Almoyna et al., 2019; Sechi et al., 2015; Bloor et al., 2021), 
limiting our ability to draw clear conclusions across studies. As far as we 
know, the robustness of the results to classification methodology, i.e. to 
what extent the results would change if the classification was changed, 
has not yet been systematically tested. 

Finally, the low number of traits properly defined, the low level of 
knowledge on trait trade-offs at organism level and the lack of a common 
ontology that delineates the relationships between environmental 
pressures, soil organism trait and ecological functions impedes fluent 
communication among soil ecologists and with stakeholders (e.g. public 
authorities, NGOs, conservation ecology experts). Since there is a risk of 
making policy decisions on the quicksand of inaccurate knowledge, 
more attention needs to be devoted to effective communication of 
research data and results and thus validation of the scientific knowledge 
accumulated (Bouma, 2019). This includes rethinking our way of 
interpreting and communicating studies on soil fauna based on ‘func-
tional groups’ (Briones, 2014). 

In the present paper, we give a critical overview of the characteristics 
of main classifications currently used in soil ecology, and propose clar-
ifications and alternatives to current practices. In the following, we 
summarize the similarity/differences in how classifications have been 
created and used in soil fauna ecology. We propose a harmonization of 
the current concepts and their applications and suggest a common 
framework to define classifications that allows a more consistent un-
derstanding of changes in soil biodiversity and ecosystem functioning. 

2. Existing classifications were not built on the same grounds 

Early work was mostly based on species natural history and expert 
knowledge (Table 1). Many classifications are the valuable heritage of 
work done in the 1930s up to the 1980s on the biology and ecology of 
soil organisms (Gisin, 1943; Lee, 1959; Bouché, 1977; Perel, 1975; 
Halffter and Matthews, 1966; Yeates et al., 1993; Bongers, 1990; 
Greenslade, 1978; Schmalfuss, 1984). Broadly, differences between 
these classifications arise from the type and the number of traits, and the 
organism’s life stages that are taken into account to cluster species 
(Fig. 1). Most classifications only consider adults and not juveniles. 
Certain classifications are based on non-mating individuals whereas 
others consider sexual ones (Fig. 1). All these points are detailed in the 
following paragraphs. 

2.1. Criteria used to cluster species 

Soil ecologists have used a large number of traits related to behav-
iour, morphology, physiology or phenology to cluster species (Table 1). 
Some classifications rely on life-history traits and abiotic tolerances. 
Some others take into account indirect characteristics, such as the 
properties of biogenic structures created by the soil organisms (casts, 
mounds, nests, burrows, etc.). The number of traits used for clustering 
species depends on the authors and the clade. For instance, dung beetles 
are mostly assigned according to one type of trait (nesting behaviour) 
whereas earthworm species are usually clustered by a combination of 
several types of traits (e.g. behaviour, morphology, physiology). 
Behaviour is the most common type of trait used to classify soil organ-
isms, in particular foraging and/or reproductive behaviours (e.g. Yeates 
et al., 1993; Andersen, 1995; Halffter and Matthews, 1966; Savolainen 
and Vepsäläinen, 1988; Doube, 1990). Regarding morphology, traits 
commonly used to cluster soil organisms include body size, shape, color, 
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Table 1 
Overview of classifications of various soil invertebrates (Nematoda, Annelida, Tardigrada, Crustacea, Collembola, Arachnida, Insecta).   

Papers Criteria Clustering method # groups Initial biogeographic 
range 

Nematodes (Phylum: Nematoda)  
Bongers (1990) 
Ferris et al. (2001) 

Life history groups (life-history traits, reproduction 
rate, egg size, egg number, ability to survive, cuticle 
permeability, presence in polluted sites, etc.) 

Expertise: synthesis of works (published or 
not) based on anatomy, laboratory rearing 
and field observations 

5 (free-living 
nematodes) 
4 (plant- 
feeders) 

Netherlands 

Yeates et al. (1993) Trophic groups (mouth shape armature and 
pharynx, but also feeding behavior and gut 
composition analyses) 

Expertise: synthesis of works (published or 
not) based on anatomy, laboratory rearing 
and field observations 

8 Worldwide 

Bongers and Bongers 
(1998) 

Functional guilds (trophic and demographic groups) Combination of life history and trophic 
groups 

16 Netherlands 

Earthworms (Phylum: Annelida, Order: Haplotaxida)  
Lee (1959) Effect on soil (cast, burrow), Morphology (size of 

matured individuals, body pigmentation, structure of 
the gut, muscular development), Behaviour (reaction 
to touch), other (predatory pressure, geographic 
distribution of individual species, reaction to change 
in land-use patterns) 

Not described 3 New-Zealand 

Bouché (1972)  Morpho-anatomy (Skin coloration, Muscle of the 
dissepiment, Muscle structure of the body wall, Tail, 
Size, Body wall thickness), Physiology (Respiratory 
intensity, Regeneration ability, Nephridia pores, 
Resting stage), Behaviour (Mobility / Contractibility) 

Statistical (not described) 3 to 7 France 

Bouché (1977) Morpho-anatomy (Skin coloration, Adult size, 
Muscle of the dissepiment, Setae), Physiology 
(External humidity, Regeneration ability, Resistance 
to bad conditions, Reproduction, Maturation, 
Respiration, Resistance to irritant, Speed of the gut 
transit), Behaviour (Diet, Light avoidance, 
Longitudinal contractibility) 

Statistical (not described) 3 to 7 France 

Perel (1975) Morphology (intestine shape, typhlosolis shape, 
pigmentation, tail shape, prostomium shape), 
Behaviour (mobility, response time to physical 
stimuli) 

Not described 2 Eastern Europe 

Satchell (1980) Effect on soil (burrows type, recognizable cast), 
Behaviour (aestivation), Morphology (color), Life- 
history traits (fertility, sexual maturity, number of 
generation per year) 

Not described 2 United Kingdom 

Blanchart et al. 
(1999) 

Soil aggregation Expertise Expert judgement based on 
empirical records and literature survey 

2 Tropical soils 

Pot worms (Phylum: Annelida, Order: Enchytraeida)  
Didden (1993) Life history (acceleration or deceleration of the 

embryogenesis) 
Expertise Empirical observations 2 The Netherlands  

Graefe and Schmelz 
(1999) 

Physiology (pH, moisture and salinity) Expertise Expert judgement based on 
empirical records and literature survey, 
inspired by Ellenberg’s indicator values for 
plants (Ellenberg et al. 1992) 

4 (moisture) 
5 (pH) 
8 (salinity) 

Germany  

Graefe and Schmelz 
(1999) 

Life history (r-, K- and A-continuum) Expertise Expert judgement based on 
empirical records and literature survey 

5 Germany  

Graefe and Schmelz 
(1999) 

Life forms (vertical distribution in the humus profile 
and their occurrence in the gradient of humus forms), 

Expertise Expert judgement based on 
empirical records and literature survey 

14 Germany 

Tardigrades (Phylum: Tardigrada)  
Bertolani (2001) Life history groups (Reproductive mode) Expertise Expert judgement based on 

empirical records and literature survey 
4 Worldwide 

Altiero et al. (2009) Life-history (hatching phenology) Expertise Expert judgement  Italy 
Guidetti et al. (2011) Ecological traits  Expertise Expert judgement 5 Italy 

Guidetti et al. 
(2012), Guidetti 
et al. (2013) 

Ecological traits (Buccal morphology; Piercing 
stylets; Branching of furca) 

Expertise Expert judgement 8 Italy 

Woodlice (Phylum: Arthopoda; Class: Malacostracea; Order: Isopoda)  
Vandel (1960) Habitat Expertise: synthesis of works (published or 

not) based on field observations 
17 France 

Edney (1977) Physiology (Tolerance to water loss) Expertise 3 Worldwide 
Hoese (1981) Physiology (Salt homeostasis) Expertise 2 Europe 
Schmalfuss (1984) Morphology and life strategies Expertise 6 Europe 
Hoese (1984) Biology (Type of marsupium linked with offspring 

protection) 
Expertise 2  

Sutton et al. (1984) Life history traits Expertise 2  
Springtails (Phylum: Arthopoda; Class: Collembola)  

Gisin (1943) Life-forms (morphology, vertical position, moisture 
preference) 

Expertise Expert judgement based on 
empirical records and literature survey 

3  

Christiansen (1964) Life-forms (morphology, vertical position, moisture 
preference) 

Expertise  5  

(continued on next page) 
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Table 1 (continued )  

Papers Criteria Clustering method # groups Initial biogeographic 
range 

Berg et al. (2004) Feeding guilds (enzyme activity evaluating the 
ability of springtails to digest cellulose, chitin and 
threalose) 

Dominance of specific digestive enzymes or 
their combinations 

4 Dutch grasslands 

Chahartaghi et al. 
(2005) 

Feeding guilds (Nitrogen stable isotope ratios) Assuming a 15N enrichment of about 3 ‰ per 
trophic level 

3 German forests 

Thibaud and 
D’Haese (2010) 

Life-forms (morphology, vertical position, moisture 
preference)  

9  

Potapov et al. (2016) Functional guilds (stable isotopic composition, 
taxonomic identity and life forms) 

Significant differences in C and N stable 
isotope composition among life form - order 
combinations 

4 Global temperate forests 

Rusek (1989) Life forms (morphology, abiotic preferences: 
microhabitat, moisture preference)  

Expert opinion, knowledge on the species 
biology, specific morphological adaptations 

5 Central Europe 

Springtails (Phylum: Arthopoda; Class: Collembola) and mites (Phylum: Arthopoda; Class: Arachnida; Order: Oribatida)  
Siepel (1994) Life-history tactics (Reproduction; Development; 

Synchronization; Migration) 
Iterative method by taking sufficiently 
described species and placing them one by 
one in every possible combination. 
All possible combination are not found in 
nature, the list presents the ones that may be 
observed. 

13   

Oribatid mites (Phylum: Arthopoda; Class: Arachnida; Order: Oribatida)  
Schuster (1956) Feeding guilds Expertise: synthesis of works (published or 

not) based on gut content and food choice 
experiments 

3  Austrian forest  

Knulle (1957) Isovalent groups (habitat)  Expertise 17 þ 1 Germany  

Bulanova- 
Zakhvatkina (1952) 

Ecological types (cuticle thickness, legs length, 
resistance to drought) 

Expertise 3 Moscow region, Russia  

Luxton (1972) Feeding guilds Expertise: synthesis of works (published or 
not) based on gut content and food choice 
experiments 

6  Denmark  

Behan and Hill 
(1978) 

Feeding guilds Expertise: synthesis of works (published or 
not) based on gut content 

6  North America (artic, 
subartic)  

Siepel and de Ruiter- 
Dijkman (1993) 

Feeding guilds (enzyme activity evaluating the 
ability of mites to digest cellulose, chitin and 
threalose) 

Expertise: Dominance of specific digestive 
enzymes or their combinations 

7 The Netherlands  

Krivolutsky (1995) Morpho-ecological types (morphological features 
and life history tactics) 

Expertise 16 Eurasia  

Schneider et al. 
(2004) and Maraun 
et al. (2011) 

Feeding guilds (Nitrogen stable isotope ratios) Assuming a 15N enrichment of about 3 ‰ per 
trophic level 

4  German forests 

Spiders (Phylum: Arthropoda; Class: Arachnida; Order: Araneae)  
Enders (1976) Hunting guilds Expertise: Bibliographic survey 5 Worldwide 
Schaefer (1976) Life cycle / Overwinting Expertise: synthesis of works (published or 

not) based on field observations 
5 Germany 

Post and Riechert 
(1977) 

Hunting guilds Expertise 11 USA 

Bell et al. (2005) Long-distance dispersal Expertise: Bibliographic survey 2 Worldwide 
Pétillon et al. (2011) Tolerance to coastal environments Lab’ experiments 3 France 
Pekár and Toft 
(2015) 

Food specialization Expertise: Bibliographic survey 4 Worldwide 

Conti et al. (2018),  
Conti et al. (2019) 

Life history groups (Thermal regulation and ability 
to survive, presence in polluted sites, etc.) 

Measures: Field and molecular 
measurements 

5 Namibia 

Conti et al. (2020) Functional traits 
Biochemistry of silks 

Mass spectrometry measurements 5 Namibia 

Mulder et al. (2019) Behavioural traits 
Burrow depth 

Empirical observations 5 Namibia 

Dung beetles (Phylum: Arthropoda; Class: Insecta; Order: Coleoptera, Family: Scarabaeidae)  
Halffter and 
Matthews (1966) 

Nesting behavior (sequence of behavioral steps 
leading to the completed nest) 

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

4 Worldwide 

Halffter (1977) 
Halffter and 
Edmonds (1982) 

Nesting behaviour (Form of larval provision; Nest 
location; Nest complexity; Disposition of brood 
masses/balls in compound and subterranean nests; 
Manipulation of larval provision; Provisioning of 
subterranean nests; Outer surface of brood ball; 
Location of egg chamber; Male-female cooperation; 
Brood care) 

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations  

7 Worldwide 

Doube (1990) Nesting behaviour (way to use and remove dung), 
Dry body mass  

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

7  Austral Africa 

Pessôa et al. (2017) ‘Physical’ traits (Size, Prothorax height, Area of the 
anterior tibia, Wing load, Mesotibia ratio); 
Behavioral traits (Generalism in food preferences, 

Statistical: dissimilarity matrix (Gower) +
non-hierarchical K-Means clustering method 

8  South-America 

(continued on next page) 
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number of ocelli, etc. (Bouché, 1977; Malcicka et al., 2017; Pessôa et al., 
2017; Sosiak and Barden, 2021). There are classifications that use so 
many different traits that they are very difficult to apply since one rarely 
has information on all traits. Presumably, it may explain why the 
microarthropod classification of Gisin (1943), which relies on 
morphology, is more widely used than the one of Siepel (1994), which 
mostly relies on behaviour and life-history traits not well documented 
for many species. Moreover, large part of this particular classification 
seems to be non-published and not publicly available. 

2.2. Number of groups in classifications 

The number of within-clade groups differs from one clade to another, 
which makes classification resolution not easily comparable (Table 1). A 
low number of groups has the potential advantage of high genericity, 
meaning that the classification can be more easily extrapolated to 
different contexts, e.g., the Bornemissza (1976) classification for dung 
beetles (Fig. 1, Table 1). However, oversimplifying the functional het-
erogeneity of soil organisms can lead to significant loss of essential in-
formation. Conversely, more detailed classifications have higher 
probability not to be transposable to new contexts. In a given geographic 
region, it is more likely that a classification derives from particular traits 

Table 1 (continued )  

Papers Criteria Clustering method # groups Initial biogeographic 
range 

Horizontal displacement, Nest building, Ball or pear- 
shaped nest); Phenological traits (Daily activity) 

Bornemissza (1969) 
Bornemissza (1976) 

Nesting behaviour (nest position relative to the food 
source) 

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

3  Worldwide 

Hanski and 
Cambefort (1991) 

Nesting behaviour Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

4  Worldwide 

Finn and Gittings 
(2003) 

Larval food (dung, facultative coprophages/ 
saprophages, saprophages); Oviposition site (dung, 
soil); Site of larval development (dung, soil (small 
dung masses), soil); Body size (small vs large) 

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

7  North temperate countries 

Tonelli (2021) Feeding behaviour  

Nesting behaviour 

Propose an unified approach relying on 
published studies 

5  

4 

Worldwide 

Horgan (2008) Reproductive output (life-time fecundity); Food 
nutritional requirements; Requirements for 
terrain suitability; Size of food source; Relocation 
and utilization times; Successional mean 
occurrence; Function 

Expertise: synthesis of works (published or 
not) based on laboratory rearing and field 
observations 

10  Central-America (El 
Salvador) 

Rove Beetles (Phylum: Arthropoda; Class: Insecta; Order: Coleoptera, Family: Staphylinidae)  
Bohac (1999) Life forms (Size; Trophic specialization; Habitat) Expertise: Based on Sharova (1981) 23  Holarctic region 

Majka et al. (2008) Tolerance to coastal environment Expertise: Adapted from Koch (1989–1993) 
and Hammond (2000) 

4  North America 

Termites (Phylum: Arthropoda; Class: Insecta; Order: Isoptera)  
Grassé (1984) Function within the colony (Castes) Expertise 2 

that can be 
subdivided 

Mainly tropics but a few 
sp. can be found in 
temperate ecosyst. 

Grassé (1984) Interaction with microbes  Expertise 2 Mainly tropics but a few 
sp. can be found in 
temperate ecosyst. 

Higashi et al. (1992) Nesting strategy Expertise 3  
Tayasu et al. (1997) Trophic groups Expertise 5  Mainly tropics but a few 

sp. can be found in 
temperate ecosyst. 

Holt and Lepage 
(2000) 
Jouquet et al. (2011) 

Trophic groups and building strategies Expertise 3  Mainly tropics but a few 
sp. can be found in 
temperate ecosyst. 

Donovan et al. 
(2001) 

Trophic groups (Gut content analysis) Expertise 4  Mainly tropics but a few 
sp. can be found in 
temperate ecosyst. 

Ants (Phylum: Arthropoda; Class: Insecta; Order: Hymenoptera; Family: Formicidae)  
Greenslade (1978) 
Andersen (1995) 

Competitive interactions and habitat 
requirements 
Foraging behavior (solitary, group or mass 
recruitment); Competitive behavior (aggressive 
species vs non aggressive); Morphological traits 
(individual and colony size); Physiological traits 
(thermal tolerance) 

Expertise 7  Australia 

Savolainen and 
Vepsäläinen (1988) 

Competition hierarchy 
Behavioural traits measured at the colonoy level or 
the individual level (colony size, radius of foraging 
areas, size of workers, recruitment of food, defence of 
food, nest, and foraging area) 

Expertise 3 Northern Europe 

Sosiak and Barden 
(2021) 

Ecomorph syndromes 
Classification initially based on nesting, foraging and 
functional role niche data but then defined using 17 
morphological traits 

Expertise 10 Worldwide  
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that are adapted to local environmental constraints, linked to particular 
taxa, etc. Finer classifications based on criteria adapted to local envi-
ronments usually show increased accuracy as more ecological strategies 
are described, and highlight rare or specific combinations of traits that 
can reveal vulnerability of species or functional roles. To build a more 
universal approach, Sosiak and Barden (2021) have recently provided 
two options for predicting the ecomorph of a given ant species: a 
simplified set of ecomorph syndromes (10 ecomorphs), or for more 
granular analysis, classifications of worker functional role (8 groups), 
foraging niche (5 groups) and nesting niche (5 groups). Hierarchical 
classifications of groups can be efficient to aid scalability of the 
approach and compatibility across different studies (Potapov et al., 
2022b). 

2.3. Classifications do not describe all individuals of the species 

Most existing classifications only consider adults because it is diffi-
cult to identify immature life stages for most soil animals. However, 
many invertebrates can spend at least as much time in their immature 
stages as in their adult stage, and juveniles often dominate in numbers 
and thus represent functionally important components of soil commu-
nities and food webs (Mulder and Vonk, 2011; Cohen and Mulder, 2014; 
Gongalsky, 2021; Potapov et al., 2021a). Immature life stages are also 
exposed to environmental filtering and may play a different role on their 
environment (Buckingham et al., 2019). In addition, trophic interactions 
may change over the life cycle of soil organisms, e.g. cannibalism, pre-
dation, etc., like for holometabolous insects such as ground or rove 
beetles (Rainford and Mayhew, 2015) or some nematode taxa (juveniles 
are bacterial feeding, adults are predators; Yeates et al., 1993). 

Within each species, classifications do not consider all types of in-
dividuals. For example, classifications of social insects usually focus on 
non-reproductive individuals that raise the offspring, build biogenic 
structures (e.g., mounds and sheeting) and forage, but ignore the few 
individuals dedicated to reproduction. Moreover, there is a strong 
dimorphism between castes (queens, males, workers and soldiers), and 
within the worker caste, the morphology and behaviour of individuals 
vary according to their size (i.e., small vs large) and age. This complexity 
is likely to induce that natural selection and environmental filtering take 
place at both the individual and colony levels in eusocial insects (Keller, 
1995). These two levels are important to characterize the response of 
species to environmental changes and their effect on soil properties. For 
instance, soil porosity is associated with the size of mandibles of ants and 
termites which determines the size of soil particles that workers move 
(individual level; Dostal et al., 2005; Martin-Perea et al., 2019), and with 
the size, depth and type of nest (colony level; Cammeraat and Rish, 
2008). To account for heterogeneity, one thus needs to quantify traits of 
workers and sexual individuals at the individual and colony scale (Parr 
et al., 2017). 

3. Misuses limit the meaningfulness of classifications 

3.1. May local classification be universal in scope? 

More than half of the classifications listed in Table 1 arose from local 
knowledge or experiments (Fig. 2), and are mainly built on knowledge 
coming from the European region, and/or temperate and continental 
climates. For example, the classification from Bouché (1977) on French 
Lumbricidae, the one from Greenslade (1978) on Australian ants, and 

Fig. 1. Existing classifications were not built on the same grounds. Upper panel illustrates that different species traits were used to cluster species into groups. Middle 
panel shows that classification systems may lead to different number of groups and that it may influence the transposability of the classification system to other 
ecological or biogeographical contexts. The lower panel exemplify whether assignment to a group was based on all or a part of individuals of species. 
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the one from Bongers et al. (1990) on Dutch nematodes are widely used 
with the strong assumption that they are universal in scope, though 
derived from regional knowledge (see Appendix for more details). Using 
a classification defined for a given biogeographical scope in another 
biogeographical area or at a larger scale can lead to several problems. 
For example, trophic differentiation among Collembola life forms is less 
pronounced in tropical than in temperate forests (Potapov et al., 2016; 
Susanti et al., 2021). A local classification system would have over- 
described local variability or would not fully describe the global or-
ganisms’ traits variability, making it inoperative at other scales and/or 
irrelevant at other scales or in other contexts. Some studies tried to 
validate or adapt these classifications across borders, such as Lee (1985) 
for the Bouché’s (1977) classification, or Horgan (2008) for the Doube’s 
(1990) classification. Similarly, effects of such groups on soil function(s) 
are context-dependent and need to be tested at a larger scale, see e.g. 
Hedde et al. (2005) in Colombian savannahs, Blanchart et al. (1999) on 
neo and afro-tropical soils. 

3.2. Classifications are not stable in time 

Classifications are subjected to changes after their initial description 
(Fig. 3). Drivers of modifications include difficulties in data acquisition, 
the addition of new data, or changing contexts and objectives of clas-
sification in more recent studies. Over time, changes in classifications 
may decrease or increase their precision as compared to the initial 

description. For example, the classification of Andersen (1995) devel-
oped for Australian ant communities (9 ecological groups) was reduced 
to four groups by Moranz et al. (2013) to analyze the ants’ response to 
grassland management. By contrast, other classifications were progres-
sively complexified. According to their vertical position in soils, Col-
lembola were initially grouped in three life forms (atmo-, hemi-, eu- 
edaphic; Gisin, 1943). Although still used nowadays (e.g. Malcicka 
et al., 2017), a series of more precise classifications have also been 
proposed. For example, accounting for criteria on species micro-habitat, 
Christiansen (1964) and Thibaud and D’Haese (2010) considered up to 
six additional groups, and Stebaeva (1970) and Rusek (1989) distin-
guished epiedaphic from atmobiontic species. Thereafter, Potapov et al. 
(2016) linked species taxonomy to life forms to improve the prediction 
of springtail trophic niches. By doing so, they modified the principles 
and purpose of the classification. 

3.3. Inconsistent naming of classifications 

Many examples show that a large number of different terms can refer 
to one single classification. Representative examples of this problem are 
related to misuses of the classifications by Bouché’s (1977) and Gisin’s 
(1943) on earthworms and springtails, respectively. The classes defined 
by Bouché (1977) are alternatively referred to as ecological categories/ 
groups/types (Bottinelli et al., 2020; Jégou et al., 1998; Asshoff et al., 
2010; Bastardie et al., 2005), morpho-ecological or eco-morphological 

Fig. 2. Geographical scope of the classifications (upper left pie chart). For country-wide classifications (>50% of studied classifications): the country for which the 
classification was created (map) and its climate (upper right pie chart). 
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groups (Mariet et al., 2020; Pey et al., 2013), ecophysiological groups 
(Richardson et al., 2020), functional groups (Milcu et al., 2006), feeding 
guilds/strategies (Depkat-Jakob et al., 2010; Huang et al., 2010) or 
ecotypes (Zhang et al., 2018). Similarly, the life forms (Lebensformen) 
defined by Gisin (1943) are alternatively called eco-morphological life- 
forms (Rusek, 2007; Hopkin, 1997; Joimel et al., 2017), ecological 
categories (Ponge, 1993), or feeding/functional guilds (Hopkin, 1997). 

3.4. Phenotypic plasticity precludes assigning species to one single group 

Individuals of the same species may have high trait variation which 
may create conflicts with classifications. For example, Aphodiinae dung 
beetles are classified in three groups, namely soil- and dung-ovipositing 
endocoprids, and small paracoprids (Finn and Gittings, 2003). But it is 
recognized that some species choose to oviposit in the soil beneath dung 
pads or directly inside the dung, and thus could be alternatively classi-
fied as soil-ovipositing or dung-ovipositing endocoprids. Along the same 
line, it has been shown that even spider hunting guilds, that were 
initially defined at the family level, can differ among individuals of one 
single species (Suter and Benson, 2014). In the same vein, several 
earthworm species show an intermediate burrowing and feeding 
behaviour between surface dwellers (feeding on fresh organic matter) 
and horizontal burrowers of the mineral soils (epi-endogeics sensu 
Bouché, 1977). These intermediate categories can be dominant in 
tropical soils (Fragoso, 1999) and could be an indication of their wider 
environmental plasticity. Similarly, ecomorphs of the same species 
adapted to particular habitats and showing contrasted morphological 
features have also been reported, as e.g. for some Oligochaeta species. 
For example, (i) the pink and green forms of Allolobophora chlorotica 
(Savigny, 1826), or (ii) the taxa Cognettia sphagnetorum (Vejdovský, 
1878) and C. pseudosphagnetorum (Martinsson, Rota & Erséus, 2015) 
which are two examples of morpha/taxa often lumped together in the 
literature. Furthermore, environmental stressors, such as land-use 
change, drought spells, soil amendments, or contamination events 
force some species to switch to a different diet (Krause et al., 2019) 

through a “feeding flexibility” (sensu Briones, 2010), microhabitat or 
reproductive strategies and hence, change their position in the 
classification. 

3.5. Misuses of concepts behind classifications 

From an ecosystem ecology point of view, a functional group gathers 
individuals that contribute similarly to an environmental function 
(Blondel, 2003). Therefore, the concept of ‘functional group’ is tightly 
interlinked to the concept of ‘functional trait’, despite the latter being 
adapted to soil ecology only recently (Pey et al., 2014). For an indi-
vidual, a trait is functional if it contributes to its fitness (Violle et al., 
2007). Functional traits are involved in the response of individuals to 
their environment but they also influence their environment. The ap-
plications of these concepts in soil fauna ecology are far from clear and 
often blurred by misuses (Pey et al., 2014) with a persistent lack of 
consistency in concepts and terminology in soil ecology (Blondel, 2003; 
Lavorel and Garnier, 2002; Pey et al., 2014). To simplify the semantics in 
soil ecology and to conform with other fields of ecology, we propose to 
clarify definitions of ecological groups, guilds, functional groups and 
trophic groups (Box 1). The guild concept refers to resource sharing by 
species in a competitive way whereas the functional group concept 
essentially corresponds to the way individuals act on resources to pro-
vide an ecological function (Blondel, 2003; Wilson, 1999). 

4. Creating meaningful classifications 

4.1. Criteria for a meaningful classification 

We plea for rethinking classification procedures that should provide 
at least the following advantages. A classification:  

• must specify what it intends to predict or synthesize;  
• must specify its domain of use (the scope); 

Fig. 3. Misuses limit the meaningfulness of classifications: universality in scope (upper panel), stability of groups and of name over time (2nd and 3rd panels), and 
difficulty of assignment due to species phenotypic plasticity. 
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• has to clearly define groups of individuals so that there is no room for 
doubt or confusion;  

• must be comprehensive, no individual should be left out;  
• should clearly explain the criteria or decision rules by which each 

and every taxon belongs to one (discrete clustering) or several cat-
egories (e.g. through fuzzy coding);  

• should have the capacity to accommodate a new situation (e.g. new 
taxa being described, extrapolation to another country or biome, 
etc.);  

• should therefore be such that it can incorporate all these changes 
while maintaining its stability. 

To avoid confusion, we underline the importance to properly name, 
describe and cite any given classification. It is important to refrain from 
twisting the classification’s meaning to accommodate it to a new 
research question. 

4.2. Clearly stating the objective of the classification 

Basically, clustering soil fauna species into groups can help to un-
derstand (i) the responses of communities to their environment through 
guild analysis, (ii) the effect of communities on soil functioning through 
functional group analysis, and (iii) soil interaction networks. These three 
main goals may overlap when looking at how the effect of the envi-
ronment on soil functioning is mediated by soil fauna and/or soil fauna 
interactions. In addition, such questions may arise within a clade (e.g. 
nematodes or Collembola), across clades and across trophic levels. When 
comparing several and very different taxonomic groups, it is important 
to build groups of individuals that are similar in scope: guilds referring 
to the same axes of the niche (e.g. resistance to drought), functional 
groups involved in the same soil function(s) (e.g. soil organic matter 
dynamics, formation and maintenance of soil physical structure) or 
trophic groups representing meaningful nodes and types of energy fluxes 
(Potapov, 2022) in the food web. 

4.3. Trait-based approaches as a playground 

In the overview presented above, few soil fauna classifications have 
accounted for trait relationships when building groups. However, suc-
cessful combinations of traits may be constrained by tradeoffs across or 
within niche dimensions (Ellers et al., 2018). The choice of the traits is 
then crucial to correctly represent the tradeoffs. Reducing the vast 
amount of soil fauna organisms to a limited number of groups that share 
similar traits (morphology, physiology, phenology, behaviour or life 
history) has both theoretical and operational advantages. For instance, 
classifying soil fauna into groups of similar traits could help to identify 
backbones in redundancy (many species with a similar combination of 
traits) and vulnerability due to uniqueness (species with a unique 

combination of traits) over realms, ecosystems and environmental 
constraints (Boulangeat et al., 2012; McLean et al., 2021; Pigot et al., 
2020). 

4.4. Why and how to cluster soil fauna species into groups? 

There is an overwhelming demand for knowledge on threats on soil 
and potential contribution of soil to global change scenarios. For this, we 
need a comparable level of knowledge for each clade (e.g. nematodes, 
earthworms, Collembola…) as for traditionally more extensively studied 
organisms (e.g. vascular plants, fish). To go further, soil fauna ecologists 
must adopt a common consistent framework of faunal classifications 
that allows to integrate all taxa. While development of such overarching 
classification requires collection and harmonization of trait data, here 
we propose a repeatable procedure to cluster species into hierarchical 
groups based on existing knowledge, and to use a trait-based approach 
to describe and assign species to a specific group. The proposed 
approach is ambitious because it requires unified trait definitions (Pey 
et al., 2004), consistent protocols to measure traits (Moretti et al., 2017), 
and open databases to share and reuse trait values (for example, Betsi 
https://portail.betsi.cnrs.fr/ or Ecotaxonomy https://ecotaxonomy. 
org/). To (i) study the response of soil fauna to environmental gradi-
ents or its effect on ecosystem functioning, and (ii) to define guilds or 
functional groups, we propose to follow the seven-steps protocol 
described below (Fig. 4). 

(1) The first step consists of identifying which dimensions of the in-
dividual’s niche is under consideration. To do so, one needs to 
describe the environmental gradient, such as the soil tempera-
ture, N content, trophic resources or the bioavailability of soil 
contaminant, or the targeted function(s), such as the organic 
matter dynamics, water infiltration, or formation and mainte-
nance of the soil physical structure.  

(2) In the second step, we suggest identifying the traits that reflect 
the corresponding part of the niche. Traits selection can derive 
from expertise, published evidence and/or from statistical 
detection of trait-environment relationships, e.g. through fourth- 
corner analysis (Dray and Legendre, 2008). In multi-taxa studies 
(i.e. those including organisms across clades), a challenge is to 
draw trait-niche links for organisms that are phylogenetically 
distant and for which different trait trade-offs have resulted from 
different evolutionary processes.  

(3) The third step requires assessing the availability of trait data in 
the soil fauna databases. Unfortunately, the current state of 
knowledge is highly heterogeneous with a small number of soil 
fauna species that show correctly-informed data for a large 
number of traits, and many other species that present data for 
only a little number of traits, if any (Brousseau et al., 2018). This 

Box1 
/ Proposed definitions. 

Ecological group: group of individuals that show similar environmental tolerances and similar effects on their environment. This is the 
overarching concept that includes guilds, functional groups and trophic groups as sub-concepts. 

Guild: group of species that largely overlap in their niche requirements (Grinnell, 1917; Root, 1967). 

Functional group: group of individuals that similarly contribute to a specific ecological function (Dıáz and Cabido, 2001). An ecological 
function is a change in matter and/or energy flows in an ecosystem, resulting from interactions between organisms or between organisms and 
their physical environment. 

Trophic group: group of individuals that feed on the same food sources and have the same consumers (O’Connor et al., 2020; Bloor et al., 2021). 
For instance, plant feeding nematodes and weevil larvae do not belong to the same trophic group as they do not share the same predators, 
although they belong to the same trophic level (both feed on plant roots). Therefore, trophic groups can be perceived both as guilds and/or as 
functional groups (but the converse is not necessarily true).  
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unbalanced distribution of trait data in soil databases emphasizes 
the need to share structured trait data across taxa at the global 
scale (Gallagher et al., 2020).  

(4) The fourth step is to create a “trait per species matrix”. To do so, 
one needs to pay specific attention to the necessary trade-offs 
between trait space quality, described by the number of traits 
and the quality of the data, and the usefulness of the matrix. It 
requires carefully selecting relevant traits and avoiding omissions 
that have a strong impact on the construction of trait space 
(Mouillot et al., 2021). In multi-taxa studies, we suggest creating 
one matrix per clade to account for evolutionary constraints on 
trait trade-offs. In the case of trophic groups, Gravel et al. (2016) 
proposed to investigate three types of traits: (i) topological traits 
that determine whether a given consumer can feed on a given 
resource, (ii) consumption traits that determine the rate at which 
trophic interactions harm the resource population and benefit the 
consumer, and (iii) life history traits that are characteristics of 
consumer and resources that affect their demography. 

(5) The fifth step consists of quantifying dissimilarity between spe-
cies using distance-based measures based on the trait matrix 
described in step four. The interplay of trade-offs between traits 
shapes species phenotypic diversity, and the degree of interde-
pendence among traits may be highlighted e.g. by a PCoA. The 
choice of distance metric is important (Laliberté and Legendre, 
2010). The Gower distance (Gower, 1971) could be preferred to 
combine quantitative and categorical traits (Botta-Dukát, 2005; 
de Bello et al., 2021). The Gower distance focuses on the 
dissimilarity in species-level average traits, but it is also possible 
to integrate trait overlap between species by accounting for 
within-species trait variability (De Bello et al., 2013). In multi- 
taxa studies when evolutionary constraints on trait trade-offs 

differ widely, it is usually preferred to quantify dissimilarity 
within clades.  

(6) The sixth step is to identify groups of species that share more 
similar traits values than others using a clustering algorithm. The 
clustering method is important (Laliberté and Legendre, 2010). 
To create a generic ecological classification and make the clus-
tering as universal as possible, we advise to cluster species from a 
large species pool covering a highest possible diversity of biomes 
at a geographic scale similar or broader than the scale of the 
planned research. Under such conditions clustering will integrate 
a large part of the intra- and inter-species variability. Hierarchical 
clustering defines several grains of classification, and enables 
choosing smaller or broader groups according to the scientific 
questions and geographic coverage. In a broad study spanning 
across various taxa and spatial scales, Mouillot et al. (2021) 
identified invariant scaling relationships between (i) the number 
of clusters, the number of species in the dominant cluster and the 
number of unique species, and (ii) the total species richness. 
Functional uniqueness is represented by species that have no 
neighbors in the trait space owing to their unique combination of 
traits. When the number of species increases, the number of 
“single-species” groups tends to saturate, and species tend to pack 
disproportionately into the richest cluster, being more redundant 
than expected (Mouillot et al., 2014). Unique species can play key 
and irreplaceable functional roles, and represent unique re-
sponses to environmental constraints (Violle et al., 2017). 

(7) The last step is to validate the trait-based classification by con-
fronting it to previous knowledge. In general, trait-based guilds 
are expected to reflect available data on species distribution 
along ecological gradients. Similarly, trait-based functional 
groups should correspond to published information on the effects 
of species on a given ecological function. To validate trait-based 
trophic groups, one could compare them to trophic groups pre-
viously defined by isotopic or other dietary tracers (Potapov 
et al., 2019; Potapov et al., 2021b). An alternative strategy is to 
compare trait-based trophic groups to groups obtained by sto-
chastic block modelling of an adjacency matrix of known trophic 
relationships (O’Connor et al., 2020; Bloor et al., 2021). Once 
validated, and if the clustering includes a large proportion of 
species of the targeted clade that come from various biomes, we 
expect that adding new species will not drastically change the 
species clustering. 

Soils are multifunctional and some functions are closely related (e.g. 
carbon storage and nutrient cycling) whereas others appear more in-
dependent (e.g. water infiltration and pesticide degradation). Studying 
the relationships between soil fauna and soil multifunctionality requires 
to define functional groups that reflect common effects on the investi-
gated functions. The relationship between numerous ecological func-
tions and emergent functional groups has to be tested using strong 
scientific assumptions derived from validated trait-based approaches. As 
well in multi-trophic studies, this framework allows testing for top-down 
or bottom-up effects of inferred groups. Additionally, machine learning 
techniques make it possible to create probabilistic graphs of emergent 
functional groups, and reclassify and validate new entries. For example, 
Random forest analysis can validate species classification into ecological 
groups from morphological trait data (Sosiak and Barden, 2021). The 
relationships between soil fauna and soil multifunctionality must be 
studied in the light of such emergent functional groups (Potapov, 2022). 
More precisely, understanding the interplay between soil multi-
functionality and the network of interactions between the functional 
groups is probably the crux of the problem. 

5. Conclusions 

Despite their widespread applications, we depicted several 

Fig. 4. Proposed seven-step hierarchical procedure to define guilds, functional 
groups and trophic groups within soil fauna. 
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limitations and misuses of the current classifications used in soil fauna 
ecology. The design of a common framework that could be generalizable 
across the entire soil fauna community has been considered before, yet 
not implemented (Briones, 2014). We now have both established trait 
databases and mathematical tools that should allow us to elaborate more 
accurate soil fauna classifications which will be applicable across 
geographical regions and scales. This is especially important considering 
rapidly developing global initiatives of soil animal biodiversity assess-
ments and their potential policy impacts (FAO et al., 2020; Guerra et al., 
2021; Potapov et al., 2022b). To go a step further, we suggest harmo-
nizing the terminology and the underlying concepts of classification. We 
described a way to build sounder classifications, whether composed of 
guilds, functional groups or trophic groups. This framework should 
become more and more relevant with the advent of massive datasets 
associated with molecular characterization of soil fauna (e.g. environ-
mental DNA metabarcoding) that contain genetic information on hun-
dreds of interacting species involved in many soil functions. However, to 
reach its full potential, this framework requires more knowledge on 
effect traits in functional trait databases. Our framework would also 
allow to cross the soil’s borders and integrate soil fauna into wider ap-
proaches, like aboveground-belowground or soil–water continuums 
using trait-based approaches (Gallagher et al., 2020). Transparent and 
stable classifications should promote accurate meta-analyses in the 
future. Finally, classification is a particularly important step in 
ecosystem modelling as it identifies the basic parameters that become 
the inputs of models, thus making the outputs more interpretable and 
reliable. 
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Rebecchi, L., 2012. Form and function of the feeding apparatus in Eutardigrada 
(Tardigrada). Zoomorph 131, 127–148. 

Guidetti, R., Bertolani, R., Rebecchi, L., 2013. Comparative analysis of the tardigrade 
feeding apparatus: adaptive convergence and evolutionary pattern of the piercing 
stylet system. J. Limnol. 72, 24–35. 

Halffter, G., 1977. Evolution of nidification in the Scarabaeinae (Coleoptera, 
Scarabaeidae). Quaest. Entom. 13, 231–253. 

Halffter, G., Edmonds, W.D., 1982. The nesting behaviour of dung beetles 
(Scarabaeinae): an ecological and evolutive approach. Instituto de Ecología, Mexico, 
p. 176p. 

Halffter, G., Matthews, E.G., 1966. The natural history of dung beetles of the subfamily 
Scarabaeinae (Coleoptera: Scarabaeidae). Folia Entom. Mex. 12–14, 1–312. 

Hammond, P.M., 2000. Coastal Staphylinidae (rove beetles) in the British Isles, with 
special reference to saltmarshes. In: Sherwood, B.R., Gardiner, B.G., Harris, T. (Eds.), 
British Salt- Marshes: Joint Symposium on British Saltmarshes Organized Between 

the Linnean Society of London, the Royal Society for the Protection of Birds, and 
English Nature. Cardigan, London, pp. 247–302. 

Hanski, I., Cambefort, Y., 1991. Dung Beetle Ecology. Princeton University Press, 
Princeton, New Jersey.  
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