
Appendix S3. The artificial data set 

Methods 

The artificial data set comprised plant species abundances on 2 orthogonal gradients of soil 

resources and disturbance intensity, respectively, and the following traits: canopy height 

(CH), specific leaf area (SLA), leaf nitrogen content (LNC), seed mass (SM), onset of flower-

ing date (Onset), terminal velocity (TV). Each of the two orthogonal gradients consisted of a 

sequence of 16 numbers, offering 16x16 = 256 combinations (“plots”). For each environmen-

tal gradient, niches for 50 species were constructed with a Gaussian response curve with the 

formula z=c exp[-0.5(x-u)²/t²] where z is the abundance value, x is the resources or disturb-

ances vector, c is the species´ maximum abundance (set to 70%), u its optimum (niche cen-

tre), and t its tolerance (niche breath). To ensure that the species had slightly different niche 

positions, breaths, and abundances, the final optimum ui was a normal random number with 

mean u and sd=1. Likewise, ti was a normal random number with mean=1.5 and sd=1. The 

individual abundances zi were random deviates of a Poisson distribution with mean=z which 

were separately calculated for each environmental vector. The final abundances were the 

product of each combination of the two vectors to produce the plots x species table. Likewise, 

the plots by environment table was the expanded combination of the resource and disturbance 

vector. To ensure that the environmental space was not completely regular, we did the calcu-

lations for 16x16=256 plots and then applied a random stratified sampling of 144 plots and 

associated species´ abundances over the whole gradient, divided in 6 strata. Stratification was 

done to prevent the random sampling from just picking plots from the upper or lower part of 

the gradients.  

To construct the species by trait table, we used the optima ui of each species on the strong 

resources and disturbance gradients, denoted here as “resopt” and “disopt”. Canopy height 



decreased non-linearly with disturbance intensity, using CH=150+(-0.48*distopt)+(-

0.48*(distopt²). Onset of flowering date decreased with both disturbance intensity and re-

sources, with Onset=220+(-9*disopt)+(-2*resopt). That is, plants became smaller when more 

disturbed and onset of flowering was earlier, even more so, when resources were abundant. 

SLA increased with earlier onset, because plants need a higher growth rate, indicated by high-

er SLA, to attain a given height when the number of growing days till onset of flowering is 

reduced. The formula was SLA=50+(-0.25*onset)+(0.1*CH). LNC increased with resources 

and SLA, using LNC=10+(2.5*resopt)+(0.5*SLA]). Seed mass was positively correlated with 

canopy height (Moles et al. 2004) and LNC, using SM=0.5+(0.02*CH)+(0.04*LNC). The 

final trait values for each species were normal random numbers with means given by these 

formulas. Finally, TV had a random distribution. This trait was included to assess the meth-

od´s ability to distinguish non-responsive from responsive traits. Formulas were created to 

give biologically meaningful values for each trait, and in the case of SM to conform to log-

transformed values. 

  

 

Fig. S3.1 The two orthogonal gradients disturbance and resources, each with values rang-

ing from 1 to 16. The species‟ optima were simulated to occur either in the corners (dark 

grey) and in the centre (strong gradient), in the intermediate positions (grey) and in the centre 

(intermediate gradient), or in the centre alone (light grey, no gradient). A fourth simulation 

distributed the species randomly on the gradient plane.  
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To test whether the different methods were sensitive to gradient length, we constructed the 

niches and associated trait values for three independent scenarios. In the first scenario, niches 

of ten species each were placed at the corners (2,2; 2,15; 15,2; 15,15) and the centre (8) of the 

disturbance-resource template, producing two strong orthogonal gradients in both abiotic and 

functional terms (Fig. S3.1). In the second scenario, the species were placed at the intermedi-

ate positions between centre and endpoints (4,4; 4,12; 12,4; 12,12) as well as the centre itself 

(8), producing intermediate gradients. The third scenario was characterized by absent gradi-

ents, i.e. all species were distributed around the centre (8). The assumption behind the first 

scenario was that strong environmental differences selected 50 functionally different species 

forming five well separated functional groups in the four corners and the centre of resource-

disturbance template. The third scenario corresponded to the analysis of a single community 

type, e.g. meadows with homogenous soil resources and functional community composition. 

A fourth scenario consisted of random distributions of species optima and random abundanc-

es. The optima used to calculate the trait values for this scenario were those from the strong 

gradients scenario, so that functionally very different species were randomly distributed along 

the two gradients. In this scenario, we assumed early stages of a succession on bare soil, when 

no species sorting has yet taken place.  

We expected that TV was not responsive to either resources or disturbances, and, due to 

the trait-trait correlations, either canopy height or onset were replaced by SLA, seed mass 

or/and LNC as responsive trait combinations or vice versa. We further assumed that trait-

environment relationships would be stronger and classification of functional groups more 

consistent across all repetitions when gradients are strong and collapse when gradients are 

absent. Trait-environment relationships should be insignificant in the random scenario.  



We ran 200 repetitions for each scenario and method and used the mean and standard devi-

ation of different output metrics produced by the methods to compare their performance in the 

scenarios.  

Most methods produced a single result per scenario and repetition. Cluster Regression 

however offered a range of different trait combinations that may have yielded similar re-

sponses to the environmental gradients. Of these, one best performing trait combination was 

retained in each repetition. This trait combination had (i) the highest R² averaged over all 

clusters modelled on the environmental gradients, (ii) the highest number of clusters, indicat-

ing the resolution of the trait dissimilarity in functional groups, and (iii) the highest cophenet-

ic correlation index, indicating the stability of the clusters. All calculations were done in R. 

Results  

Consistency of trait-environment relationships 

The total variance in species or trait composition explained by the environmental gradients in 

the ordination-based methods and the average R² of the clusters modelled by Cluster Regres-

sion indicated that the “strong” and “intermediate gradients” scenarios could be well captured 

by all methods (Fig. S3.2, S3.3). As intended, the explained variation of the “random” scenar-

io was always close to zero. For the “absent gradients” scenario, the species-based methods 

RLQ, double CCA and OMI-GAM hardly managed to explain any variance, whereas the 

community-based CWM-RDA still revealed some variance, though less than for the stronger 

gradients. Likewise, RDA-mRDA and Cluster Regression yielded explained variance in some 

repetitions. For Cluster Regression this was the case when a single cluster contained all spe-

cies, because their traits were all similar and they were all located at the centre of the envi-

ronmental template.  



 

Fig. S3.2 Total variance explained (sum of eigenvalues) as a measure of total traits-

environment relationships. Ran: “random” scenario; Abs: “absent gradients” scenario; Int: 

“intermediate gradients” scenario; Str: “strong gradients” scenario. 

 

Fig. S3.3 Left: Sum of eigenvalues of the OMI as a measure of species-environment relation-

ships. Centre: Percentage of variance explained by the tree of RDA-mRegTree. Right: Aver-

age R² of modelled clusters. 

Consistency in individual trait responses 

In the “strong” and “intermediate gradients” scenarios, LNC mainly responded to re-

sources, whereas canopy height, SLA and onset of flowering responded to disturbance and 

TV was random and therefore non-responsive. CWM-RDA and RLQ reproduced these rela-

tionships very well for the “strong” and “intermediate gradient” scenarios, with axis 1 repre-

senting the disturbance and axis 2 the resources gradient (Fig. S3.4). Variation was remarka-
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bly low across all repetitions. In the “absent gradients” scenario, these relationships were still 

visible but less strong and with higher variance. OMI-GAM produced traits weights that allow 

assessing the relevance of each trait for the explanation of species distributions on the envi-

ronmental gradients. Correlation of axis 1 and 2 to either resources or disturbances shifted 

strongly between repetitions so that trait weights showed similar responses to both axes. On-

set, LNC and SLA had higher weights than the other traits in the first three scenarios. Like 

OMI-GAM, associations of the axes to the two environmental gradients shifted between the 

repetitions in double CCA. This led to a high variance in trait responses while the averages 

were similar to those of RLQ and CWM-RDA. The random trait TV had almost no correla-

tion with the axes in RLQ and double CCA, and very minor correlations in OMI-GAM and 

CWM-RDA. 

For Cluster Regression and RDA-mRegTree, summaries of trait correlations to ordination 

axes could not be computed. Instead, we used the proportion of mentions of the traits in the 

trait combinations with the best clusters in terms of model fit in the regression trees, respec-

tively, across all repetitions for each scenario (Fig. S3.5). RDA-mRegTree gave higher rele-

vance to the resources gradient because the traits associated with this gradient, i.e. LNC, can-

opy height and onset, appeared most often in the trees. In contrast, Cluster Regression fa-

voured traits that were associated with both gradients, such as seed mass, SLA, onset. Both 

methods correctly discarded the random trait TV.  

CWM-RDA and Cluster Regression did not produce any relationships for the “random” 

scenario. OMI-GAM, RDA-mRegTree, and double CCA yielded minor responses which 

however did not differ between the traits, including TV. In contrast, RLQ produced responses 

with high variance between the repetitions. 
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Fig. S3.4 Correlation of environmental gradients (row A) and traits (row B) to ordination axes 

in the four scenarios, shown for methods A, D-F. Abbreviations of scenarios see Fig. S3.1. 

 

 

Fig. S3.5. Proportion of mentions of traits in classifications over all repetitions in four scenar-

ios: Left: trait combinations produced by Cluster Regression. Right: regression trees produced 

by RDA-mRegTree. Abbreviations of scenarios see Fig. S3.1. 

Consistency in the classification of functional groups 

We assessed the consistency of functional group classifications across all repetitions for the 

“intermediate” and “strong gradients” scenarios by using (i) the frequency of number of 

groups per repetition (Fig. S3.6), and (ii) the stability of the assignment of species to groups 

among repetitions (Fig. S3.7). This was done for all methods except CWM-RDA which could 

not produce functional groups. To quantify stability, we used the corrected Rand index, which 

compares classification agreement („crand index‟; R package „e1071‟). RLQ, dCCA and 

OMI-GAM showed lower diversity in group numbers and higher agreement in species as-

signed to functional groups than RDA-mRegTree and Cluster Regression. This was not sur-

prising because the former methods used all traits to define the functional groups whereas the 

latter methods selected only responsive traits. This introduced an additional source of varia-

tion because the selection of traits could change between repetitions depending on differences 

Cluster Regression 

Ran Abs Int Str 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

P
ro

p
o

rt
io

n
 

0
.0

 
3

0
 

6
0

 
9

0
 

1
2

0
 

Ran Abs Int Str 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 

C
an

h
ei

gh
t 

Se
e

d
m

as
s 

  

TV
 

O
n

se
t 

SL
A

 
Le

af
N

 0
.0

 
5

0
 

1
0

0
 

1
5

0
0

 

RDA-mRegTree 



in niche distribution and associated trait values introduced by the random component. Groups 

produced by RLQ, double CCA and OMI-GAM were more stable in the “strong” than in the 

“intermediate gradients” scenario. 

 

Fig. S3.6 Frequency of number of groups identified in 200 repetitions.  

 

Fig. S3.7 Stability of the assignment of species to groups among repetitions according to the 

corrected Rand index.  

References: see main paper 

 

0.4 

0.6 

0.8 

1.0 

C
lu

st
er

 
R

eg
re

ss
io

n
 

d
o

u
b

le
 C

C
A

 

M
 R

D
A

-

R
eg

Tr
ee

 

O
M

I-
G

A
M

 

R
LQ

 

Stability in strong gradients scenario 

cR
an

d
 in

d
ex

 

0.4 

0.6 

0.8 

1.0 

C
lu

st
er

 

R
eg

re
ss

io
n

 

d
o

u
b

le
 C

C
A

 

M
 R

D
A

-

R
eg

Tr
ee

 

O
M

I-
G

A
M

 

R
LQ

 

Stability in intermediate gradients scenario 

cR
an

d
 in

d
ex

 

3 
4 
5 
6 
7 
8 

0 

50 

100 

150 

200 

C
lu

st
er

 

R
eg

re
ss

io
n

 

d
o

u
b

le
 C

C
A

 

M
 R

D
A

-
R

eg
Tr

ee
 

O
M

I-
G

A
M

 

R
LQ

 

No. groups in strong gradients scenario 

0 

50 

100 

150 

200 

C
lu

st
er

 
R

eg
re

ss
io

n
 

d
o
u
b
le

 C
C

A
 

M
 R

D
A

-
R

e
g
T

re
e

 

O
M

I-
G

A
M

 

R
LQ

 

No. groups in intermediate gradients scenario 

3 
4 
5 
6 
7 

0 


