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Abstract
1.	 Species range limits are thought to result from a decline in demographic performance  

at range edges. However, recent studies reporting contradictory patterns in spe-
cies demographic performance at their edges cast doubt on our ability to predict 
climate change demographic impacts. To understand these inconsistent demo-
graphic responses, we need to shift the focus from geographic to climatic edges 
and analyse how species responses vary with climatic constraints at the edge and 
species' ecological strategy.

2.	 Here we parameterised integral projection models with climate and competition 
effects for 27 tree species using forest inventory data from over 90,000 plots 
across Europe. Our models estimate size-dependent climatic responses and evalu-
ate their effects on two life trajectory metrics: life span and passage time—the 
time to grow to a large size. Then we predicted growth, survival, life span and 
passage time at the hot and dry or cold and wet edges and compared them to their 
values at the species climatic centre to derive indices of demographic response 
at the edge. Using these indices, we investigated whether differences in species 
demographic response between hot and cold edges could be explained by their 
position along the climate gradient and functional traits related to their climate 
stress tolerance.

3.	 We found that at cold and wet edges of European tree species, growth and pas-
sage time were constrained, whereas at their hot and dry edges, survival and life 
span were constrained. Demographic constraints at the edge were stronger for 
species occurring in extreme conditions, that is, in hot edges of hot-distributed 
species and cold edges of cold-distributed species. Species leaf nitrogen con-
tent was strongly linked to their demographic responses at the edge. In contrast, 
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1  | INTRODUC TION

In the face of climate change, there are increasing concerns about 
the future redistribution of plant species ranges (Zimmermann 
et al., 2013). Range shifts are thought to be directly related to changes 
in population dynamics. The classical view of the link between pop-
ulation dynamics and species ranges comes from a long-standing hy-
pothesis in biogeography known as the ‘abundant-centre hypothesis’ 
(hereafter ACH, Brown, 1984; Pironon et al., 2017), which proposes 
that demographic performance decline at the range edge results in 
a decrease in abundance, occupancy and genetic diversity (Pironon 
et al., 2017). This is directly related to the hypothesis that at equilib-
rium, a species' range edge should occur where the mean population 
growth rate (λ) drops below one (λ < 1) due to changes in one or more 
vital rates (i.e. survival, growth or reproduction; Case et al., 2005; 
Holt & Keitt, 2005).

Understanding the demographic pathways of population response 
at range edges is crucial for forecasting climate change impacts. 
However, existing studies comparing population growth rates or vital 
rates in the periphery versus the centre of species geographic range 
provide weak support for the ACH (Pironon et al., 2017). Transplant 
experiments have shown a decline in population growth rate or vital 
rates beyond the geographic edge but not necessarily right at the 
edge (Hargreaves et al., 2014; Lee-Yaw et al., 2016). Similarly, mod-
el-based analyses of natural population monitoring data have found 
no clear evidence of a decrease in demographic performance at the 
geographic edge (Csergo et al., 2017; Purves, 2009).

Recent reviews have highlighted the difficulties of synthesising 
existing results because most studies explored performance of geo-
graphically peripheral populations without a clear understanding of 
the local climatic or environmental constrains (Pironon et al., 2017; 
Vilà-Cabrera et  al.,  2019). Changes in demographic performance 
are, however, likely to vary depending on the type of biophysical 
constraints at the edge (Gaston, 2009) and therefore, demographic 
performance at the edge should be analysed in relation to the local 
main climatic contraints (the ‘central-marginal’ hypothesis in Pironon 
et al., 2017). Firstly, demographic constraints could differ between 
drought- and cold-limited edges because tolerance to different abi-
otic stresses requires different adaptative strategies (Niinemets & 
Valladares, 2006) resulting in different vital rates being constraint 
at these edges (Gaston, 2009; Hargreaves et al., 2014). Secondly, it 

has been proposed that biotic interactions (e.g. competition) could 
be key constraints of demographic performance at the edge and that 
this effect would be stronger for edges in productive environments 
than in unproductive environments. However, support for this hy-
pothesis is limited (see Cahill et al., 2014; Hargreaves et al., 2014; 
Louthan et al., 2015). Thirdly, constraints on the demographic per-
formance at a climatic edge are likely to vary with species' physiolog-
ical strategy (Anderegg et al., 2019). These physiological differences 
can be captured by species' climatic optimum and by functional 
traits related to species physiological climate response, such as 
wood (Chave et al., 2009) or leaf characteristics (Wright et al., 2017). 
Finally, an additional difficulty arises in long-lived organisms such as 
trees because the response of their vital rates to climatic constraints 
at the edge might vary depending on the size of the individual 
(Tredennick et  al.,  2018). This size-dependent response to climate 
can be crucial for size-structured populations (De Roos et al., 2003; 
Tredennick et al., 2018) and can affect the population performance 
at the edge. We thus need to analyse the performance at the edge 
with size-structured models translating size-dependent climatic re-
sponses and the demographic compensation effect that may occur 
between sizes and vital rates into life trajectory metrics.

Here, we explored these questions in European forests, which 
play a crucial role for multiple ecosystem services such as shelter-
ing a significant proportion of biodiversity and carbon stocks and 
contributing to the livelihoods of local populations (van der Plas 
et  al.,  2018). We used size-structured models fitted to forest in-
ventory data documenting survival and growth of more than one 
million adult trees across the continent covering Mediterranean, 
temperate and boreal biomes. Firstly, we fitted survival and 
growth models for 27 species to capture size-dependent climate 
and competition responses of these vital rates. Secondly, we built 
size-structured population models using integral projection models 
(IPM; Ellner et al., 2016) to evaluate how size-dependent responses 
to climatic constraints at the edge translate into two life trajectory 
metrics—mean life span and passage time (time to grow from small 
to large size). Mean life span and passage time scale up individ-
ual level measurements into metrics summarising the population 
dynamics and they facilitate the comparison of the demographic 
structure between populations (Cochran & Ellner,  1992). These 
metrics are also key elements of population growth rate and the 
rate of population turnover. We then used these models to compare 

we found only weak links with wood density, leaf size and xylem vulnerability to 
embolism.

4.	 Synthesis. Our study presents a more complicated picture than previously thought 
with demographic responses that differ between hot and cold edges. Predictions 
of climate change impacts should be refined to include edge and species 
characteristics.

K E Y W O R D S

climatic range edge, demography, IPM, passage time, vital rate
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species' predicted demographic performance at the ‘hot and dry’ or 
‘cold and wet’ climatic edges with their performance at the climatic 
centre. Using these metrics we tested the following hypotheses: (1) 
vital rates and IPM-derived performance metrics are reduced at the 
climatic edge compared to the climatic centre but the demographic 
metrics affected differ between cold and hot edges; (2) the decline 
in demographic performance at the climatic edges is stronger in the 
presence of local competition than without; and (3) demographic 
performance at the climatic edge depends on species' median cli-
mate and functional traits related to species' climate stresses tol-
erance (testing the effect of wood density, leaf economic spectrum 
traits, leaf size and xylem vulnerability to embolism).

2  | MATERIAL S AND METHODS

In this section we present: (a) the development of climate-dependent 
IPMs based on growth and survival models and the data used to fit 
them; (b) the development of species distribution models used to se-
lect climatic edges corresponding to a species distribution limits; (c) 
the derivation of metrics of demographic performance at the climatic 
edge versus the climatic centre of the species distribution from the 
IPMs and (d) the methodology to test our three hypotheses.

2.1 | Forest inventory

We used the European forest inventory (NFI) data compiled in the 
FunDivEUROPE project (Baeten et  al.,  2013; Ratcliffe et  al.,  2015, 
2020). The data cover 91,528 plots and more than one million trees in 
Spain, France, Germany, Sweden and Finland. NFIs record information 
on individual trees in each plot, including species identity, diameter at 
breast height (dbh) and status (alive, dead, harvested or ingrowth). Plot 
design varies between countries but generally plots are circular with 
variable radii depending on tree size (see Appendix S1). The minimum 
dbh of trees included in the dataset was 10 cm and plots were remeas-
ured over time allowing estimations of individual growth and survival. 
The time between two surveys varied from 4 to 16 years. Only the 
French NFI is based on a single measurement but provides a measure-
ment of radial growth from cores (over 5 years) and an estimation of 
time since death. We selected species with >2,000 individuals and 
>500 plots, to ensure a good coverage of their range, growth and sur-
vival. We excluded exotic species for which the distribution is mainly 
controlled by plantation operations. For the demographic analyses, 
we also excluded all plots with records of harvesting operations or 
disturbances between the two surveys, which would otherwise influ-
ence our estimation of local competition.

2.2 | Climate variables

We used two bioclimatic variables known to control tree demogra-
phy (Kunstler et al., 2011): (a) the sum of degree days above 5.5°C 

(sgdd), and (b) the water availability index (wai). sgdd is the cumulative 
day-by-day sum of the number of degrees >5.5°C and is related to 
the mean annual temperature and the length of the growing season. 
It was extracted from E-OBS, a high resolution (1 km2) downscaled 
climate dataset (Moreno & Hasenauer, 2016) for the years between 
the two surveys plus 2 years before the first survey. In preliminary 
analyses, we also explored the number of frost days but it was too 
correlated with sgdd to be included in the models. wai was com-
puted using precipitation (P, extracted from E-OBS) and potential 
evapotranspiration (PET) from the Climatic Research Unit (Harris 
et al., 2014) dataset, as (P − PET)/PET (see Ratcliffe et al., 2017) and is 
related to the water availability. We also explored other water stress 
indices but they did not improve the demographic models so we de-
cided to use wai.

2.3 | Integral projection models

An IPM predicts the size distribution, n(z′, t + 1), of a population at 
time t + 1 from its size distribution at t, n(z, t), where z the size at t 
and z′ the size at t + 1, based on the following equation (Easterling 
et al., 2000; Ellner et al., 2016):

The kernel K(z′,  z) can be split into the survival and growth 
kernel (P(z′,  z)) and the fecundity kernel (F(z′,  z)), as follows 
K(z′, z) = P(z′, z) + F(z′, z). P(z′, z) is defined as P(z′, z) = s(z)G(z′, z) and 
represents the probability that an individual of size z survives be-
tween t and t + 1 and reaches the size z′. The size of the individual 
z can range between L and U, the lower and upper bounds of size, 
respectively. NFI data do not provide direct information on tree fe-
cundity, thus our models describe the fate of a cohort (a cohort IPM 
for individuals with dbh ≥10 cm) by focusing only on P(z′, z). Even 
without covering the full life cycle, cohort IPMs are useful to esti-
mate demographic performance because they allow to predict life 
trajectory metrics while accounting for size-dependent climate re-
sponses and compensatory effect between vital rates.

For each of the 27 species, we fitted growth and survival func-
tions depending on tree size, the two climatic variables (sggd and wai) 
and local competition estimated as the sum of basal area of compet-
itors (following Kunstler et al., 2011). The shape of the climatic re-
sponse curves and the type of interaction between climate and tree 
size and climate and competition (which represents a size-depen-
dent response) can have a large impact on vital rate predictions and 
IPM-derived life trajectory metrics. To account for uncertainties in 
climatic response curves shape and the interactions, we re-sampled 
100 times 70% of the data to fit the growth and survival models and 
selected the best type of climatic response curves and interactions 
based on the Akaike information criteria (i.e. lowest AIC; Burnham 
& Anderson,  2002). Because there were fewer plots in extreme 
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climatic conditions, we re-sampled the data with a higher probability 
of sampling plots in extreme climatic conditions for the given species 
(see details in Appendix  S1). Then we used the remaining 30% of 
the data to evaluate the goodness of fit of the growth and survival 
models. Goodness of fit and response curves of growth and sur-
vival models are presented in Appendix S1 (respectively normalised 
root-mean-square deviation—NRMSD, Figure S4 and area under the 
curve—AUC, Figure S5).

2.3.1 | Growth model

After preliminary exploration, we selected two alternative shapes 
of the climatic response curves: asymptotic or quadratic polynomial 
corresponding respectively to the Equation 2 and 3. These equa-
tions are flexible and allow for increasing, decreasing, bell or U-shape 
responses. These two equations allow to represent two alternative 
biological models: (a) either all species have their optimum at high 
water availability and sum of degree days; or (b) species have bell-
shaped climate response curves with different optima along the cli-
matic variables.

where Gi,p is the annual diameter growth of tree i in plot p, Di is the dbh 
of tree i, BAi is the sum of basal area of local competitors of tree i per 
ha (sum basal area of both conspecific and heterospecific trees in the 
plot in a single local competition index), sgddp is the sum of growing 
degree days, waip is the water aridity index, a0 to a7 are estimated 
parameters, and a0,p is a normal random plot effect accounting for un-
explained variation at the plot level. The intercept a0,c is country spe-
cific to account for differences in sampling protocol between the NFIs 
(plot size and difference in mean survey time) and εi is the unexplained 
tree level variability following a normal distribution. We also tested 
models with interactions between the climatic variables—1/sgddp and 
1/waip for model (2) and sgddp and waip for model (3)—and size (Di and 
log(Di)) and the climatic variables and competition. We fitted the mod-
els in R-cran separately for each species (R Core Team, 2019) using the 
‘lmer’ function (‘lme4’ package; Bates et al., 2015).

2.3.2 | Survival model

For survival, we also used the same two basic alternative models 
as for growth with different shapes of the climatic response curves 
(see Equations S1 and S2 in Appendix S1). The predictors and the in-
teractions explored were the same as in the growth model. Survival 
models were fitted with a generalised linear model with a binomial 

error. To account for variable survey times between plots we used 
the complementary log-log link with an offset representing the num-
ber of years between the two surveys (yp; Morris et al., 2013). We 
fitted the model in R-cran using the ‘glm’ function. We did not in-
clude a random plot intercept because in most plots no individuals 
died between the surveys, making the estimation of the random plot 
effect challenging.

2.3.3 | Tree harvesting

Although we excluded plots with evidence of harvesting between 
the two surveys to fit the survival functions, most European forests 
are subject to management, which has a strong impact on population 
dynamics (Schelhaas et al., 2018). Preferential harvesting of dying or 
damaged trees before their death probably results in an underesti-
mation of the natural mortality rate. To make sensible predictions 
with our IPMs, it was necessary to incorporate a harvesting rate to 
prevent an overestimation of tree life span. We set the individual tree 
harvesting rate, as the mean harvesting annual probability across all 
species and countries. The estimate was 0.5% per year. We did not 
model species, size and climate dependence of the harvesting rate, 
as we focused on climatic and not anthropogenic constraints on tree 
demography.

2.4 | Prediction of demographic metrics at the 
climatic edges and centre of species range

2.4.1 | Species distribution

To identify the climatic edge of a species range, a simple repre-
sentation of its distribution in climate space is necessary. Across 
Europe, sgdd and wai are strongly negatively correlated, and the 
first axis of the PCA of sgdd and wai explains more than 84% of 
the variance (Figure S3, only the first axis was retained by Horn's 
parallel analysis). This allowed us to describe species ranges along 
a single climatic axis corresponding to the first axis (PC1) of this 
PCA. Species showed a clear segregation along this climatic axis 
in Europe (Figure 1). Based on the coordinates on PC1 of the plots 
where the species was present, we identified the median climate 
as their median value of PC1 (which we used as an index of spe-
cies position along the climate gradient), the hot and dry edge 
(hereafter hot edge) and the cold and wet edge (hereafter cold 
edge), respectively, as their 5% and 95% quantiles. These quan-
tiles represent two extreme climatic conditions experienced by 
the species. By focusing on climatically marginal populations, our 
approach differs from most tests of the ACH reviewed in Pironon 
et al. (2017) that studied populations at the periphery of the spe-
cies geographic range.

To evaluate which species' edges corresponded to an ac-
tual limit in the species distribution and not just to limits in data 
coverage, we fitted species distribution models with BIOMOD2 

(2)

log
(

Gi,p

)

= a0,c + a0,p + a1Di + a2log
(

Di

)

+a3BAi + a4
1

sgddp
+ a5

1

waip
+ �i,

(3)

log
(

Gi,p

)

= a0,c + a0,p + a1Di + a2log
(

Di

)

+ a3BAi

+a4sgddp + a5sgdd
2
p
+ a6waip + a7wai

2
p
+ �i,



     |  1045Journal of EcologyKUNSTLER et al.

(Thuiller et  al.,  2009) using presence/absence data covering all 
Europe (Mauri et al., 2017; see Appendix S1). For comparison of 
the demographic performance at the edge versus the centre of the 
distribution, we retained only the edges where the SDM predicted 
at least a 10% drop in the probability of presence of the species 
(Figure 1).

2.4.2 | Demographic metrics

To evaluate how individual tree performance varied between the spe-
cies' median climate and the climatic edges, we derived four metrics 
representing key dimensions of population performance. The first 
two metrics were related to individual vital rates, and were defined 
by the growth and survival of 15-cm dbh individuals. We decided 
to focus on a size corresponding to a small individual because small 
individuals have a large effect on population dynamics (Grubb, 1977; 
Figures S6 and S10 show the size response curves for growth and 
survival). The last two metrics were life trajectory metrics integrat-
ing the vital rates and size-dependent responses to climate in the 
IPM over the full size range of the species, and were defined by the 
mean life span of a 10-cm dbh individual and the passage time of a 
10-cm dbh individual to 60 cm (corresponding to smaller upper size 
limit U across all species). The details of the numerical methods used 

to compute life span and passage time from the IPM are provided 
in Appendix S1. Model diagnostics showed that our numerical ap-
proach was not sensitive to the number of bins used to discretised 
the size in the IPM when the number of bins was >800 (Figure S14). 
We thus retained a number of bins of 800.

We predicted the four demographic metrics at the centre and 
the hot and cold climatic edges of the species using their positions on 
the climatic axis. The median, and 5% and 95% quantiles on the PC1 
correspond to the projection of a unique combination of sggd and 
wai for which we predicted the metrics. We integrated uncertainty 
into our estimates by deriving each demographic metric for all 100 
re-sampled growth and survival models (see above). Because com-
petitive interactions may also be important in controlling species de-
mography at the edge of the range (Louthan et al., 2015), we made 
these predictions either without local competition (by setting BA to 
0) or with a high level of local competition (by setting BA to 30 m2/
ha, corresponding to a closed forest).

2.4.3 | Analysis of the relative demographic 
performance at the climatic edges

For each demographic metric (m) we computed the relative differ-
ence in the metric at the edge (hot or cold) versus the centre as:

F I G U R E  1   Species distribution 
along the first axis of the PCA of the 
two climatic variables sgdd and wai. The 
median of the species distribution along 
this axis is represented by a black circle 
and the hot and dry edge and the cold 
and wet edge by the red and blue circles, 
respectively. Filled circles represent edges 
selected for the analysis, corresponding 
to edges where the species distribution 
models predicted at least a 10% drop in 
the probability of presence of the species 
(see Appendix S1 for details on the 
models) 
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We integrated uncertainty by deriving estimates of Ωm
edge

 for each 
of the 100 re-sampled growth and survival models. Then we used 
Ωm

edge
 to evaluate our three hypotheses.

Firstly, for each metric, we tested whether species demographic 
performance declined at the climatic edge compared to the climate 
centre (Hypothesis 1) by fitting a mixed model to test whether m 
was function of the range position type (edge vs. centre) using the 
function lmer in lme4. We included a random species effect to ac-
count for the non-independence of the 100 re-sampled estimates 
per species. We ran this analysis separately for hot and cold edges to 
see how demographic responses differed between them. Secondly, 
we tested whether the effects were different without or with com-
petition (Hypothesis 2).

Thirdly, we explored whether Ωm
edge

 was dependent on species 
median climate and functional traits related to species' climatic 
response (Hypothesis 3). We used Phylogenetic generalised least 
squares regression (PGLS; Symonds & Blomberg,  2014) using a 
phylogeny extracted from Zanne et al. (2014) to account for phy-
logenetic dependence between species. We accounted for the 
uncertainty in the demographic response by including a weight 
proportional to the inverse of the variance of Ωm

edge
 (estimated 

over the 100 re-sampled growth and survival models). The PGLS 
regression with maximum likelihood estimation of Pagel's lambda 
(a measure of the phylogenetic signal ranging between 0 and 1) 
did not always converge (Pagel,  1999). In those cases we fitted 
a PGLS model with a Brownian model (Pagel's lambda set at 1). 
We retained only the regressions that were both significant (after 
a Bonferroni correction to account for multiple comparisons) and 
had a non-negligible magnitude of the effect (Camp et al., 2008). 
The magnitude of the effect was considered negligible when the 
confidence interval of the effect size intercepted the interval 
−0.10 and 0.10 (Camp et al., 2008). Effect sizes were computed as 
the standardised slope (Schielzeth, 2010).

To test the link between Ωm
edge

 and species median climate, we 
ran the PGLS regression between Ωm

edge
 and the species median po-

sition on PC1. To test the links between Ωm
edge

 and functional traits, 
we ran the same type of PGLS regressions with four functional 
traits that are known to influence tree response to climate. We 
selected the following traits: (a) wood density, because of its links 
with drought and temperature response (Chave et al., 2009; Stahl 
et al., 2014); (b) the leaf economic spectrum (LES) because species 
at the conservative end of the spectrum are thought to be more 
tolerant to extreme climate (Reich, 2014); (c) leaf size, because of 
its links with water stress and frost response (Wright et al., 2017) 
and (d) xylem vulnerability to embolism measured by the water 
potential leading to 50% loss of xylem conductivity, Ψ50, because 
of its link with drought-induced mortality (Anderegg et al., 2016). 
LES is based on the covariance of specific leaf area, leaf life span 
and leaf nitrogen content per mass (Wright et al., 2004). We used 
leaf nitrogen content per mass (Nmass), as it was the LES trait with 
the best coverage across our species. Trait data were sourced 

from open databases (Chave et al., 2009; Choat et al., 2012; Maire 
et al., 2015; Wright et al., 2004, 2017).

3  | RESULTS

3.1 | Growth and survival size-dependent responses 
to climate

For most species the growth and survival models showed evidence of 
interactions between climate and tree size and for a smaller subset of 
species also between climate and competition (see Tables S2 and S3). 
This indicates that size-dependent climatic responses were common. 
Model selection over the 100 re-sampled data showed that for 23 of 
the 27 species the most frequently selected growth model included 
interactions between climate variables and tree size (see Table  S2). 
Selection of the best survival model was more variable between the 
100 data re-sampling than for the growth models. For 17 of the 27 spe-
cies the most frequently selected survival models included interactions 
between climatic variables and tree size (see Table S3). For both growth 
and survival several species also showed evidence of interactions be-
tween climate variables and competition (respectively 12 and 11 spe-
cies out of 27, see Tables S2 and S3).

3.2 | Demographic responses differ between edge 
types and metrics

Across the 27 species, we found evidence of a significant decrease in 
growth of 15-cm dbh individuals and increase in passage time (longer 
time needed to grow from 10 to 60 cm) at the cold edge in comparison 
with the median climate but no effect at the hot edge (Figure 2). In con-
trast, at the hot edge, we found evidence of a significant decrease in 
both tree survival and life span (Figure 2). This result is consistent with 
the hypothesis that at least one metric will decline in performance at 
the edge, and that different metrics are affected depending on the 
edge type. In contrast, we found that life span was significantly longer 
at the cold edge than at the median climate (Figure 2). Generally, these 
patterns were unaffected by local competition (Figure 3). It is, how-
ever, important to note that the relative decrease in survival at the 
hot edge and the increase of passage time at the cold edge became 
non-significant at high levels of competition (Figure 3).

Despite the overall demographic response at the edge, there 
were large variations between species. For each metric and edge 
type we found species showing a decrease and species showing an 
increase in performance (Figures S16–S19).

3.3 | Demographic responses vary with species 
median climate

Growth response at the hot and cold edges was related to the median 
climate of the species; species associated with hot climates were more 

(4)Ωm
edge

=
(

medge − mcentre

)

∕mcentre.
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F I G U R E  2   Differences in 
the demographic metrics at 
climatic edge versus the median 
climate of the species distribution 
(Ωm

edge
=
(

medge − mcentre

)

∕mcentre). The box 
plots represent the relative difference 
of the demographic metrics between 
the climatic edge and the median 
climate computed over the 100 data 
resampling and the 27 species for the four 
demographic metrics (annual diameter 
growth and survival for an individual 
15 cm in diameter, passage time from 
10 cm in diameter to 60 cm in diameter 
and life span of tree 15 cm in diameter). 
The two edge types are the hot and dry 
edge in red (short name ‘hot edge’) and 
the cold and wet edge in blue (short 
name ‘cold edge’). The p-value of the test 
for the difference in each demographic 
metric between the edge and the median 
climate is presented at the top of the box 
plot (ns: nonsignificant, *p-value < 0.05, 
**p-value < 0.01, ***p-value < 0.001). The 
p-value was computed with a mixed model 
with species as a random effect (see 
Section 2 for details) 
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F I G U R E  3   Differences in the demographic metrics at climatic edge versus the median climate of the species distribution 
(Ωm

edge
=
(

medge − mcentre

)

∕mcentre) without and with a high level of competition. The box plots represent the relative difference the 
demographic metrics between the climatic edge and the median climate over the 100 data resampling and the 27 species for the four 
demographic metrics (annual diameter growth and survival for an individual 15 cm in diameter, passage time from 10 cm in diameter 
to 60 cm in diameter and life span of tree 15 cm in diameter), and the two levels of competition (without competition: basal area of 
competitors, BA = 0, no transparency, with a high level of competition: basal area of competitors, BA = 30 m2/ha colour transparency). The 
two edge types are the hot and dry edge in red (short name ‘hot edge’) and the cold and wet edge in blue (short name ‘cold edge’). The p-
value of the test for the difference in each demographic metric between the edge and the median climate is presented at the top of the box 
plot (ns: nonsignificant, *p-value < 0.05, **p-value < 0.01, ***p-value < 0.001). The p-value was computed with a mixed model with species 
as a random effect (see Section 2 for details) 
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F I G U R E  4   Changes in demographic 
responses at the edge – Ωm

edge
 – in function 

of species median position on the climatic 
axis. Species demographic response at 
the edge (Ωm

edge
=
(

medge − mcentre

)

∕mcentre

) as a function of the median position 
of the species on the first axis of the 
climate PCA. Negative values on the 
climatic axis correspond to a hot and dry 
climate and positive values to a cold and 
wet climate. For each species the mean 
(point) and the 95% quantiles (error bar) of 
the demographic response over the 100 
data resampling is represented for the 
hot and dry edge in red (short name ‘hot 
edge’) and the cold and wet edge in blue 
(short name ‘cold edge’). Phylogenetic 
generalised least squares (PGLS  
Lambda) regressions are represented  
only for significant relationship with  
a non-negligible magnitude of the  
effect. Gymnosperm and angiosperm 
species are represented with different 
symbols
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F I G U R E  5   Changes in demographic 
responses at the edge – Ωm

edge
 – in function 

of species leaf nitrogen content per mass. 
Species demographic response at the 
edge (Ωm

edge
=
(

medge − mcentre

)

∕mcentre)  
as a function of species leaf nitrogen 
content per mass. For each species, the 
mean (point) and 95% quantiles (error bar) 
of the demographic response over the 
100 data resampling is represented for 
both the hot and dry edge in red (short 
name ‘hot edge’) and the cold and wet 
edge in blue (short name ‘cold edge’). 
Phylogenetic generalised least squares 
(PGLS) regressions are represented only 
for significant relationship with a non-
negligible magnitude of the effect (see 
details in caption of Figure 4) 
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constrained at their hot edge while species associated with cold cli-
mates were more constrained at their cold edge. This result is depicted 
in Figure 4 by a positive relationship between the median climate of 
the species and Ωgrowth

hot edge
 and a negative relationship with Ωgrowth

cold edge
. The 

same pattern is visible for passage time, but in the opposite direction, 
because passage time is longer when growth is slower (Figure 4). The 
responses of Ωm

edge
 for survival and life span were much weaker or null. 

We found a negative relationship for Ωsurvival
hot edge

, which was largely re-
lated to a few extreme species, and no effect for life span (Figure 4).

3.4 | Weak links between demographic 
response and species traits

Regardless of the demographic metric m, Nmass had the strongest rela-
tionship with Ωm

edge
 of all the traits we tested. At the hot edge, species 

with high Nmass experienced a stronger decrease in their survival and life 
span than species with a low Nmass (Figure 5). In contrast, at the cold edge, 
species with low Nmass experienced a stronger decrease in their survival 
and life span than species with high Nmass (Figure 5). In addition, species 
with high Nmass had less limitation of their growth at the hot edge than 
species with low Nmass (Figure 5). In contrast, species with high Nmass had 
stronger limitation of their growth at the cold edge (Figure 5).

Relationships between Ωm
edge

 and wood density, leaf size and xylem 
vulnerability to embolism (Ψ50) were generally weak (Figures  S21–
S23). Most of these relationships were driven by only a few species 
(Figures S21–S23). Species with small leaf area had better survival and 
life span at the hot edge and better passage time at the cold edge than 
large leafed species (Figure S23). Species with high Ψ50 experienced a 
stronger decrease in their growth at the hot edge than species with low 
Ψ50 (Figure S22).

4  | DISCUSSION

Our analysis based on pan-European forest inventory data and inte-
gral projection models of 27 tree species, found weak support for the 
ACH prediction that demographic performance is lower at the climatic 
edge than at the centre of the species range. Instead, decline in de-
mographic performance was strikingly different between the cold and 
the hot edges. At cold and wet edges, growth and passage time were 
constrained, whereas at hot and dry edges, survival and life span were 
constrained. Beyond these general patterns, we found important vari-
ability between species in their demographic performance at the edge, 
which was partially explained by species' median climate and traits.

4.1 | Different demographic responses at the 
hot and the cold edge

We found mixed support for the ACH; not all the demographic 
metrics were limited at the two edges and patterns were variable 
between species. This is consistent with observational studies that 

found limited evidence of a relationship between species demogra-
phy and their distribution. For instance, both Thuiller et al.  (2014) 
and Csergo et  al.  (2017) found limited correlation between plants 
demographic performance and probability of presence. In addi-
tion, Purves (2009) reported mixed evidence of a decrease in de-
mographic performance at the south and north edges of North 
American tree species.

Growth and passage time were constrained at the cold edge 
in comparison with the centre of the species climatic range. 
This is consistent with studies on North American tree species 
that found a decrease in growth at the cold edge in adult trees 
(Purves,  2009) and juveniles (Ettinger & HilleRisLambers,  2017; 
Putnam & Reich, 2017). In contrast with the ACH, we found a ten-
dency for a slightly faster growth at the hot edge than at the centre, 
which has also been reported in North American trees (Ettinger 
& HilleRisLambers,  2017; Purves,  2009; Putnam & Reich,  2017). 
Interestingly, studies on Fagus sylvatica radial growth in Europe 
found a higher drought resistance at the hot edge than at the core 
of the range (Cavin & Jump, 2017).

At the hot and dry edge, tree survival and life span were lower 
than at the centre of the climatic range. The same decrease in sur-
vival at the hot edge was also found by Archambeau et al. (2020) for 
F. sylvatica and Pinus sylvestris in Europe. In contrast, Purves (2009) 
found no such decrease in survival at the hot edge of eastern North 
American species. This difference could be explained by the fact that 
the hot edge of most European species corresponds to both a hot 
and a dry climate, whereas in eastern America the hot edge is less 
constrained by drought (Zhu et al., 2014). We found that life span 
was longer at the cold edge than at the centre of the distribution, 
which contradicts the classical view that survival is constrained in 
cold climates and the results of Purves (2009). Given that tree di-
ameter growth is constrained at the cold edge, this longer life span 
could be explained by a trade-off between tree growth rate and tree 
longevity (see Black et al., 2008; Di Filippo et al., 2015) and the ob-
servation that survival rate correlates negatively with site productiv-
ity (Stephenson et al., 2011).

We found strong evidence of size dependence of growth and 
survival responses to climatic constraints. Our results agree with 
previous studies which found that tree growth or survival re-
sponses to climate varied with ontogeny (Canham & Murphy, 2017; 
Trouillier et  al.,  2019). For instance, Canham and Murphy (2017) 
found a displacement of the climatic optimum of growth and sur-
vival between seedlings, saplings and canopy trees. These size-de-
pendent climatic responses, however, did not strongly influence the 
life trajectory metrics derived with IPMs as the response of life span 
at the edge was closely connected to the survival of a 15-cm dbh 
tree and the passage time was closely related to the growth of a 
15-cm dbh tree. This means that these size-dependent responses 
were either of small magnitude or led to few compensation effects 
between size classes. Tredennick et al.  (2018) also found that the 
size dependence of vital rate responses to exogenous environmen-
tal fluctuations had limited effect on the population growth rate of 
perennial plant species.
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4.2 | Lack of competition effect

Numerous studies have proposed that competitive interactions 
could be crucial in setting demographic limits, particularly when 
site productivity is high (see Alexander et  al.,  2016; Ettinger & 
HilleRisLambers, 2017; Hargreaves et al., 2014; HilleRisLambers 
et  al.,  2013; Louthan et  al.,  2015). In our analyses, we explored 
the effect of competition by comparing the relative demographic 
performance at the edge in comparison with the centre (Ω) with-
out local competition or with a high level of local competition. 
Despite the strong direct effects of competition on both growth 
and survival and interactions between competition and climate 
(see the variables importance reported in Tables S4 and S5), the 
relative demographic responses at the edges versus the centre 
(measured by Ω) were not strongly influenced by the degree of 
local competition. Competition is thus a strong determinant of 
demographic rates but its effect is not stronger at the climatic 
edge than at the climatic centre (rejecting Hypothesis 2). Rather 
competition blurs demographic constraints at the edge. Indeed, 
limitations of survival at the hot edge and passage time at the cold 
edge were significant without competition but not with a high 
level of competition.

Three main reasons could explain the lack of competition ef-
fect on the demographic response at the edges in our study. Firstly, 
properly estimating competition effect with observational data is 
notoriously difficult (Tuck et al., 2018). Secondly, we did not differ-
entiate between intra- and inter-specific competition, whereas in-
ter-specific competition might have the strongest impact at the edge 
(Alexander et al., 2016). Thirdly, as our cohort IPMs do not cover the 
full life cycle it was not possible to evaluate whether competitive 
exclusion—the final effect of competition (Chesson, 2018)—occurs 
at the edge.

4.3 | Strong effect of species median climate on 
growth response at the edge

We found that the hotter the centre of the species range, the greater 
were the constraints on growth and passage time at its hot edge. The 
same pattern was found with the cold edge and the species median 
climate proximity to cold extreme. This is in agreement with the gen-
eral observation that, in Europe, vegetation productivity in Europe is 
at its maximum in temperate climates where both drought and cold 
stress are limited (Jung et al., 2007).

4.4 | Weak trait effect on species demographic 
response at the edge

Part of the variation in the demographic response at the edge be-
tween species was related to Nmass, a key dimension of the leaf 
economic spectrum. An important difficulty in the interpretation 
of these results is that our understanding of the link between 

leaf economic traits and climate is limited. Multiple mechanisms, 
some of them contradictory, have been proposed to explain the 
link between leaf nitrogen content and climate. For instance, it is 
generally considered that species with low Nmass have a more con-
servative strategy of resource use and perform better in stressful 
conditions than species with high Nmass (Reich,  2014). In agree-
ment with this finding, we found that species with low Nmass had a 
better survival and life span at the hot edge. In contrast, high leaf 
nitrogen content has been linked with photosynthesis tolerance to 
drought and low temperatures because of higher enzyme activi-
ties (Reich & Oleksyn, 2004; Wright et al., 2003). Consistent with 
this mechanism, we found that species with high Nmass had a higher 
growth rates at the hot edge and better survival and life span at 
the cold edge.

We found limited relationships between wood density, leaf size 
or xylem vulnerability to embolism and demographic responses at 
the climatic edge, which was surprising as the mechanisms related 
to climate response are better understood for these traits. Smaller 
leaves were related to a longer life span and a better survival at the 
hot edge and a better passage time at the cold edge. This in agree-
ment with Wright et al.  (2017) who proposed that large leaves are 
disadvantaged in hot and dry climates because their transpiration 
rate during the day is too high and are disadvantaged in cold climate 
because they have greater risks of reaching critical low tempera-
tures during the night. Anderegg et  al.  (2019) also reported weak 
links between traits and drought-related mortality at the edge, with 
only an effect for xylem vulnerability to embolism. The effect was, 
however, that drought-adapted species experienced higher drought 
mortality at the edge (Anderegg et al., 2019). In this study, we found 
no link between xylem vulnerability to embolism and survival re-
sponse at the edge. In contrast, a low xylem vulnerability to embo-
lism (drought-adapted species) was related to better growth at the 
hot edge (Figure S22).

Finally, our traits analysis might underestimate the role of traits 
because we ignore intraspecific traits variability. Traits phenotypic 
plasticity and local adaptation might however be large for species 
with a broad distribution (see for instance results for P. sylvestris in 
Reich et al., 1996).

4.5 | On the challenge of connecting population 
dynamics and species ranges

A key limitation of our analysis is that it did not include the re-
generation phase, which is typically considered a bottleneck in 
tree population dynamics and is key to cover the full life cycle to 
estimate population growth rate (Grubb,  1977). Because of this 
limitation, we could not estimate the population growth rate (λ), 
but just vital rates and life trajectory metrics based only on adult 
growth and survival. In Appendix S1, we provide an evaluation of 
the relative importance of the regeneration phase for tree popu-
lation growth rate with an elasticity analysis of matrix population 
models extracted from the COMPADRE Plant matrix database 
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(Salguero-Gómez et al., 2015). The elasticity analysis showed that 
the regeneration and adult phases were equally important (see 
Figure S25). Our IPMs analysis thus captures an important part of 
a tree's life cycle for the population growth rate. However, we can-
not rule out the possibility that the regeneration phase has a dis-
proportional importance for the dynamics at the edge, as several 
studies have shown that this phase is extremely sensitive to climate 
(Canham & Murphy, 2016; Clark et al., 2014; Defossez et al., 2016). 
Integrating fecundity and juvenile life stages in tree IPMs is chal-
lenging because we have much less data on them (Needham 
et al., 2018; Ruiz-Benito et al., 2020; but see Lines et al., 2019).

It is also important to keep in mind that species ranges are not 
necessarily only related to the mean population growth rate but 
could also be related to other processes controlling extinction risk. 
For instance, the temporal variability of population growth rate and 
the population resilience to disturbances could be crucial at the edge 
(Holt et al., 2005) but it was not possible to evaluate these processes 
in our study with the NFI data. Another explanation is that suitable 
habitats where population growth rates are unaffected might exist 
up to the edge due to the presence of suitable microsites (Cavin & 
Jump, 2017). In this case, the species edges arise because the frac-
tion of suitable habitats available to the metapopulation decreases 
(Holt & Keitt, 2000).

Finally, tree species distributions might not be in equilibrium with 
the current climate. This could be because species are either still in 
the process of recolonising from their ice age refugia (Svenning & 
Skov, 2004) or already affected by climate change. Such disequilib-
rium should however be visible by better performance at the cold 
edge (Talluto et al., 2017) and we found no evidence for this in our 
results.

4.6 | Synthesis

Our study shows that trees' demographic responses at range edges 
are more complex than predicted by the ACH. Here, the patterns 
of demographic response of the 27 European tree species differed 
between their hot and cold edges. We only found strong evidence 
of demographic limits for edges occurring in extreme conditions (hot 
edges of hot-distributed species and cold edges of cold-distributed 
species). Our findings open an important perspective, as they show 
that one should not expect the same demographic response at the 
hot versus the cold edge and that we need to refine predictions 
of climate change impacts as a function of the edge and species 
characteristics.
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