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Do ecological differences between taxonomic groups influence the 
relationship between species’ distributions and climate? A global 
meta-analysis using species distribution models
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Understanding whether and how ecological traits affect species’ geographic distributions is a fundamental issue that 
bridges ecology and biogeography. While climate is thought to be the major determinant of species’ distributions, there 
is considerable variation in the strength of species’ climate–distribution relationships. One potential explanation is that 
species with relatively low dispersal ability cannot reach all geographic areas where climatic conditions are suitable. We 
tested the hypothesis that species from different taxonomic groups varied in their climate–distribution relationships 
because of differences in life history strategies, in particular dispersal ability. We conducted a meta-analysis by combin-
ing the discrimination ability (AUC values) from 4317 species distribution models (SDMs) using fit as an indication of 
the strength of the species’ climate–distribution relationship. We found significant differences in the strength of species’ 
climate–distribution relationships across taxonomic groups, however we did not find support for the dispersal hypothesis. 
Our results suggest that relevant ecological trait variation among broad taxonomic groups may be related to differences in 
species’ climate–distribution relationships, however which ecological traits are important remains unclear.

Understanding whether and how ecological traits affect  
species’ geographic distributions is a fundamental issue that 
bridges ecology and biogeography (Brown 1995, Wiens 
2011). "is issue has become even more relevant as ecolo-
gists and biogeographers struggle to understand the variation 
in species’ responses to climatic change. For example, recent 
studies have examined the relationship between species’  
ecological traits, such as dispersal ability and ecological gen-
eralization, and changes in their distributions and phenology 
with recent climatic changes (Angert et al. 2011, Diamond 
et al. 2011). Identifying characteristics of organisms that 
determine their sensitivity to environmental change is cru-
cial to ecological forecasting and conservation planning.

Central to this work is the theory of the niche: the set of 
abiotic and biotic conditions within which a species can  
persist (Hutchinson 1957). A species’ distribution is limited 
to geographic areas where all these conditions meet the  
species’ niche requirements. At broad spatial scales, climate 
has long been considered the most important factor in deter-
mining species’ distribution limits (Merriam 1894, Good 
1931, Gaston 2003). However, there seems to be consider-
able variation in the degree to which species’ distributions 
are predicted by climate. "ere are three potential reasons  
for this variation. First, other abiotic or biotic factors may 

prevent a species from persisting even where the climate is 
suitable (Luoto et al. 2007). Alternatively, regions of suitable 
climate may be separated by areas that are not suitable  
which the species does not have sufficient dispersal ability to 
cross (Blach-Overgaard et al. 2010, Graham et al. 2010). 
Finally, if the species is relatively new and/or the climate  
has only recently become suitable, the species may not have 
had enough time to reach all suitable areas (Paul et al. 2009, 
Blach-Overgaard et al. 2010).

Dispersal ability is thought by some to determine how 
closely a species’ current distribution matches the geographic 
distribution where all abiotic and biotic conditions meet its 
niche requirements. Species that produce many propagules 
that travel long distances are more likely to be able to cross 
any unsuitable habitat, and thus should be more likely to be 
found everywhere the climate is suitable. "erefore, dispersal 
ability may determine the strength of the species’ climate– 
distribution relationship. Indeed, some studies have found 
evidence that dispersal ability can strongly affect species’  
distributions ("uiller et al. 2004, Poyry et al. 2008). 
However, others suggest that the dispersal of individuals 
happens over such small time scales relative to the formation 
of species’ geographic distributions that it has little impor-
tance (Lester et al. 2007).
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Many have hypothesized that species in different  
taxonomic groups should vary in their climate–distribution 
relationships because of their different life history strategies, 
in particular dispersal ability (Araújo and Pearson 2005, 
Wisz et al. 2008). "e fit of species distribution models 
(SDMs) has often been used to test this hypothesis (Araújo 
and Pearson 2005, Tsoar et al. 2007). SDMs use various  
statistical techniques to describe the relationship between 
observed environmental variables, such as mean annual  
temperature, and the recorded spatial occurrence (presence/
absence) of a species (Guisan and Zimmermann 2000). "e 
ability of an SDM based only on climatic factors to predict 
the presence or absence of a species can be considered an 
indication of the strength of the species’ climate–distribution 
relationship: the greater the success of a SDM at predicting 
the species’ presence/absence in a given location, the stronger 
the correlation between climatic variables and the presence/
absence of the species. Some studies have found species’  
climate–distribution relationship differences between taxo-
nomic groups (Araújo and Pearson 2005, Tsoar et al.  
2007), whereas others have not (Pearce and Ferrier 2000, 
Wisz et al. 2008). It is unclear whether these varying results 
are due to the different geographic regions, groupings of  
species, or modeling techniques of each study. Despite  
the availability of SDMs for thousands of species, a compre-
hensive comparison of the fit of SDMs between different 
taxonomic groups has not been made.

Here, we tested the hypothesis that taxonomic groups 
varied in the strength of their species’ climate–distribution 
relationships. We predicted that taxonomic groups with 
lower dispersal ability would have weaker species’ climate– 
distribution relationships. We used a meta-analysis approach 
and combined the discrimination ability metrics that were 
reported from 4317 SDMs in twenty studies using only  
climatic variables to determine whether species varied pre-
dictably in their climate–distribution relationships based  
on taxonomic affinities. We also compiled dispersal distances 
for a subset of these species to determine whether dispersal 
ability directly influenced the strength of species’ climate– 
distribution relationships. To facilitate a quantitative com-
parison we used a standardized discrimination ability measure 
and accounted statistically for methodological differences 
among studies.

Material and methods

Data compilation

We conducted a literature search using Web of Science  
for studies (published before March 2009) that reported sta-
tistical measures of goodness-of-fit for SDMs constructed  
for individual species based on climatic variables only.  
We searched for studies using the terms ‘ecological niche 
model’ and ‘climat ’, ‘species distribution model’ and  
‘climat ’, and ‘climate envelope model’ and ‘climat ’. Studies 
were excluded if: 1) one or more non-climatic variables, such 
as soil fertility, land use or land cover, were included in  
the SDM; 2) model fit was measured only qualitatively or 
not reported; or 3) model fit was reported only as averages 
across species. In cases where model fit was not reported for 

all individual species modeled, we requested these data from 
the authors. Due to the small number of studies modeling 
aquatic species, we limited our analysis to terrestrial species.

We needed a metric of model fit that was comparable 
across studies. We found AUC (area under a receiver operat-
ing characteristic curve) to be the most common metric 
(other metrics included: Cohen’s kappa, sensitivity, specific-
ity, range filling rates), therefore our analysis was limited  
to studies that reported AUC. AUC measures the ability of  
a SDM to discriminate sites where a species is present from 
sites where it is absent, rather than goodness-of-fit per se.  
It considers the relationship between false-positives and  
true-positives and ranges from zero to one, where perfect  
discrimination gives a value of one (Fielding and Bell  
1997). Hereafter, we use the term SDM ‘fit’ to indicate  
‘discrimination ability’ as measured by AUC. When studies 
reported AUC for both training and test data, test AUC  
values were used. Although this metric has been criticised 
(Lobo et al. 2008), it was the only measure in common 
across most of the studies.

Some species’ distributions were modeled several times, 
either by the same study (using multiple modeling tech-
niques (n  9) or resolutions (n  1)) or by several studies 
(most such species were modeled by only two studies). In  
all cases, we randomly selected one SDM per species and 
used the associated AUC value and methodology. "is  
produced a dataset of 4317 species and their SDMs from 
twenty studies (Supplementary material Appendix 1–3). 
"ese studies modeled species in Europe (10 studies, 2301 
spp.), North America (2 studies, 67 spp.), South America  
(2 studies, 32 spp.) and Africa (6 studies, 1917 spp.). We  
classified each species into one of five broad taxonomic 
groups: mammals (483 spp.), butterflies (116 spp.), herptiles 
(reptiles and amphibians; 114 spp.), birds (2099 spp.), and 
plants (1505 spp.).

SDM fit can be affected by the type of model used (Elith 
et al. 2006), the number of climatic variables used (Pearce 
and Ferrier 2000), the resolution or grain size used (Guisan 
et al. 2007), the total extent over which the species’ range 
was modeled (Luoto et al. 2005), and latitude (Brown et al. 
1996, Luoto et al. 2005). "erefore, for each SDM we  
noted the modeling technique, number of distinct climatic 
variables used in the model, resolution (km2), total spatial 
extent (km2) and average absolute latitude and then included 
these as covariates in our statistical analysis.

Another factor which may lead to differences in SDM fit 
between species is prevalence (McPherson et al. 2004, 
Santika 2011), the number of grid cells from which a species 
is recorded as present expressed as a proportion of the total 
number of grid cells from which data are available. We were 
able to obtain prevalence values for almost all of the SDMs 
(n  4089), allowing us to explore any effects of prevalence 
on SDM fit.

Finally, we scanned the literature to find dispersal dis-
tances for as many of our species as possible to assess whether 
there were significant differences in measured dispersal  
ability among our taxonomic groups. True dispersal distances 
are very difficult to measure due to phenomena such as very 
rare long-distance dispersal events. "erefore, we used the 
directly measured ability of an organism or its propagules to 
move (i.e. its mobility) as an estimate of a species’ dispersal 
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distance. We considered both maximum and mean measured 
dispersal distances but excluded migratory distances to stan-
dardize measures of dispersal distances across taxonomic 
groups. Where more than one distance was reported per  
species or study we used the mean of mean distances, and  
the maximum of maximum distances. We found mean dis-
persal distances for 241 species for which we also had  
AUC values (birds  103, butterflies  22, mammals  22, 
plants  94). For maximum dispersal distance, we found 
105 species that also had AUC values (birds  27, butter-
flies  18, herptiles  12, mammals  30, plants  18). For 
further details, see Supplementary material Appendix 4, 5.

Statistical analysis

"ere were two parts to the analysis. "e first was to  
determine whether there were any significant differences in 
SDM fit between taxonomic groups and whether those dif-
ferences were robust to potential confounding factors (cova-
riates). "e second was to explore the relationship between 
SDM fit, taxonomic group and the other covariates. We  
used generalized linear mixed-effects models (GLMM,  
glmmadmb function in the ‘glmmADMB’ package (Skaug 
et al. 2012) in R (R Development Core Team)) with a Beta 
error distribution with AUC as our response variable and 
‘study’ as a random factor. AUC values of exactly one, which 
are not allowed with the beta distribution, were converted to 
0.99 instead (eight significant digits were used to ensure  
a unique value and to match the maximum precision of  
the data, n  117). To allow for model estimation, we  
collapsed the six rarest modeling types into one category  
to reduce the number of types (from 18 to 12; these six  
techniques were used for only 0.35% of all SDMs). We took 
the logarithm of spatial extent to improve normality (except 

in the collinearity test), but all other covariates were used 
without transformation. Taxonomic group and model type 
were categorical, and all other covariates were continuous.

Relationship between discrimination ability and taxonomic 
group
To test whether taxonomic group explained significantly 
more deviance in AUC than expected at random, we com-
pared a model with only an intercept to a model with only 
taxonomic group. We then tested whether differences in  
discrimination ability across taxonomic groups explained 
significant additional deviance after accounting for the  
combined effect of the differences in the methodological 
approach of studies (i.e. the covariates: model type, resolu-
tion, number of climatic variables, spatial extent and lati-
tude). For all model comparisons, we used a likelihood ratio 
test. We also calculated AIC for all models to evaluate the 
relative effects of individual covariates.

We first inspected bivariate plots of all continuous  
covariates before constructing pairwise correlations to iden-
tify potential problems with multi-collinearity among cova-
riates (Supplementary material Appendix 6). Latitude was 
highly correlated with spatial extent and resolution 
(Spearman’s r  0.903, 0.589 respectively, n  4317, 
Supplementary material Appendix 6) and explained less 
deviance in AUC than spatial extent or resolution (Table 1), 
therefore the ‘full model’ included taxonomic group, model 
type, spatial extent resolution and number of climatic vari-
ables. We considered the effect of ‘study’ by including it as a 
random factor and by testing the influence of individual 
studies that contri buted more than half of the total number 
of species in one taxonomic group (‘large studies’) by com-
paring results obtained with and without each of these stud-
ies (Araújo et al. 2005, Luoto et al. 2005, Huntley et al. 
2006, Supplementary material Appendix 3).

Table 1. Analysis of deviance table for the relationship between discrimination ability, covariates and taxonomic group. Presented are  
the differences in degrees of freedom, AIC and deviance between full and reduced models as well as the associated p value. Models  
are compared for all species (n  4317) and for the subset of species with prevalence values (n  4089). Depending on the model comparison 
and term of interest, the full model includes all other covariates (number of variables, log(spatial extent), model type, resolution and taxo-
nomic group).

Model for comparison Data Model terms Difference in DF AIC Deviance p

Just intercept All species Intercept
taxonomic group 4 38.98 46.98  0.0001
model type 10 100.58 120.58  0.0001
log(spatial extent) 1 2.58 4.58 0.03235
resolution 1 1.38 3.38 0.0660
number of climatic variables 1 1.20 0.8 0.3711
latitude 1 0.58 1.42 0.2334

Subset Intercept
prevalence 1 335.36 337.36  0.0001

Full model All species Full model
taxonomic group 4 38.64 46.64  0.0001
model type 10 101.52 120.14  0.0001
log(spatial extent) 1 1.12 3.12 0.0773
resolution 1 1.38 0.62 0.431
number of climatic variables NA NA NA NA

Subset Full model
prevalence† 1 445.62 447.62  0.0001

 No solution was found.
†A model solution could only be found if number of climatic variables was not included.
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distance (mean: DF  3, 2  181.006, p  0.0001; max: 
DF  4, 2  291.557, p  0.0001). Taxonomic group 
explained significant deviance in AUC (mean: LRT6,3   
10.386, p  0.01555; max: LRT7,3  13.022, p  0.01117). 
However, dispersal distance did not explain significant  
deviance in AUC (mean: LRT4,3  2.068, p  0.1504;  
max: LRT4,3  0.144, p  0.7043). "ere was no significant 
interaction between taxonomic group and dispersal distance 
(mean: LRT10,7  4.508, p   0.2116; max: LRT12,8  4.506, 
p  0.3418).

Discussion

We found support for taxonomic differences in SDM fit  
suggesting a role for ecological traits in affecting species’  
geographic distributions at broad scales. However, preva-
lence and methodological issues, such as model type, also 
influenced SDM fit. Indeed, both factors have been shown 
previously to influence SDM fit (Elith et al. 2006, Santika 
2011). We also found that ‘large studies’ influenced the  
relationship among taxonomic groups and AUC, for exam-
ple the taxonomic group with the highest mean AUC  
varied with the subset of species considered (Fig. 1). 
"erefore, species’ taxonomic affinities, prevalence and 
methodological issues, such as the model type, are all impor-
tant in influencing species’ climate–distribution relation-
ships as measured by SDMs.

"ere are a number of potential explanations for the dif-
ference in the strength of species’ climate–distribution rela-
tionships between taxonomic groups. First, taxonomic 
differences may reflect differences in dispersal ability among 
groups. Certainly, we found differences in measured disper-
sal distances between broad taxonomic groups that were 
consistent with the dispersal hypothesis (Fig. 1a, 2). However, 
there were inconsistencies in the ranking and pair-wise  
comparisons of taxonomic groups in SDM fit depending on 
the subset of species considered (Fig. 1). Moreover, there was 
no significant relationship between AUC and dispersal  
distance. "erefore, our results indicate that greater  
dispersal ability, at least in terms of measurable differences  
in mobility, may not result in stronger overall species’  
climate–distribution relationships at broad scales. However, 
dispersal distance is inherently difficult to measure and our 
estimate of dispersal ability may not have been the most 
appropriate for all species. For example, we did not take into 
account migratory or rare long-distance dispersal events. 
Consequently, we may have underestimated the role of  
dispersal ability for certain species.

Alternatively, dispersal may not be an important trait  
in determining species’ climate–distribution relationships. 
"e majority of species had low prevalence (77% species  
had  0.1 prevalence) and species with lower prevalence 
were more likely to have higher AUC values. If these  
low prevalence species are mainly specialists (i.e. restricted 
range endemics) that are adapted to uncommon climatic 
conditions found in small, contiguous areas, they could  
have strong climate–distribution relationships regardless of 
dispersal ability.

"ird, other life history traits, for example, body size, 
generation time or diet breadth, may influence the strength 

Relationship between SDM fit, covariates and taxonomic 
group
We tested whether individual covariates (including preva-
lence) explained significantly more deviance in AUC than 
under random expectation and after accounting for all  
other covariates (including taxonomic group) by comparing 
each model to a reduced one. Finally, to test whether there 
were significant differences in dispersal distance (both  
mean and maximum) across taxonomic groups, we used a 
Kruskal–Wallis rank sum test. We then tested whether  
dispersal distance explained significantly more deviance than 
expected by chance in AUC by comparing a model with  
and without dispersal distance. Dispersal distance was log-
transformed to improve normality. Lastly, to test for the  
possibility that an interaction between dispersal distance  
and taxonomic group explained deviance in AUC, we com-
pared a model with and without this two-way interaction.

All statistical analyses were performed using R 2.14.1  
(R Development Core Team).

Results

Relationship between discrimination ability and 
taxonomic group

Mean AUC across all species was 0.941 (  0.00104  
SE, n  4317). Birds had the highest mean AUC (0.954   
0.00145 SE, n  2099) and butterflies had the lowest  
mean AUC (0.856  0.0114 SE, n  116; Fig. 1a). However, 
the ranking and pair-wise comparison of taxonomic groups 
changed depending on which ‘large study’ was removed  
(Fig. 1).

Taxonomic group explained significant deviance in AUC 
(LRT7,3  46.98, p  0.0001; Table 1), even after accounting 
for all covariates (LRT20,16  46.64, p  0.0001; Table 1). 
"e effect of taxonomic group was also robust to the exclu-
sion of each of the ‘large studies’ (Supplementary material 
Appendix 7).

Relationship between discrimination ability, 
covariates and taxonomic group

SDM model type explained significant deviance in AUC 
(LRT3,13  120.58, p  0.0001; Table 1), even after account-
ing for all the other covariates (LRT20,10  120.14, 
p  0.0001; Table 1). For the subset of species for which we 
had prevalence data, prevalence also explained significant 
deviance in AUC after accounting for all covariates (includ-
ing taxonomic group; LRT12,11  447.62, p  0.0001;  
Table 1). SDMs with greater prevalence had lower AUC 
(Spearman’s r  0.4937).

In our subset of species with dispersal distances, mean 
dispersal distance was greatest for mammals (175 km)  
while birds had the greatest maximum dispersal distance 
(1305 km; Fig. 2). Butterflies had the shortest mean and 
maximum dispersal distance (0.441 and 2.25 km, respec-
tively; Fig. 2). "e ranking of groups closely matched the 
ranking of groups of the entire dataset in terms of AUC for 
both dispersal measures (Fig. 1a, 2). "ere was also a signi-
ficant difference between taxonomic groups in dispersal  
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Figure 1. Taxonomic differences in discrimination ability (AUC) across all studies (based on 4317 species from twenty published  
studies (number of species: birds n  2099; herptiles n  114; butterflies n  116; mammals n  483; plants n  1505)) (a), without  
Huntley et al. 2006 (based on 2860 species from nineteen published studies (number of species: birds n  642; herptiles n  114;  
butterflies n  116; mammals n  483; plants n  1505)) (b), without Araújo et al. 2005 (based on 2539 species from nineteen published 
studies (number of species: birds n  1942; herptiles n  11; butterflies n  116; mammals n  331; plants n  139)) (c), and without 
Luoto et al. 2005 (based on 4238 species from nineteen published studies (number of species: birds n  2099; herptiles n  114;  
butterflies n  37; mammals n  483; plants n  1505)) (d), taxonomic groups represented are: ‘BIRD’  birds, ‘HER’  herptiles, ‘INV’   
butterflies, ‘MAM’  mammals, ‘P’  plants. Taxonomic groups with different letters above them are significantly different according to 
pair-wise comparisons. Outliers were removed to improve visual contrasts between taxonomic groups.

of species’ climate–distribution relationships between taxo-
nomic groups. However, determining their relative impor-
tance may be difficult across the broad taxonomic groups 
considered. Lower-order taxonomic groups, or functional 
groups of species within or across taxonomic groups, might 
be more effective in dividing species according to relevant 
traits. Nevertheless, while some recent studies dividing  
species into finer taxonomic or functional divisions have 
found significant differences in species’ climate–distribution 
relationships (Syphard and Franklin 2010), others have not 
(Huntley et al. 2004).

On the other hand, taxonomic differences in SDM fit 
may be a function of the sample unbalance (across studies 

and taxonomic groups; Supplementary material Appendix  
2) and the high average discrimination ability. Both of  
these factors could reflect issues related to fitting, testing  
and publishing SDMs. SDMs have been criticized for not 
using independent data to test their models (Hampe  
2004, Segurado et al. 2006). Without independent test 
occurrence points, well-fitting models could reflect spatial 
autocorrelation between training and testing points rather 
than relationships between species’ presence/absence and  
climatic variables. Moreover, SDMs may be overfitted by  
fitting complex response curves and re-fitting models until  
a high AUC is achieved (Araújo et al. 2005, Guisan and 
"uiller 2005). We also suggest that there could be a  
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of the malaria pathogen inside its mosquito vector  
(van Riper et al. 1986). Differences among taxonomic 
groups in the ability of climate to directly limit species’ dis-
tributions thus cannot be revealed by our data, given that 
the SDMs we used cannot differentiate direct from indirect 
climatic effects. However, we have no a priori reason to 
expect cases where climate acts principally indirectly to 
occur more frequently in one taxonomic group than another. 
In addition, even if a species’ distribution is indirectly lim-
ited by climate due to the climatic tolerances of a competi-
tor, predator, or disease, at broad scales, climate is still the 
ultimate determinant of the species’ distribution.

"ere are a number of steps to be taken in the future  
to clarify how ecological traits influence species’ climate– 
distribution relationships. Firstly, more SDMs are needed 
for some taxonomic groups, particularly invertebrates  
and herptiles. Secondly, we should strive to eliminate issues 
related to species distribution modeling by using spatially/
temporally independent training and test datasets where 
possible (Beerling et al. 1995, Randin et al. 2006). "ird, 
analyzing SDM prediction errors might help to shed light  
on the mechanism driving the variation in species’ climate– 
distribution relationships, especially in cases of poor fit 
(Hanspach et al. 2011). For example, SDMs with more  
false negatives overall than false positives could suggest that 
source-sink dynamics are important: even where conditions 
are not favourable, individuals may still persist owing to a 

‘file-drawer’ problem, whereby species that do not achieve a 
high enough AUC value based on the literature standard 
(Swets 1988) are not published. In particular, when the 
objective of fitting the SDM is to predict species’ potential 
distribution shifts under various climate change scenarios, 
authors (rightly) do not use SDMs with very low discrimi-
nation ability. For example, of the 453 species that  
Huntley et al. (2008) modeled, 13 native species that did not 
yield ‘useful’ models (sensu Swets 1988) were excluded from 
the synthesis. Taken together, these issues could inflate  
AUC values and reduce overall variation, making it difficult 
to detect the true relationship between taxonomic groups. 
While we acknowledge these limitations of SDMs, to  
our knowledge, there are no other comparable published 
metrics to evaluate individual species’ climate–distribution 
relationships at such large scales. Moreover, SDMs are still 
being used to better understand the relationship between 
species’ distributions and climate (Blach-Overgaard et al. 
2010, Graham et al. 2010).

Lastly, because SDMs are fitted to species’ current distri-
butions they reflect both direct and indirect influences of 
climate on those distributions. Non-climatic factors that 
limit a species to certain broad areas (such as biotic inter-
actions or other abiotic factors) are generally modulated  
by climatic conditions. For example, since its introduction 
to Hawaii, avian malaria now restricts native bird species  
to higher elevations, where temperature halts development 

Figure 2. Taxonomic differences in log (base 10) maximum dispersal distances (km) for 105 species (birds  27, butterflies  18,  
herptiles  12, mammals  30, plants  18).
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Pulliam, H. R. 2000. On the relationship between niche and  
distribution. – Ecol. Lett. 3: 349–361.

Randin, C. F. et al. 2006. Are niche-based species distribution 
models transferable in space? – J. Biogeogr. 33: 1689–1703.

Santika, T. 2011. Assessing the effect of prevalence on the predic-
tive performance of species distribution models using simu-
lated data. – Global Ecol. Biogeogr. 20: 181–192.

Segurado, P. et al. 2006. Consequences of spatial autocorrelation 
for niche-based models. – J. Appl. Ecol. 43: 433–444.

rescue effect, or temporal variation in conditions (Pulliam 
2000, Gaston 2003). Alternatively, models with greater rates 
of false positives might suggest that dispersal limitation or 
interspecific interactions, such as competition, are limiting a 
species’ distribution (Pulliam 2000, Graham et al. 2010). 
Finally, exploring spatial variation in model behaviour,  
for example testing model performance in climatically het-
erogeneous regions or through patterns of spatial prediction 
errors (Hanspach et al. 2011), could also improve our under-
standing of model performance and thus species’ climate– 
distribution relationships.

Conclusion

We found a statistically significant effect of membership  
in broad taxonomic groups on SDM fit even after  
accounting for methodological issues, suggesting a role for 
ecological traits in determining the strength of species’  
climate–distribution relationships. However, the study  
itself, the model type used to build the SDM and species’ 
prevalence all had significant effects on discrimination  
ability. Our results did not the support the hypothesis  
that dispersal ability affects the strength of species’ climate– 
distribution relationships. However, more work is needed  
to determine which ecological traits are important in deter-
mining the strength of this relationship, and at what spatial 
scale and taxonomic level they are manifested.   
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