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Abstract
1.	 Easy access to multi-taxa information (e.g. distribution, traits, diet) in the sci-

entific literature is essential to understand, map and predict all-inclusive biodi-
versity. Tools are needed to automatically extract useful information from the 
ever-growing corpus of ecological texts and feed this information to open data 
repositories. A prerequisite is the ability to recognise mentions of taxa in text, a 
special case of named entity recognition (NER). In recent years, deep learning-
based NER systems have become ubiquitous, yielding state-of-the-art results in 
the general and biomedical domains. However, no such tool is available to ecolo-
gists wishing to extract information from the biodiversity literature.

2.	 We propose a new tool called TaxoNERD that provides deep neural network 
(DNN) models to recognise taxon mentions in ecological documents. To achieve 
high performance, these models usually need to be trained on a large corpus of 
manually annotated text. Creating such a corpus is a laborious and costly pro-
cess, with the result that manually annotated corpora in the ecological domain 
tend to be too small to learn an accurate DNN model from scratch. To address 
this issue, we leverage existing models pretrained on large biomedical corpora 
using transfer learning. The performance of our models is evaluated on four 
corpora and compared to the most popular taxonomic entity recognition tools.

3.	 Our experiments suggest that existing taxonomic NER tools are not suited to 
the extraction of ecological information from text as they performed poorly 
on ecologically oriented corpora, either because they do not take account of 
the variability of taxon naming practices or because they do not generalise well 
to the ecological domain. Conversely, a domain-specific DNN-based tool like 
TaxoNERD outperformed the other approaches on an ecological information 
extraction task.

4.	 Efforts are needed to raise ecological information extraction to the same level of 
performance as its biomedical counterpart. One promising direction is to lever-
age the huge corpus of unlabelled ecological texts to learn a language represen-
tation model that could benefit downstream tasks. These efforts could be highly 
beneficial to ecologists on the long term.
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1  |  INTRODUC TION

Ecology is rapidly evolving into a data-intensive science that in-
creasingly relies on massive datasets and global knowledge bases 
to address questions at broader spatial and temporal scales (Farley 
et al., 2018; Hallgren et al., 2016; Michener & Jones, 2012; Soranno 
& Schimel, 2014). Although large efforts are being made to elevate 
research data to be first-class scientific outputs and to promote 
findable, accessible, interoperable and reusable data (Wilkinson 
et al., 2016), the overall scientific literature is still a major container 
for much of the available information on organisms, populations, 
communities and ecosystems. In addition to the hundreds of millions 
of pages that make up the historical biodiversity literature, thousands 
of ecology papers are published every year (Cornford et al., 2020). 
This represents an enormous amount of unstructured information 
which is hardly exploitable for large-scale ecological studies, unless 
we have the tools to automatically extract the relevant information 
to be fed into open biodiversity databases in a standardised form 
(Thessen et al., 2012).

Information extraction is the task of automatically extract-
ing structured information from machine-readable documents, 
usually from textual corpora expressed in natural language form. 
Information extraction and its subtasks are key components of a va-
riety of high-level Natural Language Processing (NLP) applications, 
including knowledge base population that is of particular interest 
for ecologists. Knowledge base population consists of discovering 
new facts about entities from a large corpus of text to fill an incom-
plete knowledge base. In the ecological domain, this includes facts 
about organism occurrences, phenotypes, habitats, interactions, etc. 
Such statements are commonly represented in the form of triples 
(subject, predicate and object), where the subject and the object are 
entities that have some relationship between them as indicated by 
the predicate. In most cases, the subject is a taxon, while the object 
may be a geographical location, the value of a trait measurement, a 
type of habitat or another taxon depending on the nature of the ex-
tracted piece of information. Extracting triples from text to populate 
a knowledge base is challenging, as it requires the ability to detect 
mentions of entities of interest in text (=named entity recognition), 
disambiguate and normalise each textual mention by matching it to 
the corresponding entity in the knowledge base (=named entity nor-
malisation or disambiguation), and find the semantic relationships 
that hold between pairs of entities (=relation extraction). A typical 
information extraction pipeline for knowledge base population is de-
picted in Figure 1.

This paper focuses on the first subtask of information extraction, 
called named entity recognition (NER, see Table 1 for a list of abbre-
viations), and more specifically, on a special case of NER that con-
sists in detecting mentions of taxa in textual documents. Taxonomic 
entity recognition is critical for augmenting ecological knowledge 
bases with new facts, as much ecological knowledge refers to some 
taxonomic unit, whether at the species or at a higher taxonomic 
level. Identifying taxon names on textual documents is a challeng-
ing task. Taxonomic NER systems have to cope with the diversity of 

taxon naming practices (accepted scientific names with or without 
authorship information, synonyms, vernacular names in different 
languages, acronyms and other abbreviations, etc.), the homonymy 
of some taxon names with common words, and the ambiguity arising 
from the use of the same common name to refer to distinct species 
(Gerner et al., 2010).

Previous efforts in taxonomic NER have mainly been directed 
towards the identification of organism mentions in the biomedical 
literature. Recognising species and linking them to relevant genes 
or proteins are indeed critical to the success of many downstream 
tasks such as gene normalisation and protein–protein interaction 
extraction (Pafilis et al., 2013). As a consequence, most existing tax-
onomic NER systems have been designed for biomedical use cases 
(Gerner et al., 2010; Giorgi & Bader, 2018; Lee et al., 2020; Naderi 
et al., 2011; Pafilis et al., 2013; Wei et al., 2012), although seminal 
works focused on the extraction of taxonomic names from biodi-
versity legacy literature (Koning et al., 2005; Sautter et al., 2006). 
Several taxonomic NER systems have been developed over the 
years, using different approaches that can generally be categorised 
as being based on rules, dictionaries or machine learning (ML). In 
addition, a number of tools fall into the category of hybrid systems, 
combining machine learning with either dictionaries or sets of rules 
(Akella et al., 2012; Naderi et al., 2011).

Rule-based systems (Koning et  al.,  2005; Sautter et  al.,  2006) 
use handcrafted rules to detect mentions of taxa in text, taking ad-
vantage of regularities in taxon naming conventions, for example, 
the structure of binomial (Linnean) nomenclature for species names. 
Consequently, these approaches are more appropriate for detecting 
scientific names and do not require any updates as taxonomies are 
revised or new species are discovered. However, they are often un-
able to identify alternative forms of taxon names such as vernacular 
names, which do not follow binomial naming conventions, resulting 
in a low recall. In addition, these methods generally have a low pre-
cision as they tend to mistake non-taxonomic scientific terms for 
taxon names.

Dictionary-based systems (Gerner et al., 2010; Pafilis et al., 2013), 
on the other hand, are able to recognise taxon names with a high pre-
cision using a well-curated and comprehensive list of taxon names 
against which chunks of text are matched to identify taxonomic en-
tities. An advantage of dictionary-based approaches over rule-based 
ones is that they are equally well suited for recognising all types of 
taxon names. On top of that, entity normalisation is straightforward 
since dictionaries are generally derived from taxonomic databases, 
such as the NCBI Taxonomy (Federhen, 2002). Although these da-
tabases contain a huge number of taxonomic names, they cannot 
be considered exhaustive as new taxa are continuously described. 
Therefore, these systems are often characterised by a low recall, as 
they cannot handle new or abandoned taxon names, misspellings or 
other unexpected naming variants. In addition, dictionary-based ap-
proaches cannot resolve the ambiguity due to homonymy between 
taxon names and common words as matching is context agnostic.

Machine learning-based systems replace human-curated rules or 
fixed lists of names by a statistical model that has been trained to 
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recognise taxon mentions from a feature vector representation of 
input data (Campos et al., 2012). ML-based systems can be trained 
to recognise any type of taxon names, depending on whether or not 
these names have been annotated in the training corpus. ML-based 
tools are also more robust to new names and misspellings than rule-
based and dictionary-based systems. Besides, contextual features 
can be used to deal with ambiguous names, for example, homonyms. 
The main drawback of these approaches is their dependency on 
annotated documents, which are difficult and expensive to obtain. 
Furthermore, earlier feature-based ML algorithms rely heavily on 
hand-crafted domain-specific features, requiring considerable engi-
neering skills and domain expertise and leading to highly specialised 
solutions.

In recent years, deep learning-based NER models have become 
ubiquitous and have achieved state-of-the-art results in a large num-
ber of domains (Li et  al.,  2020). In particular, remarkable progress 
has been made in biomedical information extraction through the 
widespread application of deep learning techniques (Liu et al., 2016; 
Perera et al., 2020). Deep learning refers to a class of machine learn-
ing techniques that use multiple processing layers (typically artifi-
cial neural networks) to learn latent representations of data with 
multiple levels of abstraction (Goodfellow et al., 2016). The ability 

of deep neural networks (DNNs) to auto-detect hidden features 
in complex, highly dimensional data removes the burden of task-
specific, knowledge-centred feature engineering (Li et  al.,  2020). 
In return, their performance largely depends on the availability of 
large amounts of high-quality, manually annotated data in the form 
of gold standard corpora (GSCs). Indeed, DNNs usually have a large 
number of parameters, which make them overfit on small training 
datasets, with the consequence that the resulting models perform 
poorly on unseen data (Giorgi & Bader, 2020). However, creating a 
GSC is laborious and time-consuming, requiring expertise for anno-
tating domain-specific data. As a consequence, GSCs in the ecologi-
cal domain are few in number and small in size. To tackle the problem 
of training data shortage, several techniques have been proposed, 
including data augmentation (Dai & Adel, 2020) and transfer learning 
(Giorgi & Bader, 2018; Qiu et al., 2020).

Over the last few years, a number of open-source NLP toolkits 
featuring DNN-based NER solutions have been developed, with 
an emphasis on accessibility for non-expert users (Dernoncourt 
et  al.,  2017; Giorgi & Bader,  2020; Neumann et  al.,  2019; Wolf 
et  al.,  2019). While these toolkits often provide deep models for 
biomedical NLP, there is so far no such models for ecological ap-
plications. As new use cases emerge, including the need to extract 

F I G U R E  1  A simple information extraction pipeline for knowledge base population. This pipeline takes a corpus of textual documents 
as input and generates a collection of factual knowledge represented by triples (entity, relation, entity) as output. This network of 
interconnected entities forms what is commonly known as a knowledge graph (Ji et al., 2021). Knowledge graphs are a cornerstone of 
modern artificial intelligence applications
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factual statements from the ecological literature to augment biodi-
versity databases with up-to-date information, ecological informa-
tion extraction sees a resurgence of interest from the community 
(Chaix et al., 2019; Compson et al., 2018; Muñoz et al., 2019; Nguyen 
et al., 2019; Tamaddoni-Nezhad et al., 2013; Thessen & Parr, 2014). 
However, ecologists still lack the tools to build biodiversity informa-
tion extraction pipelines with state-of-the-art performance.

This paper addresses the task of taxonomic NER as an essen-
tial component of such pipelines, and a first step towards the de-
velopment of a toolkit of state-of-the-art algorithms that would 
help the ecology and evolution community make the most of the 
ever-growing corpus of texts on biodiversity. More specifically, we 
propose a new tool called TaxoNERD (Taxonomic Named Entity 
Recognition using Deep Models) that uses deep neural networks to 
recognise taxonomic entities in the ecology and evolution literature. 
TaxoNERD addresses two challenges of taxonomic NER in these do-
mains: the diversity of taxon naming practices and related problems, 
for example, homonymy, ambiguity or variability, and the relatively 
small size of the few GSCs available for this task. It is our hope that 
making such tools accessible for ecologists and evolutionary biolo-
gists will pave the way towards the development of new tools for 
ecological information extraction and their wider adoption by the 
community.

2  |  MATERIAL S AND METHODS

The following sections introduce the two network architectures 
used to train TaxoNERD's taxonomic NER models, as well as the 

pretrain-and-fine-tune approach adopted to learn these models 
from an ecological gold standard corpus. We also describe the cor-
pora and metrics used for evaluation, and briefly present the existing 
NER tools against which we compared our approach.

2.1  |  TaxoNERD's model architectures

2.1.1  |  spaCy's NER model

spaCy1 is an increasingly popular open-source library for advanced 
Natural Language Processing in Python2. spaCy provides a variety of 
practical tools to build information extraction or natural language 
understanding systems, including ready-to-use text preprocessing 
components, for example, tokenizer, lemmatizer, sentence seg-
menter, etc., as well as pretrained DNN models for named entity rec-
ognition, part-of-speech tagging, dependency parsing, text 
classification and more. spaCy's models have emerged as the de 
facto standard for practical NLP due to their speed, robustness and 
performance. In addition, spaCy makes it easy to create, train, man-
age, deploy and use custom NLP pipelines. For all these reasons, we 
choose to build upon the spaCy library to create our taxonomic NER 
system.

 1https://spacy.io/

 2The R package spacyr provides a convenient R wrapper around the Python spaCy 
package, thus offering easy access to text preprocessing and named entity recognition 
functionalities in R.

TA B L E  1  Table of abbreviations

Abbreviation Long form Definition

BB Bacteria Biotope An information extraction task involving entity recognition, entity 
normalisation and relation extraction in the microbiology domain

BiLSTM Bi-directional Long Short-Term Memory A sequence processing model that consists of two LSTMs: one taking 
the input in a forward direction, and the other in a backward 
direction

CNN Convolutional Neural Network A class of deep neural networks that is specifically designed for 
processing structured arrays of data such as images

DNN Deep Neural Network An artificial neural network with multiple layers between the input and 
output layers

GSC Gold Standard Corpus A manually annotated corpus used for supervised training and/or 
evaluation of NLP systems

LSTM Long Short-Term Memory A class of recurrent neural networks capable of learning long-term 
dependencies in sequence prediction problems

ML Machine learning A branch of artificial intelligence concerned with teaching computers 
how to perform a task without being explicitly programmed to do so

NER Named Entity Recognition A subtask of information extraction that seeks to locate and categorise 
named entities mentioned in unstructured text

NLP Natural Language Processing A branch of artificial intelligence concerned with giving computers the 
ability to derive meaning from text or spoken words

RNN Recurrent Neural Network A class of artificial neural networks that is specifically designed to 
handle time series and other sequential data

https://spacy.io/
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spaCy's NER models rely on a pretty generic neural architecture 
(see Figure 2). This architecture consists of two subnetworks. The first 
subnetwork learns an embedding model whose role is to embed to-
kens (≈words) into a continuous vector space. A word embedding is a 
low-dimensional real-valued vector representation of a word (Zhang 
et al., 2016). Word embeddings encode the meaning of the words they 
represent in the sense that the words that are closer in the vector space 
are expected to be similar in meaning. There are two kinds of word em-
beddings (Qiu et al., 2020): non-contextual and contextual embeddings.

Non-contextual embeddings
A word is mapped to a single context-independent vector represen-
tation using a lookup table. This lookup table is usually learned from 
a large corpus of unlabelled text using self-supervision (Mikolov 
et  al.,  2013; Pennington et  al.,  2014). One of the main limitations 
of non-contextual word embeddings is that words with multiple 
meanings are conflated into a single representation. Therefore, 
these embeddings cannot handle polysemy (one word having mul-
tiple meanings) and homonymy (words that share the same spelling 
but with different meanings) properly. Another issue is the out-of-
vocabulary problem: models can only produce meaningful embed-
dings for words that have been seen in the training corpus.

Contextual embeddings
To address the issue of polysemy and the context-dependent nature 
of words, contextual word embeddings move beyond word-level se-
mantics in that each token is associated with a representation that 
is a function of the entire input sequence, thereby capturing uses of 

words across varied context. Contextual embeddings are typically 
obtained by mapping each input token in the sequence to its non-
contextualised representation first, before applying an aggregation 
function to encode context. This aggregation function is usually mod-
elled by a deep neural network, which is then called a neural contex-
tual encoder. There are many possible architectures for this encoder 
[see Li et al. (2020) and Qiu et al. (2020) for a survey]. Contextual em-
beddings pretrained on large-scale unlabelled corpora achieve state-
of-the-art performance on a wide range of NLP tasks.

The second subnetwork assigns class labels to non-overlapping 
spans of tokens using a probabilistic transition-based chunking 
model similar to Lample et al.  (2016). This model relies on a stack 
data structure to incrementally construct chunks of the input se-
quence and assign a class label to those chunks that correspond to 
named entities. At each time step, the possible actions (add a token 
to the stack, assign a label to the current chunk, etc.) are scored 
by feeding a representation of the current state of the stack to a 
multilayer neural network. This representation is obtained by com-
bining the embeddings of the tokens that make up the stack. Then 
the action with the highest score is chosen and the stack moves to 
another state. The process is repeated until the algorithm reaches a 
termination state.

2.1.2  |  TaxoNERD's NER models

TaxoNERD offers the user a choice of two NER models, with a differ-
ent balance between speed and accuracy. The two models use the 

F I G U R E  2  TaxoNERD's deep NER models adopts spaCy's two-layer archictecture, consisting of an embedding layer and a transition-
based labelling layer. TaxoNERD's models differ in the architecture of their embedding layer. The en_ner_eco_model combines hash 
embeddings and CNN-based contextual encoding for speed, while the en_ner_eco_biobert model leverages a Transformer-based pretrained 
language model called BioBERT for accuracy
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same two-layer architecture as spaCy's NER models but differ in the 
architecture of their embedding layer.

en_ner_eco_md: A model designed for speed
The en_ner_eco_md model (Figure 2a) uses spaCy's standard 
Tok2Vec layer to generate contextual embeddings for the input to-
kens. This embedding layer is itself composed of two subnetworks.

The first subnetwork embeds input tokens into context-
independent word vectors. The model first extracts a number of 
subword features (normalised string form, prefix, suffix and word 
shape), each of which is embedded separately using hash embed-
ding (Svenstrup et al., 2017). Subword representations are concat-
enated and the resulting vector is passed through a feed-forward 
subnetwork to generate a word vector for the input token. 
Enriching word vectors with subword information is a common ap-
proach for tackling the out-of-vocabulary problem (Bojanowski 
et  al.,  2017). In addition to subword features, spaCy's standard 
embedding layer can use pretrained word vector tables as addi-
tional features, which sometimes results in significant improve-
ments in accuracy. The en_ner_eco_md model uses a 50  k word 
vector table trained on a biomedical corpus and provided as part 
of scispaCy3, a Python library for practical biomedical/scientific 
text processing which heavily leverages the spaCy library 
(Neumann et al., 2019).

The second subnetwork encodes context into the context-
independent embeddings generated by the first subnetwork using 
a convolutional neural network (CNN). CNNs are a class of deep 
neural networks, most commonly applied to image processing and 
computer vision, that uses a series of convolution layers to aggre-
gate local information from multiple pixels/words/, etc. and generate 
low-dimensional representations of the input data that success-
fully capture the spatial and/or temporal dependencies (Brodrick 
et al., 2019). The basic building block of spaCy's contextual encoder 
consists of a 3-g convolution layer, that basically concatenates the 
vector representations of a token and its two neighbours, followed 
by a multilayer perceptron that maps this concatenated vector to a 
lower dimensional output vector. This whole block (3-gram convo-
lution layer + multilayer perceptron) enables to relearn the mean-
ing of a word (i.e. its embedding) based on its direct neighbours. By 
stacking more such blocks in the CNN architecture, the size of the 
surrounding context used to recalculate the embedding of a word 
increases, thus incorporating more contextual information in the 
representation.

The NER model resulting from the combination of CNN-based 
word embedding and transition-based sequence labelling is an 
efficient alternative to the standard solutions based on recurrent 
neural networks (RNNs) which have long dominated the NLP land-
scape (Giorgi & Bader, 2018; Lample et al., 2016; Li et al., 2020) 
and are now gradually being deposed by the Transformer model 
(Vaswani et al., 2017). In particular, spaCy's NER model is smaller 
and computationally cheaper. It therefore runs much faster 

than these state-of-the-art deep models, while delivering close 
performance.

en_ner_eco_biobert: A model designed for accuracy
Since version 3.0, spaCy has an added support for Transformer mod-
els. Transformers (Vaswani et al., 2017) are a family of neural net-
work architectures that use the mechanism of self-attention, that is, 
weighing the influence of different parts of the input sequence, to 
capture long-range dependencies in sequential data. Transformers 
allow for significantly more parallelisation than sequence models 
such as CNNs and RNNs, and therefore reduced training times. 
Thanks to this feature, Transformers have rapidly become the main-
stream architecture for many NLP problems, replacing older RNN 
models such as the long short-term memory (LSTM), and bringing 
NLP to a new era.

Transformers are now commonly used to pretrain language rep-
resentation models from a large amount of unannotated text. In con-
trast to GSCs, large-scale unlabelled corpora are relatively easy to 
construct. Such corpora can be leveraged by learning contextualised 
word representation models from them in an unsupervised manner. 
Then, with minimal architectural modification, the resulting pre-
trained language model can be applied to various downstream NLP 
tasks via a procedure called transfer learning (Giorgi & Bader, 2020). 
The use of word embeddings extracted from pretrained language 
models has brought significant performance gains on a number of 
NLP tasks, including named entity recognition. Hundreds of pre-
trained language models based on the Transformer architecture are 
now available through libraries such as HuggingFace's Transformers 
(Wolf et  al.,  2019), including general purpose language represen-
tation models such as BERT (Devlin et al., 2018) and XLNet (Yang 
et al., 2019), and domain-specific language models, such as SciBERT 
(Beltagy et al., 2019) for scientific text processing and BioBERT (Lee 
et  al.,  2020) for biomedical text mining. To our knowledge, there 
is no pretrained language model for ecological or evolutionary 
applications.

In the en_ner_eco_biobert model (Figure ), spaCy's standard 
Tok2Vec embedding layer is replaced by BioBERT (Bidirectional 
Encoder Representations from Transformers for Biomedical Text 
Mining), a domain-specific language representation model pre-
trained on large-scale biomedical corpora (PubMed abstracts and 
PMC full-text articles). In the absence of a Transformer model pre-
trained on ecological corpora, we chose a language model whose 
domain has commonalities with ecology and evolution, and which 
shares with them a number of common entities of interest, notably 
taxa. In addition, Lee et al. (2020) obtained state-of-the-art results 
in a number of biomedical NLP tasks, including named entity recog-
nition, relation extraction and question answering, using BioBERT 
word vector representations. A recent survey also showed that of six 
open-source language models, BioBERT performed best on biomed-
ical tasks (Lewis et al., 2020).

Large pretrained Transformer models are tremendously ef-
fective for many NLP tasks. However, they have two main limita-
tions. First, they usually require a large training corpus and easily  3https://allen​ai.github.io/scisp​acy/

https://allenai.github.io/scispacy/
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overfit on small or modestly sized datasets. Although large-scale 
unlabelled corpora are far easier to obtain than large-scale GSCs, 
building a corpus large enough (several billion words) to learn such 
a model requires significant engineering efforts. Second, inference 
in large Transformer models is prohibitively slow and expensive 
due to the use of self-attention in multiple layers (see Appendix S1 
for an evaluation of the computation times of our two models). 
Therefore, the en_ner_eco_biobert model may be more suitable 
for use cases where accuracy is more important than computa-
tion time. For example, a high recall rate will be appreciated when 
extracting information to populate a knowledge base, because 
we want to miss as little information as possible. In contrast, the 
faster en_ner_eco_md model may be preferred when using NER to 
index a large corpus of documents for subsequent content-based 
search.

2.2  |  Training TaxoNERD's models using 
transfer learning

Performance of DNN-based approaches to NER largely depends on 
the availability of large amounts of high-quality, manually annotated 
data in the form of gold standard corpora. The deeper the network 
architecture, the better the expected performance, but a much 
larger dataset is needed to fully train model parameters and prevent 
overfitting. In domains where GSCs tend to be small, as is the case 
in ecology and evolution, training such large neural networks from 
scratch, starting with randomly initialised weights, would overfit the 

training set badly, which would cause the resulting models to per-
form poorly on unseen data.

One approach to get around this problem is to first pretrain a 
DNN on a source task for which a large dataset is available. Then, the 
pretrained weights of this network are used to initialise the weights 
of a second network, which we continue to train on our typically 
smaller dataset for the target task (Figure 3). This process, called 
transfer learning, has been shown to improve generalisation of the 
model, reduce training time on the target dataset and reduce the 
amount of labelled data needed to obtain high performance (Giorgi 
& Bader, 2018). There are basically two common ways to transfer 
knowledge learned from one task or domain to another: feature ex-
traction and fine-tuning.

2.2.1  |  Feature extraction

The pretrained model is used as an off-the-shelf feature extractor. 
The pretrained weights of the feature extraction layer are frozen, 
and a new classification layer is trained on the target dataset.

2.2.2  |  Fine-tuning

All the pretrained network's weights are unfrozen and updated (fine-
tuned) for the target task.

The choice between feature extraction and fine-tuning may 
be guided by some criteria such as the size of the target dataset, 

F I G U R E  3  State-of-the-art NER 
systems are based on deep neural 
networks that learn latent features 
from large amounts of data. When only 
small datasets are available for the 
target task, a common approach is to 
use transfer learning. In this example, 
transfer learning is used to adapt a DNN 
trained on a large biomedical corpus 
to the ecological domain. The feature 
extraction subnetwork (pink nodes) is 
frozen, while the NER layers (green, then 
blue nodes) are retrained on the ecological 
corpus. Alternatively, the pretrained 
model parameters can be unfrozen and 
the whole network be fine-tuned on the 
target task corpus
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and the similarity between the source and target datasets. In prac-
tice, fine-tuning is usually more general and convenient for many 
different downstream tasks while requiring minimal architecture 
modifications.

Following the pretrain-and-fine-tune approach that has become 
the dominant paradigm for NLP applications in the last few years (Li 
et  al.,  2020), we trained TaxoNERD models by reusing embedding 
layers that have been pretrained on large biomedical corpora, and 
by fine-tuning the pretrained models on a GSC which was built by 
combining the COPIOUS and Bacteria Biotope task corpora. More 
precisely, the en_ner_eco_md model is trained by fine-tuning the en_
sci_core_md model provided by the scispaCy library. As this model 
already includes a transition-based NER layer (trained to recognise 
biomedical entities in general, without distinction between different 
types of entities), we kept the NER layer as it is, simply added a new 
class of entities corresponding to taxon names, and fine-tuned the 
whole network (embedding and labelling subnetworks) on our eco-
logical corpus. To learn the en_ner_eco_biobert model, we used the 
BioBERT language representation model as our embedding layer, fol-
lowed by a transition-based NER layer with one output class (taxon 
name) and randomly initialised weights, and fine-tuned the whole 
network on our corpus. In both cases, all the layers are updated for 
the target task.

The networks for the target task were fine-tuned using Adam 
optimisation, with standard parameter values. The batch size was in-
creased from 1 to 32 during training, as it has shown to be an effective 
trick (Smith et al., 2017). For regularisation, dropout was set to 0.2, 
and early stopping was used on the validation set with a patience of 

1,000 steps, that is, the model stopped training if performance did not 
improve on the validation set during the last 1,000 iterations.

2.3  |  TaxoNERD's models evaluation

2.3.1  |  Gold standard corpora for taxonomic NER

We evaluated TaxoNERD's models on four gold standard corpora 
specifically designed for taxonomic NER or with a strong focus on 
taxon names recognition: LINNAEUS, Species-800, COPIOUS and 
the Bacteria Biotope task corpus (see Table 2 for a summary of these 
corpora). All four corpora are in English. Annotations usually include 
the boundaries of the named entity (start and end character offsets), 
its class and the entity's text, and are written in some annotation 
format, the two most common being the Standoff and IOB2 formats 
(Figure 4). To facilitate evaluation, all annotations were converted to 
the Standoff format.

LINNAEUS (Gerner et al., 2010) is a GSC of 100 full-text biomed-
ical articles that were randomly selected from the open-access sub-
set of PubMed Central and manually annotated for species mentions. 
Mentions of genera or other higher-order taxonomic ranks (family, 
order, class, etc.) were not annotated since it was not the focus of the 
original work. After annotation, all mentions of species terms were 
normalised by matching each mention to the corresponding taxon in 
the NCBI Taxonomy (Federhen, 2002). Of the 4,259 species men-
tions annotated in this corpus, 72% are common names, including 
terms that do not directly convey species names, such as ‘patient’, 

TA B L E  2  Gold standard corpora (GSCs) used for evaluation

Corpus Documents
Taxon 
mentions NCBI IDs Taxonomic rank Documents type

LINNAEUS 100 4,259 Y Species PubMed Central full papers

S800 800 3,708 Y All MEDLINE abstracts

COPIOUS 668 12,227 N All but micro-organisms Biodiversity Heritage Library pages

BB task corpus 392 2,487 Y Only micro-organisms PubMed abstracts + full-text extracts

F I G U R E  4  A gold standard corpus 
is a collection of manually annotated 
documents. An entity's annotation 
includes at least the left and right 
boundaries of the entity span as well as its 
class. Standoff and IOB2 are the two most 
common tagging formats. In IOB2, the 
B- prefix indicates that the token is the 
beginning of an entity, and the I- prefix 
indicates that the token is inside an entity. 
An O tag indicates that a token belongs to 
no entity
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‘child’, ‘boy’ which indirectly refer to subspecies Homo sapiens sapi-
ens, and 28% are adjectival modifiers (e.g. ‘human’ in ‘human P53’).

Species-800 (Pafilis et  al.,  2013), or S800, is a GSC that was 
developed to increase the diversity of species names compared to 
the LINNAEUS corpus. S800 was constructed by randomly select-
ing 100 MEDLINE abstracts from journals in each of the follow-
ing eight categories: bacteriology, botany, entomology, medicine, 
mycology, protistology, virology and zoology. Taxon mentions, 
including Linnaean binomials, common names, strain names and 
author-defined acronyms, were manually annotated. While the 
main focus was on annotating species mentions, other taxonomic 
ranks (e.g. kingdoms, orders, genera, strains) were also considered. 
The S800 corpus contains approximately the same number of anno-
tated species mentions as the LINNAEUS corpus (3,708 mentions). 
However, the former contains more than three times as many unique 
species and names as the latter.

COPIOUS (Nguyen et al., 2019) is a GSC directed towards the ex-
traction of species occurrence from the biodiversity literature. As such, 
COPIOUS covers a wider range of entities than LINNAEUS and S800, 
including taxon names, geographical locations, habitats, temporal 
expressions and person names. COPIOUS consists of 668 document 
pages downloaded from the Biodiversity Heritage Library. More than 
28 K entities have been manually annotated by experts, 44% (12,227) 
of which are taxa. Annotated taxon mentions include species, gen-
era, families and all higher-order taxonomic ranks. Both current and 
historical scientific names were annotated. For scientific names that 
include authorship information, two entities were created, one with 
the authorship information, and the other without. These entities are 
overlapping as they share a common substring. Annotations also in-
clude vernacular names of species but vernacular names of taxonomic 
classes (e.g. fish, birds, mammals, etc.) were not tagged as taxon names. 
Since COPIOUS was developed specifically for extracting information 
about Philippine biodiversity, a non-negligible part of common names 
are English transcriptions of Filipino names. However, the authors 
state that the corpus is general enough to be employed for other biodi-
versity applications. Also, all micro-organism names were excluded as 
COPIOUS focuses on highly endangered species.

Conversely, the Bacteria Biotope (BB) task corpus (Bossy 
et al., 2019) focuses on the extraction of information about micro-
bial ecology. This GSC comprises 215 PubMed abstracts related 
to micro-organisms and 177 extracts of variable lengths (from one 
single sentence to a few paragraphs) selected from 20 full-text ar-
ticles about micro-organisms of food interest. All mentions of micro-
organism names, habitats and phenotypes have been manually 
annotated, as well as mentions of geographical places. In addition, 
micro-organisms are normalised to taxa from the NCBI Taxonomy, 
and habitat and phenotype entities are normalised to concepts from 
the OntoBiotope ontology. Mentions of micro-organisms represent 
34% (2,487) of the 7,232 entity mentions in the corpus. 54.8% of 
these micro-organism mentions have no exact string match with any 
concept in the NCBI Taxonomy.

Both COPIOUS and the BB task corpus contain overlapping en-
tities, which are not supported by TaxoNERD's NER models or any 

of the other evaluated systems. To get rid of overlapping entities, we 
preprocessed the entire corpora by replacing all overlapping enti-
ties by the entity corresponding to their union, thus favouring longer 
mentions (e.g. scientific names with authorship over simple binomial 
names).

2.3.2  |  NER evaluation metrics

Each GSC was split into three disjoint subsets one for training, one 
for validation during training and one for testing. Only the test set 
was used during evaluation. Although the training and validation 
sets of LINNAEUS and S800 were not used for learning TaxoNERD's 
models, we decided to evaluate the methods on their test sets only 
so that results are easier to compare with those obtained by models 
trained using these corpora [like the models from Giorgi and Bader 
(2018) and Lee et al. (2020)]. For LINNAEUS, we used the train/vali-
dation/test split of Giorgi and Bader (2018). For S800, we used the 
split_s800 script4 to generate the three subsets. COPIOUS train, 
test and validation subsets are available on the COPIOUS project 
webpage5. Finally, since the BB task corpus has been published as 
part of a BioNLP challenge6, annotations are provided only for the 
train and validation sets. Therefore, we used the validation set for 
testing, and randomly split the train set into train/validation subsets 
with an 85:15 ratio.

Precision, recall and F-score are commonly used to as-
sess and compare NER systems using gold standard corpora. 
Precision is the percentage of predicted entities that match gold 
entities (i.e. entities that are annotated in the GSC), recall is the 
percentage of gold entities that are correctly predicted and F-
score (also called F1-score) combines these two measures into 
a single score and is defined as the harmonic mean of precision 
and recall. Whether a prediction is considered correct depends 
on the matching criterion used. The most common criterion is 
exact match: a predicted entity is counted as a true positive if 
both its boundaries and its class fully coincide with a gold entity 
(see Figure 5).

However, exact match may not be the most appropriate cri-
terion for evaluating taxonomic NER systems. The annotation of 
entity boundaries in a GSC depends on the task the corpus was de-
signed for, but also on the person performing the annotation. For 
example, annotation guidelines may ask the annotator to include 
authorship information in scientific names or to stick to the bino-
mial name only. Sometimes, both versions are annotated and we 
end up with two overlapping entities (as in COPIOUS). Using exact 
match, a NER system that was designed to detect taxon names 
with authorship will exhibit lower performance on a corpus in 
which only binomial names were annotated, although it is able to 
find the relevant piece of information. Annotation inconsistencies 

 4https://github.com/spyys​alo/s800

 5http://www.nactem.ac.uk/copio​us/

 6https://sites.google.com/view/bb-2019

https://github.com/spyysalo/s800
http://www.nactem.ac.uk/copious/
https://sites.google.com/view/bb-2019
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are also very frequent within a corpus. Inter-annotator disagree-
ment may be due to different interpretations of annotation guide-
lines, or to difference in the level of expertise of each annotator. 
Inconsistencies also exist in the work of a single annotator (Leser 
& Hakenberg, 2005).

Irregularities in the annotation scheme tend to underesti-
mate NER methods performance, as these methods may correctly 
identify a valid entity without exactly matching the correspond-
ing human-annotated entity. This is punished twice by the exact 
match criterion, as it generates both a false negative (for missing 
the target entity) and a false positive (for tagging a partial match). 
One possible solution is to relax the matching criterion to a cer-
tain degree (Tsai et al., 2006). Indeed, in many applications, find-
ing pieces of information is better than finding nothing at all, and 
exact match may not reflect the true performance of a system in 
a practical setting. In addition to exact match, we evaluated all 
methods using a relaxed criterion, approximate match, that counts 
a predicted entity as a true positive if there is some gold entity 
that is a substring of the predicted entity (see Figure 5). This crite-
rion reflects the fact that for information extraction applications, 
it is often better to overestimate entity boundaries than to miss 
relevant information.

2.4  |  TaxoNERD: Comparison with 
existing approaches

We compared TaxoNERD's models en_ner_eco_md and en_ner_eco_
biobert with the most popular taxonomic NER systems currently 
available to evolutionary biologists and ecologists. We chose to in-
clude only those tools that are readily available either as standalone 
command-line tools or as high-level libraries that can be easily re-
used to build complex information extraction pipelines. A summary 
of the features of each evaluated tool is provided in Table 3.

LINNAEUS7 (Gerner et al., 2010) and SPECIES8 (Pafilis et al., 2013) 
are two popular dictionary-based command-line software for taxon 
names recognition in biomedical documents. LINNAEUS dictionary of 
names covers 386,108 species and 116,557 higher-order taxonomic 
ranks, while SPECIES dictionary contains all the species and strain 
names from the NCBI Taxonomy (as of 2013), including scientific names, 
common names and other synonyms. Both tools also include abbrevia-
tions that were generated automatically from species scientific names 
(for instance D. melanogaster from Drosophila melanogaster).

 7http://linna​eus.sourc​eforge.net/

 8https://speci​es.jense​nlab.org/

F I G U R E  5  All methods were evaluated in terms of precision, recall and F-score using two matching criteria: exact and approximate match. 
As the exact match criterion tends to be too strict, underestimating the performance of NER methods in practical settings, we also used a 
relaxed critserion that judges as correct a predicted entity if it encompasses a gold entity

TA B L E  3  NER tools selected for evaluation

Tool Language Approach Scientific names Common names Tax. ranks Normalisation

MER Awk Dictionary Y Y All Y (NCBI)

Taxonfinder JavaScript Dictionary Y N All N

LINNAEUS Java Dictionary Y Y Species Y (NCBI)

SPECIES C++ Dictionary Y Y Species Y (NCBI)

NetiNeti Python Rules + ML Y N All N

gnfinder Scala Dictionary + ML Y N All Y (190+ sources)

TaxoNERD Python Deep Neural Networks Y Y All Y (NCBI, GBIF)

http://linnaeus.sourceforge.net/
https://species.jensenlab.org/
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Taxonfinder9 (Leary, 2014), NetiNeti10 (Akella et al., 2012) and 
gnfinder11 (Mozzherin, 2019) all belong to the category of scientific 
name taggers as they were specifically designed to recognise men-
tions of scientific names only. Taxonfinder uses a combination of 
regular expressions and dictionaries to tag organism scientific 
names in text. Taxonfinder maintains separate dictionaries for spe-
cies, genera and higher-order taxonomic ranks, all derived from a 
manually curated version of NameBank12. NetiNeti is a hybrid rule-
based/machine learning solution to recognise scientific names of 
organisms in biomedical and biodiversity literature, including mis-
spelled and new species names. Candidate mentions are identified 
using simple scientific name capitalisation and abbreviations rules 
and fed to a binary classifier (Naïve Bayes) to decide whether they 
are a scientific name or not. Gnfinder is a hybrid dictionary-based 
and machine learning system for scientific names detection in text. 
Since December 2019, it has replaced TaxonFinder and NetiNeti as 
the name-finding engine in the Global Names Recognition and 
Discovery service (Mozzherin & Shorthouse, 2019). It is currently 
used by the Biodiversity Heritage Library to locate taxonomic 
names in their corpus of legacy biodiversity documents 
(Constantino, 2020). Gnfinder uses a set of dictionaries to detect 
scientific name candidates and extract a number of useful features 
that are fed to a Naïve Bayes classifier to refine predictions.

We deliberately discarded taxonomic NER tools that cannot be 
considered as standalone tools because they are tied to a specific 
NLP architecture, for example, OrganismTagger (Naderi et al., 2011) 
which comes as a GATE pipeline, or because they are only available 
as RESTful APIs, for example, SR4GN (Wei et al., 2012). We also ruled 
out software that were not or very poorly documented, for exam-
ple, TaxonGrab (Koning et al., 2005), although we decided to include 
Taxonfinder because it is quite self-explained. Because LINNAEUS and 
SPECIES are tied to their built-in lists of names, specifically designed 
for biomedical use cases, their results on ecological corpora may not 
be representative of the true predictive power of dictionary-based 
approaches. We decided to include, as a baseline, our own dictionary-
based method that uses MER (Couto & Lamurias,  2018), a minimal 
named-entity recognition and linking tool which only requires a lexicon 
with the list of terms representing the entities of interest. We created 
this lexicon by extracting all the taxon names from a dump of the NCBI 
Taxonomy, for a total of about 3.4 M names.

3  |  RESULTS

All scripts used for methods evaluation are available on the accom-
panying GitHub page.13 TaxoNERD's models ability to detect men-
tions of taxa in text was evaluated on all four GSCs and compared to 

five existing taxonomic NER systems and one dictionary-based 
baseline. Performance is measured in terms of precision, recall and 
F-score using both exact and approximate match criteria. The results 
are presented in Table 4 and shown in Figure 6.

Dictionary-based approaches (LINNAEUS and SPECIES) per-
formed best on biomedically oriented corpora (LINNAEUS and 
S800), with LINNAEUS achieving the highest F-score of all eval-
uated methods on the LINNAEUS corpus, and SPECIES being 
ranked first on the S800 corpus. This may be explained by the 
fact that the LINNAEUS and S800 corpora were first proposed as 
evaluation corpora for the LINNAEUS and SPECIES taggers, re-
spectively. It is likely that both methods were tailored to perform 
well on their respective evaluation corpus. This could also explain 
the dramatic drop in performance observed for both methods 
on ecologically oriented corpora (although the BB task corpus 
is composed of biomedical documents, it focuses on micro-
organisms ecology).

Scientific name taggers (Taxonfinder, NetiNeti, gnfinder) 
achieved a rather high precision on both the LINNAEUS and Bacteria 
Biotope task corpora (with Taxonfinder achieving the second higher 
precision rate on both corpora), at the exception of gnfinder whose 
precision using exact match is significantly lower than that of the 
other two methods. This can be attributed to the fact that gnfinder 
tends to significantly overestimate entity boundaries, including ir-
relevant punctuation marks and neighbouring words as part of the 
entities, which negatively impacts its performance using the exact 
match criterion. However, using approximate matching, the perfor-
mance of gnfinder is similar to that of the other scientific name tag-
gers. Their recall is consistently low on all corpora as these methods 
are designed to tag scientific names only, and all corpora also include 
annotations for common names. Despite using different approaches 
(dictionary, rules + machine learning, dictionary + machine learning), 
these methods perform quite similarly, with a slight advantage for 
Taxonfinder.

TaxoNERD's deep neural models significantly outperformed all 
other approaches on the two ecological corpora (COPIOUS and the 
BB task corpus). Of our two DNN models, the Transformer-based 
model en_ner_eco_biobert consistently achieves the highest F-score 
on all corpora. TaxoNERD's models show a tendency to slightly over-
estimate entity boundaries. A possible explanation is that COPIOUS 
annotations of taxon scientific names include the authorship infor-
mation when available. As TaxoNERD's models are partly trained on 
the COPIOUS corpus, they may have learned to recognise punctu-
ation marks and other symbols following a taxon scientific name as 
being part of this name. Using the approximate match criterion that 
values boundaries overestimation, the F-score of our deep models 
increases by about 3%–6%. The performance of TaxoNERD's mod-
els on the COPIOUS corpora is of the same order of magnitude as 
that obtained by Nguyen et al. (2019) with their Bi-directional Long 
Short-Term Memory (BiLSTM) model.

Finally, it is worth noting that our baseline dictionary-based ap-
proach (MER) performed poorly on all corpora, despite using a dic-
tionary containing all the names in the NCBI Taxonomy, although its 

 9https://github.com/plear​y/node-taxon​finder

 10https://github.com/dshor​thous​e/NetiNeti

 11https://github.com/gname​s/gnfinder

 12http://ubio.org/index.php?pagen​ame=namebank

 13https://github.com/nlegu​illar​me/snr_tools_and_methods

https://github.com/pleary/node-taxonfinder
https://github.com/dshorthouse/NetiNeti
https://github.com/gnames/gnfinder
http://ubio.org/index.php?pagename=namebank
https://github.com/nleguillarme/snr_tools_and_methods
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recall was significantly higher than that of LINNAEUS and SPECIES 
on the COPIOUS corpus.

4  |  DISCUSSION

The recognition of ecological concepts in text is a key technology 
for biodiversity information extraction and knowledge base popula-
tion, and accurate NER tools are needed to make the most of the 

already large and continuously growing corpus of ecological texts. 
While researchers are mainly interested in species distribution, 
traits, habitats or interactions, a fundamental prerequisite to extract 
this information is the ability to detect mentions of taxa in text. A 
number of taxonomic NER tools are readily available to ecologists, 
including scientific name taggers and dictionary-based NER systems 
for recognising species names in biomedical documents.

Our experiments suggest that these existing tools are unsuitable 
to extract information from the ecology and evolution literature. 

Corpus Software

Exact match Approximate match

PRE 
(%) REC (%) F1 (%)

PRE 
(%) REC (%)

F1 
(%)

LINNAEUS MER 27.4 47.4 34.7 27.4 47.4 34.7

LINNAEUS 95.7 78.1 86.0 96.0 78.4 86.3

SPECIES 86.0 64.2 73.6 86.7 64.7 74.1

Taxonfinder 86.8 20.8 33.6 86.8 20.8 33.6

NetiNeti 76.9 16.5 27.1 77.7 16.7 27.4

gnfinder 52.1 13.6 21.5 78.4 20.4 32.4

TaxoNERD (md) 51.8 26.6 35.1 56.6 29.1 38.4

TaxoNERD 
(biobert)

59.0 26.7 36.8 61.9 28.0 38.6

S800 MER 28.8 55.8 38.0 29.9 57.6 39.3

LINNAEUS 77.4 70.1 73.6 77.8 70.5 74.0

SPECIES 75.3 72.4 73.8 77.2 74.2 75.7

Taxonfinder 57.0 40.7 47.5 57.0 40.7 47.5

NetiNeti 59.0 39.5 47.3 60.0 40.2 48.1

gnfinder 27.9 21.8 24.5 53.9 42.1 47.3

TaxoNERD (md) 45.7 45.5 45.6 54.3 54.0 54.2

TaxoNERD 
(biobert)

48.5 63.0 54.8 53.8 69.8 60.8

COPIOUS MER 22.6 23.8 23.2 22.8 24.0 23.4

LINNAEUS 50.2 12.6 20.1 50.6 12.7 20.2

SPECIES 54.9 13.8 22.1 55.3 13.9 22.2

Taxonfinder 48.6 29.5 36.7 49.0 29.8 37.0

NetiNeti 45.4 25.4 32.6 47.8 26.8 34.4

gnfinder 23.9 15.3 18.6 46.9 30.1 36.7

TaxoNERD (md) 75.8 67.5 71.4 82.5 74.1 78.1

TaxoNERD 
(biobert)

75.9 74.5 75.2 82.1 81.0 81.6

BB task MER 34.4 43.5 38.4 34.4 43.5 38.4

LINNAEUS 60.9 46.8 52.9 60.9 46.8 52.9

SPECIES 67.5 49.3 56.9 67.5 49.3 56.9

Taxonfinder 79.6 63.3 70.5 80.2 63.8 71.0

NetiNeti 74.5 56.3 64.1 75.5 57.0 65.0

gnfinder 51.1 42.5 46.4 79.3 66.0 72.0

TaxoNERD (md) 73.1 77.5 75.2 76.4 81.2 78.7

TaxoNERD 
(biobert)

87.2 90.3 88.7 89.1 92.5 90.8

Bold is for best methods in terms of PRE, REC, F1, and for each corpus.

TA B L E  4  Precision, recall and F-
score for the eight taxonomic NER 
systems evaluated on the four gold 
standard corpora, using exact match and 
approximate match as evaluation criteria
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Despite their relative effectiveness at detecting scientific names, as 
demonstrated on the BB task corpus which comprises a large pro-
portion of such names, scientific name taggers are handicapped by 
their inability to detect common names. This is a barrier to ecological 
information extraction, as many references to taxonomic entities in 
the literature use their vernacular names, especially in the field of 
animal ecology. For applications such as knowledge base population, 
where it is important to miss as little relevant information as possi-
ble, the ability to recognise common names and other variants of 
taxon names is essential. The main alternative to scientific name tag-
gers is dictionary-based systems such as LINNAEUS and SPECIES. 
However, both methods rely on dictionaries that have been carefully 
tailored for biomedical use cases. As a result, these systems show 
high precision and recall on biomedical documents but their per-
formance significantly drops on ecological corpora. When applied 
on ecological documents, both LINNAEUS and SPECIES miss many 
names, especially uninomials as these tools focus on species names. 
They are also prone to boundary estimation errors, missing author-
ship information and ‘sp.’ or ‘spp.’ abbreviations, as these forms of 
scientific names are not included in their dictionaries. Generally 
speaking, dictionary-based approaches lack robustness to previously 
unseen names, misspelling and other unexpected variants which are 
common in ecological papers. Their performance also depends heav-
ily on the amount of effort put into creating a high-quality dictionary 
of names, as demonstrated by the poor performance of our baseline 
dictionary-based approach that uses a raw list of names from the 
NCBI Taxonomy.

None of the aforementioned taxonomic NER tools were able to 
recognise taxonomic entities in the COPIOUS corpus with satisfac-
tory accuracy. COPIOUS being the biggest corpus of all four gold 
standards, it is also the one containing the largest diversity of taxon 
names, including scientific names (with or without authorship in-
formation), common names, abbreviations, etc., which impedes the 
performance of dictionary-based NER systems and scientific name 
taggers. COPIOUS is also the only corpus composed exclusively of 
texts from the biodiversity literature, which causes biomedical NER 
tools such as LINNAEUS and SPECIES to fail. TaxoNERD's deep neu-
ral models on the contrary have been specifically trained to recognise 
taxon mentions in ecological documents and achieve high precision 
and recall on both COPIOUS and the BB task corpus. As anticipated, 
the Transfomer-based architecture achieves higher accuracy than 
spaCy's standard architecture based on trigram CNNs. Although the 
difference in performance between the two models is quite spec-
tacular on the BB task corpus (which could be attributed to the use 
of BioBERT, a language model pretrained on biomedical corpora, to 
obtain embeddings for words in the BB task corpus, composed of 
biomedical documents), this difference narrows on COPIOUS. This 
suggests that the en_ner_eco_md is also a good candidate for taxo-
nomic NER in the ecological literature. The choice between the two 

models will depend on the compromise the user has to make be-
tween speed and accuracy, or on the availability of GPUs to speed 
up the inference process in Transformer-based models. Interestingly, 
the performance of TaxoNERD's models on COPIOUS is consistent 
with the inter-annotator agreement reported by Nguyen et al. (2019) 
for this corpus. This suggests that our models are as good as human 
annotators at recognising taxon mentions in this corpus.

Most of TaxoNERD's errors on COPIOUS test set are due to 
TaxoNERD missing local (Filipino) vernacular names, and sometimes 
common English names (false negatives). Despite its propensity to 
overestimate entity boundaries, it also happens that TaxoNERD 
misses all or part of the authorship information (sometimes by a 
simple punctuation mark), which is punished twice by both criteria 
(one false positive and one false negative). On the BB task corpus, 
most errors are due to TaxoNERD missing alpha-numeric codes in 
strain names, for example, ‘B1157’ in ‘L. lactis subsp. cremoris B1157’, 
or to TaxoNERD's tagging non-micro-organism names, which are 
not annotated in the BB task corpus. Detecting strain mentions is 
recognised as a particularly difficult problem as they are prone to 
boundary estimation errors (Naderi et al., 2011).

Although TaxoNERD is able to extract relevant information from 
ecological text with high precision and recall, performance drops 
on biomedical corpora. When looking at the predicted entities for 
the LINNAEUS and S800 corpora, we observe that TaxoNERD's 
models tend to tag non-taxonomic scientific terms (‘Oligonucleoside 
methylphosphonates’), allele and gene variant names, people names, 
and other capitalised expressions (‘Sequencing Kit’, ‘Staminal col-
umn’, ‘Immense tree’) as taxonomic entities. Additionally, TaxoNERD 
failed to recognise some terms considered as taxon names in the 
LINNAEUS and S800 corpora. This includes virus strain names and 
acronyms, such as ‘H1N1’ or ‘H5 influenza virus’, but also terms that 
do not directly convey species names such as ‘patient’, ‘participants’ 
or ‘people’. As these terms are not relevant for ecological information 
extraction, this simply confirms that TaxoNERD is well suited for tax-
onomic NER in the ecological literature but should not be used (or 
at least carefully) for biomedical NER. It is also worth mentioning 
that the second major source of errors in the S800 corpus was the 
presence of many unannotated taxon names. Although TaxoNERD 
successfully detects these mentions, they are counted as false posi-
tives and result in a significant drop in precision.

DNN-based NER systems have achieved state-of-the-art results 
in a number of domains, and biomedical information extraction 
pipelines are now heavily relying on pretrained biomedical language 
models such as BioBERT (Lee et al., 2020), which are fine-tuned for 
downstream tasks, including named entity recognition and relation 
extraction. At the same time, we can see the number of initiatives to 
make DNN-based NLP solutions accessible to non-experts multiply-
ing. While researchers have access to state-of-the-art tools for bio-
medical information extraction (Perera et al., 2020), the ecological 

F I G U R E  6  Precision and recall obtained on the four gold standard corpora using the exact match criterion (top) and the approximate 
match criterion (bottom). Grey lines represent iso-F1 curves. The different colors are used to distinguish between the different categories of 
tools: dictionary-based NER systems (violet), scientific name taggers (blue) and deep neural networks (pink)
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community has yet to get on the deep learning train and develop its 
own models and tools tailored to its specific use cases.

TaxoNERD is a very first step in this direction, which has not yet 
renounced its biomedical heritage, as it relies on pretrained biomed-
ical models that are fine-tuned on an ecological corpus. Yet, it shows 
a significant gain in performance compared to existing tools for tax-
onomic NER in the biodiversity literature. Available as a command-
line tool, a Python library and an r package, TaxoNERD can recognise 
all variants of scientific names and English common names, as well 
as abbreviated species names and user-defined abbreviations thanks 
to scispaCy's implementation of the simple abbreviation detection 
algorithm of Schwartz and Hearst (2002). Because it does not rely on 
a predefined dictionary of names, TaxoNERD is robust to new, un-
accepted or abandoned taxon names, misspellings and other unex-
pected variants. This makes TaxoNERD the ideal tool for taxonomic 
entity detection in both the legacy and future biodiversity literature. 
With its two models, TaxoNERD provides different ways to balance 
speed and accuracy. TaxoNERD can also link taxon mentions to enti-
ties in a reference taxonomy using an approximate nearest neighbour 
search algorithm. Currently, TaxoNERD can link taxonomic entities 
to the NCBI Taxonomy (Federhen, 2002), GBIF Backbone Taxonomy 
(GBIF Secretariat, 2019) and TAXREF, the French national taxonomic 
register (Gargominy et al., 2019). Based on spaCy, TaxoNERD can be 
easily deployed and integrated into complex ecological information 
extraction pipelines while remaining very easy to use, bringing the 
predictive power of DNN-based NER systems to non-expert users.

TaxoNERD opens up many avenues for improving the perfor-
mance of ecological NER systems. First, deep learning algorithms 
perform better with more data. To our knowledge, COPIOUS and 
the BB task corpus are the only gold standards designed specifically 
for ecological applications. Although this represents a significant 
amount of annotated documents, the performance of our models 
tends to peak. Using a larger training corpus, we could probably in-
crease the accuracy of our models, or we could train more complex 
architectures with a greatest predictive power. However, as already 
mentioned, creating a GSC is a complex and costly process. A first 
alternative is data augmentation, which consists of expanding the 
training set by applying transformations to training instances with-
out changing their labels (Dai & Adel, 2020). Another alternative is 
to use DNNs to learn a good language representation model from a 
large corpus of unannotated documents, and to use transfer learning 
to adapt the pretrained model to downstream tasks. In contrast to 
gold standards, large-scale unlabelled corpora are relatively easy to 
construct as they do not require any annotation effort. While there 
exists a number of pretrained language models for biomedical NLP, 
there exists none for ecological applications. Although we demon-
strated with TaxoNERD that biomedical language models can be 
fine-tuned on ecological datasets with satisfactory performance, a 
domain-specific language representation pretrained on a large-scale 
ecological corpus would surely boost the performance of ecological 
information extraction tools.

Post-processing can also improve the quality and accuracy of 
predictions (Perera et  al.,  2020). For example, if a certain named 

entity is tagged once or several times in a document, and the same 
entity exists elsewhere in the text, untagged, then post-processing 
could make sure missed entities are also tagged with their predicted 
class, thus increasing recall. Another important subtask at this point 
is to resolve coreferences, that is, mentions of taxa that appears as 
pronouns or noun phrases and which must be linked to the taxon 
names they refer to. Resolving coreferences is essential for a lot of 
higher-level information extraction tasks (e.g. relation extraction) as 
much information concerning a taxon may be contained in sentences 
that do not explicitly use the taxon name. However, it is still consid-
ered one of the most difficult NLP tasks (Ng, 2017). State-of-the-
art neural coreference resolution models have been made available 
in spaCy and require careful evaluation on ecological texts, but it 
seems likely that, as for many NLP tasks, domain-specific models 
will be needed to obtain better performance. Closely related to the 
problem of coreference resolution, entity normalisation is the task of 
disambiguating each textual mention to the correct entry in a given 
knowledge base. For instance, in the sentence ‘Brown bears (Ursus 
arctos) flexibly change their feeding habits depending on the availabil-
ity of dietary resources’, the mentions ‘Brown bears’, ‘Ursus arctos’ 
and ‘their’ all refer to the unique entity with ID NCBI:txid9644 in 
the NCBI Taxonomy. Entity normalisation is a critical step in the 
process of turning unstructured textual information into machine-
understandable facts.

In the longer term, we envision the creation a toolkit of state-
of-the-art algorithms that would let ecologists and evolutionary 
biologists create their own pipelines to extract useful information 
on species distributions, traits or interactions from scientific and 
grey literature. This toolkit would include an ecological NER sys-
tem with additional entity types (e.g. habitat, phenotype, etc.), 
coreference resolution and entity normalisation engines, a relation 
extractor to detect relationships between entities, for example, 
interspecific interactions, and other NLP tools that will hopefully 
facilitate access to the considerable amount of knowledge held by 
the current (and future) body of published literature in ecology and 
evolution.

ACKNOWLEDG EMENTS
The research received funding from the French Agence Nationale 
de la Recherche (ANR) through the GlobNets (ANR-16-CE02-0009) 
project and through MIAI@Grenoble Alpes (ANR-19-P3IA-0003). 
We thank Lorraine Goeuriot and Martin Jeanmougin for their valu-
able comments and for proofreading the article.

CONFLIC TS OF INTERE S T
The authors declare no conflicts of interest.

AUTHORS'  CONTRIBUTIONS
N.L.G. and W.T. conceived the ideas and designed the study; N.L.G. 
performed the literature review and the evaluation; N.L.G. also de-
signed TaxoNERD and trained the underlying models; N.L.G. pro-
duced the initial draft of the paper that was further revised and 
approved by W.T.



640  |   Methods in Ecology and Evolu
on LE GUILLARME and THUILLER

PEER RE VIE W
The peer review history for this article is available at https://publo​
ns.com/publo​n/10.1111/2041-210X.13778.

DATA AVAIL ABILIT Y S TATEMENT
All the scripts used for the evaluation and the links to the four 
gold standard corpora are available on the GitHub repository 
accompanying this paper (Le Guillarme,  2021a). TaxoNERD is 
available on PyPI under a MIT license; the sources, including 
the configuration files used to fine-tune the models, and the r 
package can be downloaded from the project's GitHub page (Le 
Guillarme, 2021b).

ORCID
Nicolas Le Guillarme   https://orcid.org/0000-0003-4559-7579 
Wilfried Thuiller   https://orcid.org/0000-0002-5388-5274 

R E FE R E N C E S
Akella, L. M., Norton, C. N., & Miller, H. (2012). NetiNeti: 

Discovery of scientific names from text using machine 
learning methods. BMC Bioinformatics, 13, 211. https://doi.
org/10.1186/1471-2105-13-211

Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language 
model for scientific text. arXiv preprint arXiv:1903.10676.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word 
vectors with subword information. Transactions of the Association 
for Computational Linguistics, 5, 135–146. https://doi.org/10.1162/
tacl_a_00051

Bossy, R., Deléger, L., Chaix, E., Ba, M., & Nédellec, C. (2019). Bacteria 
biotope at BioNLP open shared tasks 2019. In Proceedings of 
the 5th workshop on BioNLP open shared tasks (pp. 121–131). 
Association for Computational Linguistics. https://aclan​tholo​
gy.org/D19-5719

Brodrick, P. G., Davies, A. B., & Asner, G. P. (2019). Uncovering eco-
logical patterns with convolutional neural networks. Trends in 
Ecology & Evolution, 34, 734–745. https://doi.org/10.1016/j.
tree.2019.03.006

Campos, D., Matos, S., & Oliveira, J. L. (2012). Biomedical named en-
tity recognition: A survey of machine-learning tools. Theory and 
Applications for Advanced Text Mining, 175–195.

Chaix, E., Deléger, L., Bossy, R., & Nédellec, C. (2019). Text mining 
tools for extracting information about microbial biodiversity in 
food. Food Microbiology, 81, 63–75. https://doi.org/10.1016/j.
fm.2018.04.011

Compson, Z. G., Monk, W. A., Curry, C. J., Gravel, D., Bush, A., Baker, C. 
J., Al Manir, M. S., Riazanov, A., Hajibabaei, M., Gibson, J. F., Stefani, 
S., Wright, M. T. G., & Baird, D. J.W (2018). Linking DNA metabar-
coding and text mining to create network-based biomonitoring 
tools: A case study on boreal wetland macroinvertebrate communi-
ties. Advances in Ecological Research, 59, 33–74.

Constantino, G. (2020). BHL improves the speed and accuracy of its tax-
onomic name finding services with gnfinder. https://blog.biodi​versi​
tylib​rary.org/2020/07/bhl-impro​vesta​xonom​ic-name-servi​ces-
gnfin​der.html

Cornford, R., Deinet, S., De Palma, A., Hill, S. L., McRae, L., Pettit, B., 
Marconi, V., Purvis, A., & Freeman, R. (2020). Fast, scalable, and 
automated identification of articles for biodiversity and macro-
ecological datasets. Global Ecology and, Biogeography. https://doi.
org/10.1111/geb.13219

Couto, F. M., & Lamurias, A. (2018). Mer: A shell script and annotation 
server for minimal named entity recognition and linking. Journal 

of Cheminformatics, 10, 1–10. https://doi.org/10.1186/s1332​
1-018-0312-9

Dai, X., & Adel, H. (2020). An analysis of simple data augmentation for 
named entity recognition. arXiv preprint arXiv:2010.11683.

Dernoncourt, F., Lee, J. Y., & Szolovits, P. (2017). NeuroNER: An easy-
to-use program for named-entity recognition based on neural 
networks. Conference on empirical methods on natural language 
processing (EMNLP) (pp. 97–102). Association for Computational 
Linguistics. https://aclan​tholo​gy.org/D17-2017

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-
training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Farley, S. S., Dawson, A., Goring, S. J., & Williams, J. W. (2018). Situating ecol-
ogy as a big-data science: Current advances, challenges, and solutions. 
BioScience, 68, 563–576. https://doi.org/10.1093/biosc​i/biy068

Federhen, S. (2002). The taxonomy project. In J. McEntyre & J. Ostell 
(Eds.), The NCBI handbook [Internet] chapter 4. National Center for 
Biotechnology Information (US).

Gargominy, O., Tercerie, S., Régnier, C., Ramage, T., Dupont, P., Vandel, E., 
Daszkiewicz, P., Léotard, G., Courtecuisse, R., Antonetti, P., Canard, A., 
Lévêque, A., Leblond, S., De Massary, J.-C., Haffner, P., Jourdan, H., 
Dewynter, M., Horellou, A., Noël, P., … Lebouvier, M. (2019). TAXREF 
v13.0, référentiel taxonomique pour la France. [Archive de télécharge-
ment contenant 8 fichiers.]. Muséum national d’Histoire naturelle.

GBIF Secretariat. (2019). GBIF backbone taxonomy. Checklist Dataset, 
https://doi.org/10.15468/​39omei

Gerner, M., Nenadic, G., & Bergman, C. M. (2010). LINNAEUS: A spe-
cies name identification system for biomedical literature. BMC 
Bioinformatics, 11, 85. https://doi.org/10.1186/1471-2105-11-85

Giorgi, J. M., & Bader, G. D. (2018). Transfer learning for biomedical 
named entity recognition with neural networks. Bioinformatics, 34, 
4087–4094. https://doi.org/10.1093/bioin​forma​tics/bty449

Giorgi, J. M., & Bader, G. D. (2020). Towards reliable named entity rec-
ognition in the biomedical domain. Bioinformatics, 36, 280–286. 
https://doi.org/10.1093/bioin​forma​tics/btz504

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning 
(Vol. 1.). MIT Press.

Hallgren, W., Beaumont, L., Bowness, A., Chambers, L., Graham, E., 
Holewa, H., Laffan, S., Mackey, B., Nix, H., Price, J., Vanderwal, J., 
Warren, R., & Weis, G. (2016). The biodiversity and climate change 
virtual laboratory: Where ecology meets big data. Environmental 
Modelling & Software, 76, 182–186. https://doi.org/10.1016/j.envso​
ft.2015.10.025

Ji, S., Pan, S., Cambria, E., Marttinen, P. & Philip, S. Y. (2021). A survey on 
knowledge graphs: Representation, acquisition, and applications. IEEE 
Transactions on Neural Networks and Learning Systems.

Koning, D., Sarkar, I. N., & Moritz, T. (2005). TaxonGrab: Extracting tax-
onomic names from text. Biodiversity Informatics, 2, 79–82. https://
doi.org/10.17161/​bi.v2i0.17

Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., & Dyer, 
C. (2016). Neural architectures for named entity recognition. In 
Proceedings of the 2016 Conference of the North American Chapter 
of the Association for Computational Linguistics: Human Language 
Technologies (pp. 260–270). Association for Computational 
Linguistics.

Le Guillarme, N. (2021a). nleguillarme/snr_tools_and_methods: 1.0 (1.0). 
Zenodo. https://doi.org/10.5281/zenodo.5715898

Le Guillarme, N. (2021b). nleguillarme/taxonerd: v1.3.1 (v1.3.1). Zenodo. 
https://doi.org/10.5281/zenodo.5715911

Leary, P. (2014). taxonfinder.org. Re. http://taxon​finder.org
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). 

BioBERT: A pre-trained biomedical language representation model 
for biomedical text mining. Bioinformatics, 36, 1234–1240.

Leser, U., & Hakenberg, J. (2005). What makes a gene name? Named entity 
recognition in the biomedical literature. Briefings in Bioinformatics, 
6, 357–369. https://doi.org/10.1093/bib/6.4.357

https://publons.com/publon/10.1111/2041-210X.13778
https://publons.com/publon/10.1111/2041-210X.13778
https://orcid.org/0000-0003-4559-7579
https://orcid.org/0000-0003-4559-7579
https://orcid.org/0000-0002-5388-5274
https://orcid.org/0000-0002-5388-5274
https://doi.org/10.1186/1471-2105-13-211
https://doi.org/10.1186/1471-2105-13-211
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://aclanthology.org/D19-5719
https://aclanthology.org/D19-5719
https://doi.org/10.1016/j.tree.2019.03.006
https://doi.org/10.1016/j.tree.2019.03.006
https://doi.org/10.1016/j.fm.2018.04.011
https://doi.org/10.1016/j.fm.2018.04.011
https://blog.biodiversitylibrary.org/2020/07/bhl-improvestaxonomic-name-services-gnfinder.html
https://blog.biodiversitylibrary.org/2020/07/bhl-improvestaxonomic-name-services-gnfinder.html
https://blog.biodiversitylibrary.org/2020/07/bhl-improvestaxonomic-name-services-gnfinder.html
https://doi.org/10.1111/geb.13219
https://doi.org/10.1111/geb.13219
https://doi.org/10.1186/s13321-018-0312-9
https://doi.org/10.1186/s13321-018-0312-9
https://aclanthology.org/D17-2017
https://doi.org/10.1093/biosci/biy068
https://doi.org/10.15468/39omei
https://doi.org/10.1186/1471-2105-11-85
https://doi.org/10.1093/bioinformatics/bty449
https://doi.org/10.1093/bioinformatics/btz504
https://doi.org/10.1016/j.envsoft.2015.10.025
https://doi.org/10.1016/j.envsoft.2015.10.025
https://doi.org/10.17161/bi.v2i0.17
https://doi.org/10.17161/bi.v2i0.17
https://doi.org/10.5281/zenodo.5715898
https://doi.org/10.5281/zenodo.5715911
http://taxonfinder.org
https://doi.org/10.1093/bib/6.4.357


    |  641Methods in Ecology and Evolu
onLE GUILLARME and THUILLER

Lewis, P., Ott, M., Du, J., & Stoyanov, V. (2020). Pretrained language mod-
els for biomedical and clinical tasks: Understanding and extending 
The state-of-the-art. In Proceedings of the 3rd clinical natural language 
processing workshop (pp. 146–157). Association for Computational 
Linguistics. https://aclan​tholo​gy.org/2020.clini​calnl​p-1.17

Li, J., Sun, A., Han, J., & Li, C. (2020). A survey on deep learning for 
named entity recognition. IEEE Transactions on Knowledge and Data 
Engineering. https://doi.org/10.1109/TKDE.2020.2981314

Liu, F., Chen, J., Jagannatha, A., & Yu, H. (2016). Learning for biomedical 
information extraction: Methodological review of recent advances. 
arXiv preprint arXiv:1606.07993.

Michener, W. K., & Jones, M. B. (2012). Ecoinformatics: Supporting ecol-
ogy as a data-intensive science. Trends in Ecology & Evolution, 27, 
85–93. https://doi.org/10.1016/j.tree.2011.11.016

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of 
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mozzherin, D. (2019). GNRD release (v0.9.0) switched to gnfinder from 
TaxonFinder/NetiNeti and became 25 times faster. http://globa​
lnames.org/news/2019/12/10/gnrd/

Mozzherin, D., & Shorthouse, D. P. (2019). Global names recognition and 
discovery (GNRD). https://doi.org/10.5281/zenodo.3569619

Muñoz, G., Kissling, W. D., & van Loon, E. E. (2019). Biodiversity observa-
tions miner: A web application to unlock primary biodiversity data 
from published literature. Biodiversity Data Journal. https://doi.
org/10.3897/BDJ.7.e28737

Naderi, N., Kappler, T., Baker, C. J., & Witte, R. (2011). OrganismTagger: 
Detection, normalization and grounding of organism entities in 
biomedical documents. Bioinformatics, 27, 2721–2729. https://doi.
org/10.1093/bioin​forma​tics/btr452

Neumann, M., King, D., Beltagy, I., & Ammar, W. (2019). ScispaCy: Fast 
and robust models for biomedical natural language processing. In 
Proceedings of the 18th BioNLP workshop and shared task (pp. 319–
327). Association for Computational Linguistics.

Ng, V. (2017). Machine learning for entity coreference resolution: A 
retrospective look at two decades of research. In Thirty-first AAAI 
conference on artificial intelligence. https://ojs.aaai.org/index.php/
AAAI/artic​le/view/11149

Nguyen, N. T., Gabud, R. S., & Ananiadou, S. (2019). COPIOUS: A gold 
standard corpus of named entities towards extracting species 
occurrence from biodiversity literature. Biodiversity Data Journal. 
https://doi.org/10.3897/BDJ.7.e29626

Pafilis, E., Frankild, S. P., Fanini, L., Faulwetter, S., Pavloudi, C., 
Vasileiadou, A., Arvanitidis, C., & Jensen, L. J. (2013). The SPECIES 
and ORGANISMS resources for fast and accurate identification 
of taxonomic names in text. PLoS ONE, 8, e65390. https://doi.
org/10.1371/journ​al.pone.0065390

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors 
for word representation. In Proceedings of the 2014 conference on 
empirical methods in natural language processing (EMNLP) (pp. 1532–
1543). Association for Computational Linguistics. https://aclan​
tholo​gy.org/D14-1162

Perera, N., Dehmer, M., & Emmert-Streib, F. (2020). Named entity recog-
nition and relation detection for biomedical information extraction. 
Frontiers in Cell and Developmental Biology, 8, 673. https://doi.
org/10.3389/fcell.2020.00673

Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., & Huang, X. (2020). Pre-trained 
models for natural language processing: A survey. arXiv preprint 
arXiv:2003.08271.

Sautter, G., Böhm, K., & Agosti, D. (2006). A combining approach to 
find all taxon names (FAT). Biodiversity Informatics, 3. https://doi.
org/10.17161/​bi.v3i0.34

Schwartz, A. S., & Hearst, M. A. (2002). A simple algorithm for identifying 
abbreviation definitions in biomedical text. Biocomputing 2003 (pp. 
451–462). World Scientific Publishing.

Smith, S. L., Kindermans, P.-J., Ying, C., & Le, Q. V. (2017). Don’t 
decay the learning rate, increase the batch size. arXiv preprint 
arXiv:1711.00489.

Soranno, P. A., & Schimel, D. S. (2014). Macrosystems ecology: Big data, 
big ecology. Frontiers in Ecology and the Environment, 12, 3. https://
doi.org/10.1890/1540-9295-12.1.3

Svenstrup, D., Hansen, J. M., & Winther, O. (2017). Hash em-
beddings for efficient word representations. arXiv preprint 
arXiv:1709.03933.

Tamaddoni-Nezhad, A., Milani, G. A., Raybould, A., Muggleton, S., & 
Bohan, D. A. (2013). Construction and validation of food webs 
using logic-based machine learning and text mining. Advances in 
Ecological Research, 49, 225–289.

Thessen, A. E., Cui, H., & Mozzherin, D. (2012). Applications of nat-
ural language processing in biodiversity science. Advances in 
Bioinformatics. https://doi.org/10.1155/2012/391574

Thessen, A. E., & Parr, C. S. (2014). Knowledge extraction and seman-
tic annotation of text from the encyclopedia of life. PLoS ONE, 9, 
e89550. https://doi.org/10.1371/journ​al.pone.0089550

Tsai, R.-T.-H., Wu, S.-H., Chou, W.-C., Lin, Y.-C., He, D., Hsiang, J., Sung, 
T.-Y., & Hsu, W.-L. (2006). Various criteria in the evaluation of 
biomedical named entity recognition. BMC Bioinformatics, 7, 92. 
https://doi.org/10.1186/1471-2105-7-92

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. 
N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. In 
Proceedings of the 31st international conference on neural information 
processing systems (pp. 6000–6010).

Wei, C.-H., Kao, H.-Y., & Lu, Z. (2012). SR4GN: A species recognition soft-
ware tool for gene normalization. PLoS ONE, 7, e38460. https://doi.
org/10.1371/journ​al.pone.0038460

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J. J., Appleton, G., Axton, 
M., Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L. B., Bourne, 
P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, 
O., Edmunds, S., Evelo, C. T., Finkers, R., … Mons, B. (2016). The FAIR 
guiding principles for scientific data management and stewardship. 
Scientific Data, 3, 1–9. https://doi.org/10.1038/sdata.2016.18

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, 
P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von 
Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., 
… Rush, A. M. (2019). HuggingFace’s transformers: State-of-the-art 
natural language processing. ArXiv, abs/1910.03771.

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. 
(2019). XLNet: Generalized autoregressive pretraining for language 
understanding. arXiv preprint arXiv:1906.08237.

Zhang, Y., Rahman, M. M., Braylan, A., Dang, B., Chang, H.-L., Kim, H., 
McNamara, Q., Angert, A., Banner, E., Khetan, V., McDonnell, 
T., Nguyen, A. T., Xu, D., Wallace, B. C. & Lease, M. et al. (2016). 
Neural information retrieval: A literature review. arXiv preprint 
arXiv:1611.06792.

SUPPORTING INFORMATION
Additional supporting information may be found in the online ver-
sion of the article at the publisher’s website.

How to cite this article: Le Guillarme, N., & Thuiller, W. (2022). 
TaxoNERD: Deep neural models for the recognition of 
taxonomic entities in the ecological and evolutionary literature. 
Methods in Ecology and Evolution, 13, 625–641. https://doi.
org/10.1111/2041-210X.13778

https://aclanthology.org/2020.clinicalnlp-1.17
https://doi.org/10.1109/TKDE.2020.2981314
https://doi.org/10.1016/j.tree.2011.11.016
http://globalnames.org/news/2019/12/10/gnrd/
http://globalnames.org/news/2019/12/10/gnrd/
https://doi.org/10.5281/zenodo.3569619
https://doi.org/10.3897/BDJ.7.e28737
https://doi.org/10.3897/BDJ.7.e28737
https://doi.org/10.1093/bioinformatics/btr452
https://doi.org/10.1093/bioinformatics/btr452
https://ojs.aaai.org/index.php/AAAI/article/view/11149
https://ojs.aaai.org/index.php/AAAI/article/view/11149
https://doi.org/10.3897/BDJ.7.e29626
https://doi.org/10.1371/journal.pone.0065390
https://doi.org/10.1371/journal.pone.0065390
https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://doi.org/10.3389/fcell.2020.00673
https://doi.org/10.3389/fcell.2020.00673
https://doi.org/10.17161/bi.v3i0.34
https://doi.org/10.17161/bi.v3i0.34
https://doi.org/10.1890/1540-9295-12.1.3
https://doi.org/10.1890/1540-9295-12.1.3
https://doi.org/10.1155/2012/391574
https://doi.org/10.1371/journal.pone.0089550
https://doi.org/10.1186/1471-2105-7-92
https://doi.org/10.1371/journal.pone.0038460
https://doi.org/10.1371/journal.pone.0038460
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1111/2041-210X.13778
https://doi.org/10.1111/2041-210X.13778

