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This tutorial presents the different methods used in the paper. A
short description of each method is given. We describe the proce-
dures to carry out the analyses using the R language and interpret
the results.
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1 Preliminary steps

1.1 Reading the data

The data corresponding to the three tables R (sites-by-environmental variables),
L (sites-by-species) and Q (species-by-traits) are available in three text files
(TAB-separated). The function read.table is used to read the data.

> traits <- read.table(file="data/Species_traits.txt", sep="\t")
> spe<- read.table(file="data/Site_species.txt", sep="\t")
> env<-read.table("data/Site_env.txt", sep="\t")

1.2 Sourcing the files with R code (functions)

> source("scripts/Inference_modelset.r")
> source("scripts/Inference_compute.r")
> source("scripts/corratio.R")
> source("scripts/calinski.R")
> source("scripts/VarScoreOMI.r")
> source("scripts/doublerda.R")

1.3 Loading R packages

Several packages must be installed and loaded to perform the analyses presented
in this tutorial:
> library(ade4)
> library(MASS)
> library(vegan)
> library(ecodist)
> library(maptools)
> library(rpart)
> library(splines)
> library(gam)
> library(pgirmess)
> library(utils)
> library(combinat)
> library(mvpart)
> library(cluster)
> library(fpc)
> library(clusterSim)
> library(lmtest)
> library(Hmisc)
> library(gplots)

Other packages are also required by the different scripts associated to this tu-
torial.
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2 Species responses to environmental gradients

As a baseline, we analysed the responses of species to environmental gradients
using canonical correspondence analysis (ter Braak, 1986). This analysis was
performed using CANOCO for Windows 4.5 in the article and reproduced using
the R language in this tutorial. We used the pcaiv function of the ade4 package
but other functions are also available in other packages (e.g., cca function in
package vegan).

> coa1 <- dudi.coa(spe, scannf = F)
> cca1 <- pcaiv(coa1, env, scannf = F)

The percentage of variation in species composition explained by the three
environmental variables:
> 100 * sum(cca1$eig) / sum(coa1$eig)

[1] 14.89

The species responses can be interpreted on the biplot (this corresponds to
Figure 2 of the article).

> s.label(cca1$c1, clabel = 0)
> par(mar = c(0.1, 0.1, 0.1, 0.1))
> pointLabel(cca1$c1,row.names(cca1$c1), cex=0.7)
> s.arrow(cca1$cor[-1,], add.plot=TRUE)
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3 A-”CWM-RDA”: redundancy analysis of com-
munity weighted mean trait responses to en-
vironmental gradients

3.1 Description of the method

A sites-by-traits matrix for analysis of trait-environment relationships was cre-
ated from the original L matrix (species-by-sites) and Q matrix (species-by-
traits). This matrix was weighted by abundance so that each entry in the
matrix was the weighted mean of the trait values of all species present in that
site (for continuous traits) or the weighted proportion of species with a categor-
ical trait (e.g. polycarpic). Initially the sites-by-traits matrix was subjected to
redundancy analysis (RDA, Rao, 1964) constrained by the sites-by-environment
matrix, with no transformation of the response variables (i.e. the trait weighted
means, ‘species’ data in the CANOCO program terminology), response variables
centred and standardised (no standardisation by samples)and forward selection
of environmental variables. In addition, the relationship between the weighted
trait data with individual environmental parameters was assessed by repeating
the RDA using the other environmental variables as covariables. This analysis
was performed using CANOCO for Windows 4.5 in the article and reproduced
using the R language in this tutorial.

3.2 Results

The table of weighted means is constructed by matrix multiplication:

> cwm.tab <- prop.table(as.matrix(spe),1)%*%as.matrix(scale(traits))

The redundancy analyis is then perfomed using the pcaiv function of the
ade4 package. Other functions are also available in other packages (e.g., rda
function in package vegan). Contrary to the paper, No forward selection is
performed in the tutorial.

> pca.cwm <- dudi.pca(cwm.tab,scannf=FALSE)
> rda.cwm <- pcaiv(pca.cwm,env, scannf=FALSE)

The percentage of variation in community traits explained by the three en-
vironmental variables:

> 100 * sum(rda.cwm$eig) / sum(pca.cwm$eig)

[1] 32.08

The percentages of explained variation associated to each axis:

> pca.cwm <- dudi.pca(cwm.tab,scannf=FALSE)
> 100 * rda.cwm$eig / sum(rda.cwm$eig)

[1] 62.515 35.434 2.052

The relationships between the trait and the environmental variables (this
corresponds to Figure 3a of the paper)

> s.arrow(rda.cwm$c1, xlim=c(-1,1), boxes = FALSE)
> s.label(rda.cwm$cor[-1,], add.plot=T, clab=1.5)
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4 B-”CLUS-MOD”: modelling functional groups
on environmental gradients

4.1 Description of the method

CLUS-MOD firstly builds species groups from their traits (component 3), then
searches for the trait combination with the best response to the environmental
variables (component 1 and 2).

� Step 1: Component 3 (grouping; see Table 2 in the main text)

In order to group species according to their traits, we applied Ward’s
hierarchical clustering (Everitt et al., 2001). Clustering was repeatedly
conducted both based on single traits and based on all possible combina-
tions of single traits (i.e. combinations of two to six traits; 63 clusterings
in total). The cophenetic correlation (Legendre and Legendre, 1998) was
used to assess how closely the clustering results correspond to the original
resemblance matrix. It represents the correlation between the phenetic
distances (pair-wise distances across the dendrogram) with the pair-wise
distances in the distance matrix (Sneath and Sokal, 1973). Maximizing
this correlation, will ensure that branch lengths in the dendrogram best
match the biological differences measured among the organisms (Petchey
and Gaston, 2006). For each of the 63 combinations, the optimal num-
ber of groups (clusters) was determined via Calinski and Harabasz’s index
(Gordon, 1999). Group stability we assessed by bootstrapping (Hennig,
2007). To this end, many (500) bootstrap samples (drawing with replace-
ment) of the data are clustered, and the species of the resulting groups are
compared to those of the original data by calculating the Jaccard index.
The higher the average Jaccard index of the bootstrap replications, the
more stable the group.

� Step 2: Component 1 (responses of clusters to environmental variables)
and B (identification of responsive traits through iteration of A)

In the second step, we modelled group responses to the environmental vari-
ables. Since the frequency data are strictly bounded to values between 0
and 100, we used logistic regression (Agresti, 2002). For each group, uni-
variate models were estimated to determine the shape of the relationship
(monotonic or unimodal) to the environmental factor. Based on all sig-
nificant variables, multiple models were built. For multiple models, all
possible combinations of parameters were tested. For the data used in
this work (three environmental variables) this led to a maximum of seven
models if all three parameters were significant (three univariate models,
three models with two variables, one model with three variables). For
models with more than one parameter, LR-tests were performed to test if
each variable significantly improved the model. All significant univariate
and multiple models were then subjected to model averaging, leading to
one averaged model for each group (Burnham and Anderson, 2002; Strauss
and Biedermann, 2006). Model averaging avoids the often spurious choice
of a single best model and the pitfalls of stepwise variable selection (Whit-
tingham et al., 2006; Mac Nally, 2000).
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� Step 3: Component 2 (identification of responsive traits through iteration
of A)

Each clustering could be rated for the quality of the clustering and the
responsiveness of its groups to the environment. This process does not
necessarily imply one best solution, but typically a limited number of
good clusterings that lead to (often very similar) groups exhibiting strong
relationships to the environment. We used the following criteria to rate
the clustering of each trait combination: (i) the cophenetic correlation co-
efficient; (ii) the mean jaccard index indicating group (=cluster) stability;
(iii) the mean R2 of the group models, indicating the responsiveness to
the environment across all groups; (iv) the minimum R2 to ensure that
each group had a minimum goodness of fit. For these criteria, the follow-
ing thresholds were used: (i) cophenetic correlation coefficient > 0.7, (ii)
mean jaccard index of each group > 0.7, (iii) mean R2 ≥ 0.3, (iv) mini-
mum r2 ≥ 2. The number of groups per trait combination was taken as
an additional criterion. Clusterings with just two groups can sometimes
lead to models with high goodness of fit. In this case, within each group,
the response is mainly driven by the species with high abundance, the
majority of species has only marginal influence. In the case of nominal
traits, these groups are also highly stable. However, more groups can al-
low species with lower abundance to be more influential and thus to yield
a more subtle picture of the trait – environment relationships. From the
trait combinations meeting all of the above criteria, we selected the one
yielding the highest number of groups.

4.2 Results

The analysis can be perfomed by sourcing the five scripts given in the folder
scripts. Several output files are created to perform the complete analysis. At
the start of the analysis, some parameters must be edited:

� max.traits is the maximum numbers of traits considered at one time.
If set to a value exceeding number of traits present in the data, it is
automatically reduced to that value.

� min.cophenetic.corr is the minimum cophenetic correlation coefficient.
A reasonable value is 0.7 - 0.8. Set to 0 if all combinations are to be
retained in the output.

� max.no.groups is the maximum number of groups within one clustering.
A reasonable setting depends on the number of species present.

� noisecut.value represents the minimum number of species within a group

� min.prop is the minimum proportion of species that have to be in stable
clusters. Set to 0 if all combinations are to be retained in the output.

� no.boot indicates the bootstrap replications for bootstrapping cluster sta-
bility. Should be at least 200, for serious analyses. Even with 500 replica-
tions, results are not completely replicable (deviations of 0.03 in mean.jac
still possible).
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� mean.jac is the minimum mean jaccard index for bootstrapping. Groups
below this value are not considered to be stable and will not be considered
for modelling (step 2). Reasonable setting: 0.65-0.75. In case of very
homogeneous trait value distributions, lower values might be necessary.
Set to 0 if all combinations are to be retained in the output.

� name.output.table is the name of the .txt file where outputs are written.
More output is produced to file ”cluster.output.txt”. Do not delete this
file, it is required for the following steps.

� traits.to.consider refers to the trait to consider in the clustering pro-
cedure. There are 3 options on how to set this. To consider all traits in
the table, use traits.to.consider<-"all". To consider only traits in the
respective columns, use traits.to.consider<-c(2,3,4). To select traits
by their names, use traits.to.consider<-c("Polycarpic","Cnratio","SLA","height")

> max.traits<-6
> min.cophenetic.corr<-0.7
> max.no.groups<-10
> noisecut.value<-5
> min.prop<-0.9
> no.boot<-200
> mean.jac<-0.7
> name.output.table<-"result.cluster.boot.txt"
> traits.to.consider<-"all"

Correlations between traits can be investigated. For instance, SLA is nega-
tively correlated with canopy height and onset of flowering. Clusterings based
on these traits may be similar in species composition.

> cor(traits)

Polycarpic Cnratio seed.mass.log SLA height
Polycarpic 1.00000 0.17289 0.0824449 -0.28643 0.26878
Cnratio 0.17289 1.00000 0.0844576 -0.30082 0.30188
seed.mass.log 0.08244 0.08446 1.0000000 0.04623 -0.01168
SLA -0.28643 -0.30082 0.0462325 1.00000 -0.50164
height 0.26878 0.30188 -0.0116774 -0.50164 1.00000
Onset.flower 0.28795 0.25905 -0.0001324 -0.51958 0.34466

Onset.flower
Polycarpic 0.2879485
Cnratio 0.2590469
seed.mass.log -0.0001324
SLA -0.5195817
height 0.3446553
Onset.flower 1.0000000

Start the clustering procedures with bootstrapping. Print the trait combinations
that result in stable clusters with a cophenetic correlation coefficient higher than
min.cophenetic.corr and a Jaccard Index higher than mean.jac. The output
shown here is truncated by the head function.

> source("scripts/script1_cluster_analysis_report.r")

> clus.boot<-read.table("result.cluster.boot.txt",sep="\t",header=TRUE)
> head(clus.boot[,c(1:6,13:14)])

no.combi no.traits involved.traits
1 12 4 Polycarpic, Cnratio, SLA, Onset.flower
2 14 4 Polycarpic, seed.mass.log, SLA, height
3 17 4 Polycarpic, SLA, height, Onset.flower
4 24 3 Polycarpic, Cnratio, SLA
5 25 3 Polycarpic, Cnratio, height
6 26 3 Polycarpic, Cnratio, Onset.flower
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cophenetic.corr no.clusters clust.stable spec.per.clust
1 0.74 3 3 21,18,6
2 0.78 4 4 19,15,8,7
3 0.80 3 3 28,10,12
4 0.82 3 3 27,15,8
5 0.74 4 4 22,12,8,8
6 0.83 3 3 25,14,6
mean.jacc.clust.stable

1 0.83,0.8,0.76
2 0.71,0.78,0.95,0.75
3 0.89,0.87,0.79
4 0.84,0.75,0.97
5 0.84,0.77,0.98,0.76
6 0.92,0.91,0.94

In the second step, group responses to environmental variables are mod-
elled. Output from Script 1 (i.e. component 3) is required (read in from file
”cluster.output.txt”). There are some parameters to be set:

� max.var denotes the maximum number of variables used in multiple mod-
els. Reasonable values depend on sample size.

� r2.min is the minimum r2 for variables in univariate models. Significant
variables below this threshold will not be considered for multiple models.
Set to 0 if all significant variables are to be retained.

� min.cum.cov: Group has to reach this cumulate frequency or coverage
[percent, 0-100] at least in 1 plot so that models will be estimated

� min.prev is the minimum prevalence of a group (=proportion of plots
where group occurs [0,1]) so that models will be estimated

> max.var<-3
> r2.min<-0
> min.cum.cov<-0.5
> min.prev<-0.1

Thereafter, script 2 - Group models must be invoked. It calculates models for
functional groups (group frequencies or coverages depending on environmental
parameters).

> source("scripts/script2_group_models_report.r")

Script 3 writes the results of the clustering and modelling scripts into a
readable format. Two output files are written in .txt format, they can be read
easily in Excel. The files created by Scripts 1 and 2 are required, so do not
delete them.

Names of output files: ”outputfile.1” contains output for each individual
functional group. ”outputfile.2” contains summarized output for each trait com-
bination.
> name.outputfile.1<-"modelling.output.groupwise.txt"
> name.outputfile.2<-"modelling.output.clusterwise.txt"
> source("scripts/script3_output_tables_report.r")
> mod.groupwise<-read.table(name.outputfile.1,sep="\t",header=TRUE)
> mod.clusterwise<-read.table(name.outputfile.2,sep="\t",header=TRUE)
> head(mod.clusterwise[order(-mod.clusterwise$no.clusters,-mod.clusterwise$r2.av),c(1:9,17)])

no.combi no.traits involved.traits
5 25 3 Polycarpic, Cnratio, height
20 63 1 Onset.flower
2 14 4 Polycarpic, seed.mass.log, SLA, height
4 24 3 Polycarpic, Cnratio, SLA
15 44 2 Polycarpic, seed.mass.log
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6 26 3 Polycarpic, Cnratio, Onset.flower
cophenetic.corr r2.av r2.min r2.all no.clusters

5 0.74 0.33 0.23 0.23, 0.27, 0.49, 0.32 4
20 0.88 0.30 0.12 0.3, 0.28, 0.12, 0.49 4
2 0.78 0.28 0.16 0.16, 0.19, 0.49, 0.29 4
4 0.82 0.39 0.23 0.23, 0.44, 0.49 3
15 0.80 0.39 0.14 0.14, 0.49, 0.55 3
6 0.83 0.38 0.22 0.22, 0.43, 0.49 3

clust.stable mean.jacc.clust.stable
5 4 0.84,0.77,0.98,0.76
20 4 0.99,1,0.97,1
2 4 0.71,0.78,0.95,0.75
4 3 0.84,0.75,0.97
15 3 0.84,0.97,0.83
6 3 0.92,0.91,0.94

> head(mod.groupwise[,1:3])

no.combi trait.combi group.no
1 12 Polycarpic, Cnratio, SLA, Onset.flower 1
2 12 Polycarpic, Cnratio, SLA, Onset.flower 2
3 12 Polycarpic, Cnratio, SLA, Onset.flower 3
4 14 Polycarpic, seed.mass.log, SLA, height 1
5 14 Polycarpic, seed.mass.log, SLA, height 2
6 14 Polycarpic, seed.mass.log, SLA, height 3

The file ”modelling.output.clusterwise.txt” lists all trait combinations with sta-
ble clusters, their cophonetic correlation coefficient and Rsquare (r2). The
output shown here is truncated by the head function and shows only selected
columns. The table can be sorted according to r2.av which is the average r2 of
all clusters of a certain trait combination.

The second file ”modelling.output.groupwise.txt”gives information regarding
the trait ranges of each cluster, the regression parameters and the weights of
the parameters. Again, the output is truncated by the head function and shows
only selected columns. Six out of 63 trait combinations passed all thresholds:
1. (Polycarpic, CNratio, canopy height); 2. (Polycarpic, CNratio, onset); 3.
(Polycarpic, CNratio, SLA); 4. (Polycarpic, SLA, height); 5. (Polycarpic, SLA,
height, onset); 6. (Polycarpic, CNratio). The first combination was considered
to match the selection criteria in the best way.

The selected trait combinations should be identified by their combination
number (no.combi) and retained for plotting the results.

For each combination, boxplots are produced for the distribution of trait
values within each functional group. Group models are plotted with respect
to each environmental parameter (while all other environmental paramters are
held constant at their median values). If a group does not respond to a param-
eter, it is not plotted. Note that model averaging can lead to coefficients close
to 0, resulting in very shallow slopes and thus almost straight lines for some
parameters. Here we show the response curves for trait combination no. 25
”Polycarpic, Cnratio, canopy height”. This was the only combination yielding
4 groups, with a cophenetic correlation coefficient > 0.7, a mean jaccard index
of each group > 0.7, a mean R2 ≥ 0.3, and minimum r2 ≥ 2. The third group
of this combination, small monocarps, increased with soil P while showing no
response to grazing and a negative response to soil water content (see also Fig.
5, main text). The other groups comprised only polycarpic species. The first
group consisted of small polycarpic perennials with low CN-ratio. This group
showed a positive response to grazing (dist.int) and a unimodal response to soil
water content (soil.WHC). The second group, comprising small polycarps with
high CN-ratio, decreased with soil P and grazing. The fourth group, comprising
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large polycarpic species, decreased with soil P, increased with soil water and
showed a unimodal response to grazing.

To plot results, the following parameters have to be set or may be set:

� combis.to.plot is used to identify the combinations of traits to be plot-
ted. This could be a vector of mode numeric which contains the combina-
tion numbers. To plot all combinations, use

combis.to.plot<-as.vector(output.table.2[,"no.combi"]).

� name.pdf is the name of output plot file.

� min.weight is the minimum weight [0,100] of a variable in a group model
so that it is plotted. Small weights mean small coefficients and shallow
slopes, thus not much to see but a straight line.

� mycol denotes colours for output.

� plot.points is either 0 or 1. If the original data are also to be plotted,
setplot.points<-1. Plots get easily overloaded, use with caution!

> combis.to.plot<-c(25)
> min.weight<-10
> mycol<-palette()
> plot.points<-0
> name.table<-"spec.groups.txt"
> source("scripts/script4_group_plots_report.r")
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The following section produces a table where, for selected combinations,
group assignements for each species and combination can be compared. A
.txt file is produced that can be read. Species marked NA in a certain com-
bination were either not in a cluster at all or not in a stable cluster. Note
that for combinations that lead to almost identical groups, comparable group
do not necessarily have the same number (even though they often do)! The
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combinations of traits to be compared are identified by combis.to.compare<-
c(13,26,43,25,32). The figures in brackets denote the combination number.
To compare all combinations with stable clusters, use combis.to.compare<-
as.vector(output.table.2[,"no.combi"]). name.table is the name of the
table with the species and their assignment to the functional groups.

> name.table<-"spec.groups.txt" #name of output file
> #combis.to.compare<-as.vector(output.table.2[,"no.combi"])
> combis.to.compare<-c(25,24,44,26,12,17)
> source("scripts/script5_group_assignements_report.r")
> spec.in.groups<-read.table("spec.groups.txt",sep="\t",header=TRUE)
> head(spec.in.groups)

combis.to.compare X25 X24 X44 X26 X12 X17
1 no.of.groups 4 3 3 3 3 3
2 ACHIMILL 1 1 1 1 1 1
3 AGROCAPI 1 1 1 1 1 1
4 ANTHODOR 1 1 1 1 1 1
5 BRIZMEDI 2 2 1 2 2 1
6 BROMHORD 3 3 2 NA NA 2

Comparing the six combinations revealed that the trait ”polycarpic” was always
involved and yielded a coarse separation into annual and perennial species. How-
ever, when ”onset of flowering” came into play, a few early flowering polycarpic
species were assigned to the monocarpic group. C:N ratio separated the peren-
nials into two groups with either low or high C:N ratios. However, this only
applied to low growing perennials. Large plants were indifferent in terms of C:N
ratio. Thus, the combination of life cycle, C:N ratio and canopy height led to
more distinct groups. Even though SLA was negatively correlated to C:N ratio,
it did not discriminate among the low growing perennials as clearly as C:N ratio.
Functional groups resulting from the trait seed mass were either instable and /
or showed weak relationships to the environment.
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5 C-”RDA-sRTA”and D-”RDA-mRTA”: redun-
dancy analysis and regression tree

5.1 Description of the method

RDA-RTA is a two step procedure. In the first step (component A), the response
of each individual species to each individual environmental gradient (component
A) is calculated using the redundancy analysis (RDA). Then, the response is
predicted by the species traits, using the regression tree method (component
B). Component C, the grouping of species based on responsive traits is a direct
outcome of component B. RDA-single RTA (RDA-sRTA) predicts the response
to each environmental gradient separately, whereas RDA-multi RTA (RDA-
mRTA) uses multivariate regression tree and predicts the response to both the
gradients simultaneously.

� Step 1: Component A (species responses to environmental variables)

The first step, determination of the species response to individual gradi-
ents was used for RDA-sRTA only for the environmental variables, which
were selected as significant in a forward selection procedure (i.e. grazing
intensity and soil phosphorus). Consequently, two separate RDAs were
calculated, for grazing intensity and for soil phosphorus as explanatory
(environmental) variable; the other variable was used as a covariable. We
have used the RDA on the correlation matrix (i.e. the option center and
standardize by species), no standardization by samples was applied. The
species scores correspond to the species correlation with the environmental
axis, and can be considered a species response. In the CANOCO imple-
mentation, the polarity of axes is arbitrary – consequently, we have always
changed the polarity so that the positive values signify positive response
to the gradient (positive correlation with the environmental variable). As
grazing intensity and soil phosphorus were nearly uncorrelated (see Ap-
pendix S1), the effect of using a covariable (i.e. the distinction between
marginal and partial effect of the variable) is negligible. In cases with
correlated environmental variables, the distinction between marginal and
partial effects might be much more pronounced and can change the eco-
logical interpretation considerably.

� Step 2: Component B (identification of responsive trait combinations)

Regression trees were used to select the traits predicting individual re-
sponses. The regression tree is a non-parametric regression that produces
a binary tree built through binary recursive partitioning. In our case, the
traits were predictors and the species response (i.e. RDA species scores)
the predicted value. The trait that best distinguishes species’ responses
splits the species into two groups; then, within each subset, another trait
splits the species further. We have used the pruned regression tree ob-
tained by reducing a fully grown regression tree, with the extent of the
reduction based on the cross-validation procedure. In the univariate re-
gression tree (for RDA-sRTA), response to each environmental gradient
was predicted separately (procedure rpart of the package rpart). For
the RDA-mRTA, the multivariate regression tree, predicting the species
responses to the two gradients simultaneously (procedure mvpart of the
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package mvpart). Component C (forming groups) is a direct outcome of
the Component B. Nevertheless, it should be noted that the main goal of
the regression tree analysis is the prediction – and the tree (and conse-
quently groups) are formed just as a mean to achieve the main goal.

This analysis was performed using CANOCO for Windows 4.5 in the article
and reproduced using the R language in this tutorial. The forward selection is
not presented in the tutorial.

5.2 Results for C-”RDA-sRTA”

Partial RDAs were perfomed using the rda function of the vegan package:

> rda.phosp <- rda(X=spe, Y=env$SOIL.P, Z=env$dist.int, scale = TRUE)
> rda.dist <- rda(X=spe, Y=env$dist.int, Z=env$SOIL.P, scale = TRUE)
> rda.both <- rda(X=spe, Y=env[,c("dist.int","SOIL.P")], scale = TRUE)

Each gradient explained roughly the same amount of variation in species
composition:

> 100 * rda.phosp$CCA$tot.chi/rda.phosp$tot.chi

[1] 5.499

> 100 * rda.dist$CCA$tot.chi/rda.dist$tot.chi

[1] 5.576

Whereas the values of the environmental parameters are uncorrelated, the
species response to them is not independent – species responding positively to
P tend to respond negatively to disturbance and vice versa – the correlation
between the species responses to P and Disturbance is -0.4.

> cor(env$SOIL.P,env$dist.int)

[1] -0.03306

> cor(rda.phosp$CCA$v,rda.dist$CCA$v)

RDA1
RDA1 -0.3956

The correlation between RDA axis and phosphorous (contrary to the paper,
axes are not reversed in the tutorial):

> rda.phosp$CCA$biplot

RDA1
[1,] -0.9995

Then, regression trees are constructed with traits as explanatory variables
and RDA species scores as response variables. Note that both packages rpart
and mvpart have a rpart function. Thus, we specify by the :: operator that
we use the function of rpart package. We add the constraint that each leaf of
the tree must contain at least 3 species:
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> df.phosp <- cbind(RDA1=rda.phosp$CCA$v[,1],traits)
> df.dist <- cbind(RDA1=rda.dist$CCA$v[,1],traits)
> rta.dist<-rpart::rpart(RDA1~.,data=df.dist, xval = 100, minbucket = 3)
> rta.phosp<-rpart::rpart(RDA1~.,data=df.phosp, xval = 100, minbucket = 3)

With respect to phosphorous, the regression tree selected the monocarpic/polycarpic
as the first and best predictor. Seed weight and onset of flowering were then
suggested to improve the fit within polycarpic plants:
> rta.phosp

n= 50

node), split, n, deviance, yval
* denotes terminal node

1) root 50 0.97400 0.02278
2) Polycarpic< 0.5 8 0.03345 -0.21040 *
3) Polycarpic>=0.5 42 0.42270 0.06720

6) seed.mass.log< -0.7935 5 0.09702 -0.02374 *
7) seed.mass.log>=-0.7935 37 0.27870 0.07949
14) Onset.flower< 162.5 7 0.04459 0.02671 *
15) Onset.flower>=162.5 30 0.21010 0.09180

30) height>=29.32 6 0.11060 0.01863 *
31) height< 29.32 24 0.05930 0.11010

62) seed.mass.log< -0.1525 16 0.02913 0.09262
124) height>=10.48 9 0.00823 0.07076 *
125) height< 10.48 7 0.01107 0.12070 *
63) seed.mass.log>=-0.1525 8 0.01551 0.14510 *

To prune the trees, we used cross validation:

> plotcp(rta.phosp)
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This suggest that the best tree has a size of 2 (i.e. Polycarpic vs monocarpic).
The new pruned tree is then:
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> idx.min <- which.min(rta.phosp$cptable[,4])
> rta.phosp.pruned <- prune(rta.phosp, cp = 1e-6+rta.dist$cptable[,1][idx.min])
> plot(rta.phosp.pruned, ylim = c(0.28,1.1))
> text(rta.phosp.pruned, use.n=T)
> arrows(0.9, 0.28, 2, 0.28, length = 0.1)
> text(1.5, 0.26, "Species score on RDA axis (phosphorous)", cex = 1)

Polycarpic< 0.5 Polycarpic>=0.5

−0.21
n=8

0.067
n=42

Species score on RDA axis (phosphorous)

This analysis yielded two functional groups:

> table(rta.phosp.pruned$where)

2 3
8 42

Group 1 comprised monocarpic species which occurred at high P level.
Group 2 was polycarpic. The inclusion of seed weight was not sufficiently sup-
ported by crossvalidation. Whereas the Mono/Polycarpy explains itself 53.17 %
of variability, the tree with seed mass explains 57.99 %.

> 100 * (1-rta.phosp$cptable[2,3])

[1] 53.17

> 100 * (1-rta.phosp$cptable[3,3])

[1] 57.99

Concerning grazing, the correlation with RDA axis (contrary to the paper,
axes are not reversed in the tutorial):

> rda.dist$CCA$biplot
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RDA1
[1,] -0.9995

The regression tree selected C:N ratio as the best splitting rule (the high
C>N ratio plants respond negatively to disturbance). Then, the best predictors
differ. In low C:N plants, the seed mass is important (surprisingly, the heavier
seeds predict more positive response to disturbance). For the high C:N plants,
a second split based on Polycarpy is also selected:

> rta.dist

n= 50

node), split, n, deviance, yval
* denotes terminal node

1) root 50 0.980800 -0.019570
2) Cnratio< 18.19 28 0.391400 -0.088620

4) seed.mass.log>=-0.843 22 0.234900 -0.123300
8) Onset.flower< 168.5 15 0.115100 -0.156000
16) seed.mass.log< -0.479 4 0.037770 -0.229300 *
17) seed.mass.log>=-0.479 11 0.048020 -0.129300

34) seed.mass.log>=0.084 3 0.003994 -0.219700 *
35) seed.mass.log< 0.084 8 0.010340 -0.095440 *

9) Onset.flower>=168.5 7 0.069340 -0.053110 *
5) seed.mass.log< -0.843 6 0.033370 0.038360 *

3) Cnratio>=18.19 22 0.286000 0.068310
6) Polycarpic>=0.5 18 0.144900 0.032050
12) height< 16.04 6 0.021510 -0.020480 *
13) height>=16.04 12 0.098550 0.058320

26) height>=34.67 4 0.004003 -0.006159 *
27) height< 34.67 8 0.069610 0.090560 *

7) Polycarpic< 0.5 4 0.010980 0.231500 *

To prune the trees, we used cross validation:

> plotcp(rta.dist)
> cptab <- rta.dist$cptable
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According to the method used (1-SE rule or minimization of xerror), the
selected size of tree is different. For the minimization of xerror, we obtain:

> idx.min <- which.min(cptab[,4])
> rta.dist.pruned <- prune(rta.dist, cp = 1e-6+cptab[,1][idx.min])
> plot(rta.dist.pruned, ylim = c(0.33,1.1))
> text(rta.dist.pruned, use.n=T)
> arrows(0.9, 0.33, 4.1, 0.33, length = 0.1)
> text(2.5, 0.31, "Species score on RDA axis (grazing)", cex = 1)

Cnratio< 18.19

seed.mass.log>=−0.843 Polycarpic>=0.5

Cnratio>=18.19

seed.mass.log< −0.843 Polycarpic< 0.5

−0.12
n=22

0.038
n=6

0.032
n=18

0.23
n=4

Species score on RDA axis (grazing)

For the 1-SE rule, we obtain:

> idx.min2 <- min((1:nrow(cptab))[cptab[,4]<min(cptab[,4]+cptab[,5])])
> rta.dist.pruned2 <- prune(rta.dist, cp = 1e-6+cptab[,1][idx.min2])
> plot(rta.dist.pruned2, ylim = c(0.33,1.1))
> text(rta.dist.pruned2, use.n=T)
> arrows(0.9, 0.33, 2, 0.33, length = 0.1)
> text(1.5, 0.31, "Species score on RDA axis (grazing)", cex = 1)
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Cnratio< 18.19 Cnratio>=18.19

−0.089
n=28

0.068
n=22

Species score on RDA axis (grazing)

Whereas tree with just one predictor (C:N) explains 30.93 % of variability,
the tree selected by the minimization of the xerror explains 56.75 %:

> 100 * (1-cptab[idx.min,3])

[1] 56.75

> 100 * (1-cptab[idx.min2,3])

[1] 30.93

5.3 Results for D-”RDA-mRTA”
> rda.both <- rda(X=spe, Y=env[,c("dist.int","SOIL.P")], scale = TRUE)

The amount of variation in species composition explained by both gradients
together:

> 100 * rda.both$CCA$tot.chi/rda.both$tot.chi

[1] 11.24

The explained variation is decomposed onto two axes:

> 100 * rda.both$CCA$eig/rda.both$CCA$tot.chi

RDA1 RDA2
71.81 28.19

We can then represent the species and the environment variables on a plot:
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> plot(rda.both, display=c("bp","sp"))
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When applying the multivariate regression trees (with cross-validation and
pruned using the 1-SE rule) to predict responses to both grazing and phospho-
rous together, only one of the predictors was able to improve the prediction of
the two species responses: Monocarpic/Polycarpic.

> df.both <- cbind(RDA1=rda.both$CCA$v.eig[,1],RDA2=rda.both$CCA$v.eig[,2],traits)
> rta.both<-mvpart(data.matrix(df.both[,1:2])~Polycarpic+Cnratio+seed.mass.log

+SLA+height+Onset.flower,data=df.both, xval = 100, xv="1se")
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Polycarpic< 0.5 Polycarpic>=0.5

1.14 : n=8 2.67 : n=42

RDA1
RDA2

Error :  0.693   CV Error :  0.766   SE :  0.172

The monocarpic plants respond positively to phosphorus, and negatively to
disturbance.
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6 E-”OMI-GAM”: outlying mean index and gen-
eralised additive model

6.1 Description of the method

The Outlying Mean Index (OMI) is a multivariate method to separate species
niches and to measure the distance between the mean habitat conditions used
by each species and the mean habitat conditions of the study area (Dolédec
et al., 2000; Thuiller et al., 2004). OMI-GAM starts by determining the species
response to the environmental gradients (component 1) and models the con-
tribution of each trait to the response (component 2). Finally, it clusters the
species according to the responsive species - trait models (component 3).

� Step 1: Component 1 (species responses to environmental variables)

The Outlying Mean Index makes no assumption about the shape of species
response curves to the environment (e.g. unimodal or linear) and, unlike
CCA and RDA, gives equal weight to species-rich and species-poor sites.
The result of this analysis describes the mean position of the species in the
environmental space (along each environmental axis), which represents a
measure of the distance between the mean habitat conditions used by the
species and the mean habitat conditions of the study area. It measures
the propensity of the species to select a specialized environment.

� Step 2: Component 2 (identification of responsive trait combinations)

They are various techniques to analysis the relationship between species’
niche position and selected functional traits (e.g. regression-type, classification-
type). Here we used inference-based generalized additive models. Stepwise
regression-backward, forward or both–is an obvious method for examining
the relative importance of each functional trait to explain species niche
position on the selected axes. However, using usual stepwise regression
to find the optimal combination of explanatory variables to model a re-
sponse is often considered to be a high-variance operation because small
perturbations of the response data can sometimes lead to vastly different
subsets of the variables (Johnson and Omland, 2004). To avoid this prob-
lem, and to measure the actual power of each functional trait we used
multimodal inference based on all-subsets selection of generalised addi-
tive models (Burnham and Anderson, 2002; Thuiller et al., 2007). In the
case of six functional traits, there are 26 = 64 possible models in an all-
subsets selection. We thus estimated a small-sample (second order) bias
adjustment of AIC (AICc) for each submodel. To estimate the weight of
evidence of each functional trait (wpi) to explain species niche position
on each OMI axis, we simply summed the model AICs weights (wi) over
all models in which predictor appeared. To derive predicted species niche
position, we averaged the predictions from each submodel weighted by the
model AICc weight (see also method 2). This procedure was carried out
for the two selected OMI axes.

� Step 3: Component 3 (grouping of species based on responsive traits)

Outputs of inference-based GAM were used to define functional groups.
Euclidean distances between species were computed on the predictions
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from inference-based GAM over the selected axes of OMI analysis and
Ward’s hiercharchical clustering was then performed. Clusters were ex-
tracted from the dendrogram and the optimal number of functional groups
was determined with the Calinsky-Harabasz stopping criterion. Correla-
tion ratios were computed to measure the degree of correlation between
species traits and response groups.

6.2 Results

6.2.1 Analysis of environment

Prior to OMI analysis, environmental data must be analysed. Here, we use a
PCA on correlation matrix:

> pca.env<-dudi.pca(env, scannf=FALSE)
> scatter(pca.env)
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The total variation is decomposed onto othogonal axes. The percentage of
variation associated to each axis:

> 100 * pca.env$eig/sum(pca.env$eig)

[1] 50.86 33.28 15.85

The correlations between environmental variables and PCA axes:
> pca.env$co

Comp1 Comp2
dist.int 0.87264 0.02217
SOIL.P -0.07431 0.99704
SOIL.WHC 0.87113 0.06285
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6.2.2 Species niche description

Then, we analyse the distribution of species on environmental gradients using
the OMI analysis. The method is implemented in the function niche of the
ade4 package.

> omi1<-niche(pca.env, spe, scannf=FALSE)
> plot(omi1)
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The variation of of the relationship between species and environmental gra-
dients is along the first two axes:

> 100 * omi1$eig/sum(omi1$eig)

[1] 60.58 28.01 11.41

A biplot allows to represent species and environmental variables:

> s.arrow(omi1$c1, clab = 0.8, xlim=c(-2.5,2.5))
> s.label(omi1$li, xax = 1,yax = 2, clabel=0,add.plot = TRUE)
> par(mar = c(0.1, 0.1, 0.1, 0.1))
> pointLabel(omi1$li, rownames(omi1$li), cex=0.7)
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The first axis is strongly positively linked to intensity of disturbance and to soil
water holding capacity. The second axis is positively related to soil phosphorous.

Niche position and niche breadth on the first two axes of OMI analysis can
be represented using the sco.distri function:

> par(mfrow=c(1,2))
> sco.distri(omi1$ls[,1],spe,clab=0.7)
> sco.distri(omi1$ls[,2],spe,clab=0.7)
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The niche position of each species (contained in omi1$li) are then extracted for
each axis (species scores) and used as response variable into the inference-based
GAM with functional traits as explanatory variables.
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6.2.3 Inference based model - GAM

The generalised additive models will relate the mean position of species on OMI
axes to species traits. The list of the 63 possible models (all possible models
except the one which contains only the intercept) is created by the function
Inference_modelset. Then, AICc and related measures corresponding to each
model, are obtained by the Inference_compute function. Here, the ’Polycarpic’
trait is coded as a factor (for a convenient GAM modelling).

> traits[,1]<-as.factor(traits[,1])
> modelset<-Inference_modelset(Explanatory=traits)
> inf.axis1 <- Inference_compute(Fam="gaussian", combin=modelset[[1]], Mat=modelset[[2]],

Response=omi1$li[,1], Explanatory=traits, Average = TRUE)
> inf.axis2 <- Inference_compute(Fam="gaussian", combin=modelset[[1]], Mat=modelset[[2]],

Response=omi1$li[,2], Explanatory=traits, Average = TRUE)

Variable importances from the inference based model (Figure 4a of the pa-
per):

> dd.names <- c('Poly- carpic','CN ratio', 'Log(SM)',
'Height','Onset flowering', 'SLA')

> dd.names.2 <- sapply(dd.names, function(x) gsub("\\s", "\\\n", x))
> barplot(inf.axis1$Var.importance[,1], names.arg=dd.names.2)

Poly−
carpic

CN
ratio Log(SM) Height

Onset
flowering SLA

0.
0

0.
2

0.
4

0.
6

0.
8

Along the OMI axis 1 (intensity of disturbance – soil water holding capac-
ity), the GAM inference-based approach together with the permutation test
expressed C:N-ratio and flowering mode (polycarpic vs. monocarpic) as rela-
tively important.

Response curves for the OMI axis 1 are then plotted for each trait (Figure
4b in the paper).
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> Limits <- apply(inf.axis1$Plot.response[, seq(2, 12, by=2)], 2, range)
> lim <- c(min(Limits[1,]), max(Limits[2,]))
> par(mfrow=c(3,2))
> plot(as.factor(inf.axis1$Plot.response[,1]), inf.axis1$Plot.response[,2],

ylim=lim, type="l", xlab="Policarpic", ylab="Species position axis 1")
> plot(inf.axis1$Plot.response[,3], inf.axis1$Plot.response[,4], ylim=lim,

type="l", xlab="CN ratio", ylab="Species position on OMI axis 1")
> plot(inf.axis1$Plot.response[,5], inf.axis1$Plot.response[,6], ylim=lim,

type="l", xlab="Log (Seed mass)", ylab="Species position on OMI axis 1")
> plot(inf.axis1$Plot.response[,9], inf.axis1$Plot.response[,10], ylim=lim,

type="l", xlab="Height", ylab="Species position on OMI axis 1")
> plot(inf.axis1$Plot.response[,11], inf.axis1$Plot.response[,12], ylim=lim,

type="l", xlab="Onset of flowering", ylab="Species position on OMI axis 1")
> plot(inf.axis1$Plot.response[,7], inf.axis1$Plot.response[,8], ylim=lim,

type="l", xlab="SLA", ylab="Species position on OMI axis 1")

0 1

−
1.

0
0.

0
1.

0

Policarpic

S
pe

ci
es

 p
os

iti
on

 a
xi

s 
1

10 15 20 25 30 35 40

−
1.

0
0.

0
1.

0

CN ratio

S
pe

ci
es

 p
os

iti
on

 o
n 

O
M

I a
xi

s 
1

−3 −2 −1 0 1

−
1.

0
0.

0
1.

0

Log (Seed mass)

S
pe

ci
es

 p
os

iti
on

 o
n 

O
M

I a
xi

s 
1

10 20 30 40 50 60

−
1.

0
0.

0
1.

0

Height

S
pe

ci
es

 p
os

iti
on

 o
n 

O
M

I a
xi

s 
1

100 120 140 160 180 200

−
1.

0
0.

0
1.

0

Onset of flowering

S
pe

ci
es

 p
os

iti
on

 o
n 

O
M

I a
xi

s 
1

10 20 30 40

−
1.

0
0.

0
1.

0

SLA

S
pe

ci
es

 p
os

iti
on

 o
n 

O
M

I a
xi

s 
1

In summary, species on intensely disturbed sites with high soil water holding
capacity tend to be polycarpic, and to have lower CN ratio than species occur-
ring in less intense disturbed places. Along the second axis (soil phosphorous
gradient, not shown in the paper and the tutorial), flowering mode, CN ratio
are again the most correlated to species position, followed by onset of flowering.
Monocarpic species tend to be preferably on sites with high soil phosphorous
content, with high CN ratio and early onset of flowering than species occurring
on lower soil phosphorous content.

We perform the classification using these scores to obtain functional groups:

> Averaged.Pred.1.2<-cbind(inf.axis1$Averaged.Pred, inf.axis2$Averaged.Pred)
> hc1 <- hclust(dist(Averaged.Pred.1.2), method = "ward")
> plot(hc1)
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We use the Calinsky-Harabasz criteria to find the best partition (try between
2 and 6 groups).

> ntest <- 6
> res <- rep(0,ntest - 1)
> for (i in 2:ntest){

fac <- cutree(hc1, k = i)
res[i-1] <- calinski(tab=Averaged.Pred.1.2, fac = fac)[1]

}
> par(mfrow=c(1,2))
> plot(2:ntest, res, type='b', pch=20, xlab="Number of groups", ylab = "C-H index")
> plot(3:ntest, diff(res), type='b', pch=20, xlab="Number of groups", ylab = "Diff in C-H index")
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It was not possible to identify an optimal number of groups (corresponding
to a maximal value of Calinski-Harabasz criterion). Differences between subse-
quent values of the criterion suggest a partition into 3 groups. Three functional
groups are then represented (Figure 4c in the paper):

> nbgroup <- 3
> spe.group <- as.factor(cutree(hc1, k = nbgroup))
> spe.group <- as.factor(spe.group)
> s.class(Averaged.Pred.1.2, spe.group, col= 1:nlevels(spe.group))
> s.arrow(omi1$c1, xax=1, yax=2, csub = 1, clab = 0.8, add.plot=T)
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We can interpret this partition in terms of traits :
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> eta2 <- cor.ratio(traits[,-1], data.frame(spe.group), weights = rep(1, length(spe.group)))
> par(mfrow=n2mfrow(ncol(traits)))
> plot(table(spe.group,traits[,1]), main =names(traits)[1])
> for(i in 2:ncol(traits)){

label <- paste(names(traits)[i], "(cor.ratio =", round(eta2[i-1],3), ")")
plot(traits[,i]~spe.group, main = label, border = 1:nlevels(spe.group))

}

Polycarpic

spe.group

1 2 30
1

1 2 3

10
20

30
40

Cnratio (cor.ratio = 0.639 )

spe.group
tr

ai
ts

[, 
i]

●

●

●

1 2 3

−
3

−
2

−
1

0
1

seed.mass.log (cor.ratio = 0.294 )

spe.group

tr
ai

ts
[, 

i]

1 2 3

10
20

30
40

SLA (cor.ratio = 0.32 )

spe.group

tr
ai

ts
[, 

i]

●

1 2 3

10
30

50

height (cor.ratio = 0.381 )

spe.group

tr
ai

ts
[, 

i]

●

●

●

1 2 3

10
0

14
0

18
0

Onset.flower (cor.ratio = 0.491 )

spe.group

tr
ai

ts
[, 

i]

The first group contains 18 polycarpic species with a low CN ratio, occurring
in very disturbed sites, with a high soil water holding capacity and medium soil
phosphorous content. The second group comprises 24 polycarpic species with
a higher CN ratio than group 1 and 3, later onset of flowering that the other
groups, and occurring mostly in slightly disturbed sites and soil water content,
but a low soil phosphorous content. The third group contains only monocarpic
species, which have intermediate CN ratio compared to the other groups and
a large variance for onset of flowering. These species mostly occur in site with
high soil phosphorous and low intensity of disturbance and soil water content.

The ’Polycarpic’ trait is then retransformed into a binary variable:

> traits[,1]=as.numeric(traits[,1])
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7 F-”RLQ”: RLQ Analysis

7.1 Description of the method

RLQ analysis (Dolédec et al., 1996) is a three-table ordination method that
allows the simultaneous analysis of tables R, L and Q in order to summarize
and represent graphically the main patterns of co-variation between trait data
and environmental parameters (components 1, 2). A subsequent cluster analysis
based on the co-variation then produces functional groups (component 3).

� Step 1, 2: Component 1, 2 (species responses to environmental variables
and identification of responsive trait combinations)

RLQ analysis is an extension of the two-table method of co-inertia analysis
(Dolédec and Chessel, 1994; Dray et al., 2003). It aims at finding a site
score (linear combination of environmental variables) and a species score
(linear combination of traits) maximizing the co-inertia criterion. This
criterion is the product of the variance of the site scores by the variance of
the species scores and by the squared cross-correlation between the species
score and the sites score mediated by table L.

� Step 3: Component 3 (grouping of species based on responsive traits)

Outputs of RLQ analysis were used to define functional groups. Eu-
clidean distances between species were computed on the first two axes of
RLQ analysis and Ward’s hiercharchical clustering was then performed.
Clusters were extracted from the dendrogram and the optimal number of
functional groups was determined with the Calinsky-Harabasz stopping
criterion. Correlation ratios were computed to measure the degree of cor-
relation between species traits and response groups.

7.2 Results

Prior to the analysis, the table L must be analysed by correspondence analy-
sis. Species and sites weights computed in these analysis are then used in the
analyses of species traits (Q) and environmental variables (R).

> pca.traits <- dudi.pca(traits, row.w = coa1$cw, scannf = FALSE)
> pca.env <- dudi.pca(env, row.w = coa1$lw, scannf = FALSE)

The RLQ analysis is performed using the rlq function of the ade4 package:

> rlq1 <- rlq(pca.env, coa1, pca.traits, scannf = FALSE)
> summary(rlq1)

Eigenvalues decomposition:
eig covar sdR sdQ corr

1 0.3474 0.5894 0.9994 1.317 0.4479
2 0.2530 0.5030 1.1860 1.136 0.3732

Inertia & coinertia R:
inertia max ratio

1 0.9989 1.581 0.6316
12 2.4054 2.553 0.9423

Inertia & coinertia Q:
inertia max ratio

1 1.734 2.223 0.7800
12 3.025 3.195 0.9467
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Correlation L:
corr max ratio

1 0.4479 0.8483 0.5280
2 0.3732 0.8160 0.4574

The main outputs of the analysis can be represented:

> plot(rlq1)
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The co-structure between traits and environment is mainly decomposed onto
the two first axes of RLQ analysis (57.18 % and 41.64 % of the co-inertia criterion
for the first and second RLQ axis respectively):

> ## Percentage of co-Inertia for each axis
> 100*rlq1$eig/sum(rlq1$eig)

[1] 57.178 41.642 1.180

To interpret the results, correlations can be computed:

> ## weighted correlations axes / env.
> t(pca.env$tab)%*%(diag(pca.env$lw))%*%as.matrix(rlq1$mR)
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NorS1 NorS2
dist.int 0.09551 0.9600
SOIL.P -0.99445 -0.1151
SOIL.WHC 0.17425 0.7638

> ## weighted correlations axes / traits.
> t(pca.traits$tab)%*%(diag(pca.traits$lw))%*%as.matrix(rlq1$mQ)

NorS1 NorS2
Polycarpic 0.7171 0.1551
Cnratio 0.5583 -0.6262
seed.mass.log 0.4932 0.1148
SLA -0.6396 0.6372
height 0.5221 -0.3725
Onset.flower 0.4782 -0.7687

> ## correlations traits / env.
> rlq1$tab

Polycarpic Cnratio seed.mass.log SLA height
dist.int 0.1468 -0.2183 0.13662 0.17193 -0.08406
SOIL.P -0.4312 -0.1729 -0.25391 0.16159 -0.11785
SOIL.WHC 0.1244 -0.1153 0.09662 0.05833 0.05672

Onset.flower
dist.int -0.30212
SOIL.P -0.14185
SOIL.WHC -0.08219

The first axis is negatively correlated to soil phosophate. It is also negatively
related to SLA and positively to all other traits. The second axis is positively
correlated to disturbance frequency and soil water content. It is positively re-
lated to SLA and negatively to Onset of flowering, C:N ratio.

A biplot representing traits and environmental variables (Figure 3c in the
paper) can be constructed:

> s.arrow(rlq1$c1, xlim=c(-1,1), boxes = FALSE)
> s.label(rlq1$li, add.plot=T, clab=1.5)

 d = 0.5  d = 0.5 
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Species scores on the first two axes of RLQ analysis:
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> s.label(rlq1$lQ, clabel = 0)
> par(mar = c(0.1, 0.1, 0.1, 0.1))
> pointLabel(rlq1$lQ,row.names(rlq1$lQ), cex=0.7)
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We perform the classification using these scores to obtain functional groups:

> hc2 <- hclust(dist(rlq1$lQ), method = "ward")
> plot(hc2)
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We use the Calinsky-Harabasz criteria to find the best partition (try between
2 and 6 groups) :
> ntest <- 6
> res <- rep(0,ntest - 1)
> for (i in 2:ntest){

fac <- cutree(hc2, k = i)
res[i-1] <- calinski(tab=rlq1$lQ, fac = fac)[1]

}
> par(mfrow=c(1,2))
> plot(2:ntest, res, type='b', pch=20, xlab="Number of groups", ylab = "C-H index")
> plot(3:ntest, diff(res), type='b', pch=20, xlab="Number of groups", ylab = "Diff in C-H index")
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The best partition is for 4 groups. In the next figure, each point represents
the modelled species position on RLQ axes 1 and 2 , and each colour the group
from the cluster:

> spe.group2 <- as.factor(cutree(hc2, k = which.max(res) +1))
> levels(spe.group2) <- c("C","B","D","A")
> spe.group2 <- factor(spe.group2, levels=c("A","B","C","D"))
> s.class(rlq1$lQ, spe.group2, col= 1:nlevels(spe.group2))
> s.arrow(rlq1$c1, add.plot = T,clab=0.8)
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We can interpret this partition in terms of traits :

> eta2 <- cor.ratio(traits[,-1], data.frame(spe.group2), weights = rep(1, length(spe.group2)))
> par(mfrow=n2mfrow(ncol(traits)))
> plot(table(spe.group2,traits[,1]), main =names(traits)[1])
> for(i in 2:ncol(traits)){

label <- paste(names(traits)[i], "(cor.ratio =", round(eta2[i-1],3), ")")
plot(traits[,i]~spe.group2, main = label, border = 1:nlevels(spe.group2))

}
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A first group (A) contains 5 species with very low value of Onset of flower-
ing, low height and high SLA. These species occupied mainly highly disturbed
environment with high phosphate. A second group (B) of 14 polycarpic species
is identified. These species have very high C:N ratio, high height, low SLA and
high value of Onset of flowering and they occupied sites with low phosphate
and moderate disturbance intensity. A third intermediate group (C) contains
27 species which are mainly polycarpic (25 species), with quite high SLA. These
species occupied mainly highly disturbed environment with low phosphate. The
fourth group (D) with 4 species including 3 monocarpic corresponds to species
with high value of of Onset of flowering, low seed mass and low SLA that occu-
pied sites with high phosphate and low disturbance intensity.

The classification obtained is quite similar to the one obtained with OMI-
GAM:
> table(spe.group,spe.group2)

spe.group2
spe.group A B C D

1 2 0 16 0
2 0 14 9 1
3 3 0 2 3

The only difference is that RLQ has an additional group which corresponds to
the splitting of a group of 24 species into two groups of 15 and 9 species.
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8 G-”Double CCA”: double canonical correspon-
dence analysis

8.1 Description of the method

� Step 1, 2: Component 1, 2 (species responses to environmental variables
and identification of responsive trait combinations)

Double CCA is a three-table ordination method proposed by Lavorel et al.
(1999, 1998). In the classical context, canonical correspondence analysis
(CCA) is used to link tables L and R in order to ordinate the community
data in the light of the environmental variables. It is well known that CCA
implies two main steps: (1) prediction of community data by environment
and (2) ordination of predicted values. Ojeda et al. (1998) performed an
unusual CCA in which the ordination of L is constrained by the species
traits table Q. Lavorel and coauthors proposed to combine these two CCA
in one analysis nicknamed ”double CCA”. This approach ordinates L by
taking the effects of R and Q simultaneously into account. Double CCA
encompasses also two steps: (1) prediction of community data by both
environmental variables and species traits and (2) ordination of predicted
values.

� Step 3: Component 3 (grouping of species based on responsive traits)

As in RLQ, functional groups were defined using Ward’s hiercharchical
clustering with the Calinsky-Harabasz stopping criterion using species
scores for the first two axes of the double CCA. Correlation ratios were
computed to measure the degree of correlation between species traits and
response groups.

8.2 Results

Double CCA is based on the correspondence analysis of the species-by-sites
table. In this analysis, the ordination of sites and species is constrained by both
species traits and environment:

> dbcca1 <- dbrda(coa1,env, traits, scannf = FALSE)

For the double CCA, the three environmental variables and the six traits
explain 6.25 % of the variation (14.89 % for the environment in standard CCA).

> ## percentage of explained variation by the environment
> sum(cca1$eig)/sum(coa1$eig)*100

[1] 14.89

> ## percentage of explained variation by both traits and env.
> sum(dbcca1$eig)/sum(coa1$eig)*100

[1] 6.248

This explained variation is mainly decomposed onto the first two axes of the
analysis (58.2 % and 38.34 % for the first and second axis respectively):
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> ## Percentage of variation explained by each axis
> 100*dbcca1$eig/sum(dbcca1$eig)

[1] 58.196 38.338 3.466

Correlations between axes and traits and environmental variables (Figure 3c
in the paper) can then be used to interpret the results:

> s.arrow(dbcca1$corZ[-1,], xlim=c(-1.2,1.2), boxes = FALSE)
> s.label(dbcca1$corX[-1,], add.plot=T, clab=1.5)

 d = 0.5  d = 0.5 

 Polycarpic 

 Cnratio 

 seed.mass.log 

 SLA 

 height 

 Onset.flower 

 dist.int 

 SOIL.P  SOIL.WHC 

The first axis is positively correlated to soil phosophate and negatively correlated
to disturbance frequency. It is also negatively to polycarpic life history and seed
mass. The second axis is negatively correlated to disturbance frequency and
also to soil phosophate and soil water holding capacity. It is negatively related
to SLA and positively to Onset of flowering, C:N ratio and height.

Species scores on the first two axes of double CCA:

> s.label(dbcca1$co, clabel = 0)
> par(mar = c(0.1, 0.1, 0.1, 0.1))
> pointLabel(dbcca1$co,row.names(dbcca1$co), cex=0.7)
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We perform the classification using these scores to obtain functional groups:
> hc3 <- hclust(dist(dbcca1$co), method = "ward")
> plot(hc3)
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We use the Calinsky-Harabasz criteria to find the best partition (try between
2 and 6 groups) :
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> ntest <- 6
> res <- rep(0,ntest - 1)
> for (i in 2:ntest){

fac <- cutree(hc3, k = i)
res[i-1] <- calinski(tab=dbcca1$co, fac = fac)[1]

}
> par(mfrow=c(1,2))
> plot(2:ntest, res, type='b', pch=20, xlab="Number of groups", ylab = "C-H index")
> plot(3:ntest, diff(res), type='b', pch=20, xlab="Number of groups", ylab = "Diff in C-H index")
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It was not possible to identify an optimal number of groups as the Calinski-
Harabasz criterion increases (but never decreases) with the number of groups.
Differences between subsequent values were not helpful in this case. The number
of groups was then arbitrary set to 4 (i.e., the number of groups identified for
the RLQ analysis).

> nbgroup <- ifelse((which.max(res) + 1) == ntest, nlevels(spe.group2), which.max(res) + 1)
> spe.group3 <- as.factor(cutree(hc3, k = nbgroup))
> levels(spe.group3) <- c("B","C","D","A")
> spe.group3 <- factor(spe.group3, levels=c("A","B","C","D"))
> s.class(dbcca1$co, spe.group3, col = 1:nlevels(spe.group3))
> s.arrow(dbcca1$corZ[-1,],add.plot=T,clab=0.8)
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We can interpret this partition in terms of traits :

> eta2 <- cor.ratio(traits[,-1], data.frame(spe.group3), weights = rep(1, length(spe.group3)))
> par(mfrow=n2mfrow(ncol(traits)))
> plot(table(spe.group3,traits[,1]), main =names(traits)[1])
> for(i in 2:ncol(traits)){

label <- paste(names(traits)[i], "(cor.ratio =", round(eta2[i-1],3), ")")
plot(traits[,i]~spe.group3, main = label, border = 1:nlevels(spe.group3))

}
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The classification obtained is quite similar to the one obtained with RLQ
analysis:

> table(spe.group3,spe.group2)

spe.group2
spe.group3 A B C D

A 3 0 0 0
B 0 14 7 0
C 2 0 20 0
D 0 0 0 4

Two species (Cerastium arvense and Luzula campestris) of group A moves
to group C while 7 species (Achillea millefolium, Agrostis capillaris, Bromus
hordeaceus, Galium uliginosum, Leontodon autumnalis, Trifolium arvense and
Veronica chamaedrys) moves from group C to group B.
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