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ABSTRACT

 

Aim

 

Models of the potential distributions of invading species have to deal with a
number of issues. The key one is the high likelihood that the absence of an invading
species in an area is a false absence because it may not have invaded that area yet, or
that it may not have been detected. This paper develops an approach for screening
pseudo-absences in a way that is logical and defensible.

 

Innovation

 

The step-wise approach involves: (1) screening environmental variables
to identify those most likely to indicate conditions where the species cannot invade;
(2) identifying and selecting the most likely limiting variables; (3) using these to
define the limits of its invasion potential; and (4) selecting points outside these limits
as true absence records for input into species distribution models.

This approach was adopted and used for the study of three prominent 

 

Hakea

 

species in South Africa. Models with and without the false absence records were
compared. Two rainfall variables and the mean minimum temperature of the coldest
month were the strongest predictors of potential distributions. Models which excluded
false absences predicted that more of the potential distribution would have a high
invasion potential than those which included them.

 

Main conclusions

 

The approach of applying a priori knowledge can be useful in
refining the potential distribution of a species by excluding pseudo-absence records
which are likely to be due to the species not having invaded an area yet or being
undetected. The differences between the potential distributions predicted by the dif-
ferent models convey more information than making a single prediction, albeit a
consensus model. The robustness of this approach depends strongly on an adequate
knowledge of the ecology, invasion history and current distribution of that species.
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INTRODUCTION

 

The modelling of species distributions using statistically based

models is a growing area of research. There are strongly divergent

schools of thought on both the approaches and methods, and

about how to deal with the assumptions and uncertainties in

interpreting the outputs. Applications of these models to predict

plant species distributions have to consider and deal with several

critical issues and uncertainties which include: presence-only

data, the assumption that the boundaries are the outcome of a

dynamic equilibrium between the species and the environment,

the assumption that a distribution is determined primarily by

abiotic factors, and data structure issues such as spatial auto-

correlation in the variables and varying spatial resolution of different

data sets (Guisan & Zimmermann, 2000; Robertson 

 

et al

 

., 2001;

Guisan & Thuiller, 2005; Thuiller 

 

et al

 

., 2005; Barry & Elith,

2006; Guisan 

 

et al

 

., 2006; Pearson 

 

et al

 

., 2006). Some studies have

also recognized the problems associated with the inclusion of

false absences (Hirzel 

 

et al

 

., 2001; Lütolf 

 

et al

 

., 2006). Presence-

only modelling approaches offer an alternative approach to this

problem (Hirzel 

 

et al

 

., 2002) but may overestimate potential

distributions compared with presence–absence models

(Zaniewski 

 

et al

 

., 2000; Brotons 

 

et al

 

., 2004) although the range

of models and their performance is improving (Elith 

 

et al

 

.,
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2006). This study focuses on developing a methodology for

producing more robust models by selectively excluding false

absences. The approach entails screening environmental factors

to identify those that appear most likely to be determining the

distributions of the species of interest. Thresholds in these factors

are then used to divide pseudo-absence records into those that

are likely to be false absences and those likely to be true absences

so that only the true absences are used in modelling.

There are three principal reasons why the modelling of the

potential distributions of invading species is problematic. The

first problem is common to most studies of species distributions

and is caused by the fact that the data confirm presence but

not absence (Green, 1971). There are three main reasons why a

species may be absent from a locality (Green, 1971; Pulliam,

2000; Hirzel 

 

et al

 

., 2001, 2002; Lütolf 

 

et al

 

., 2006): (1) it cannot

establish a persistent population because abiotic or biotic factors

prevent successful reproduction; (2) it could potentially establish

a population but has not been able to reach that locality yet (e.g.

dispersal limitation); or (3) it is present but was not detected or

recorded, possibly because it is only present as seeds. The first

case would be a true absence and would lie outside the species’

potential niche. The probability of (2) or (3) contributing to

false absences is likely to be higher for an invading than a native

species because the invader may not be easily recognized as new,

is not likely to have been resident for long and may be sparse

and difficult to detect.

The second problem is the assumption that the species is in

quasi-equilibrium with its environment, i.e. the boundaries of its

current distribution are those of its realized niche 

 

sensu

 

 Hutchinson

(1957) (Green, 1971; Austin, 2002). This assumption is unlikely

to be correct for many invasive species (Hirzel 

 

et al

 

., 2001, 2002;

Peterson, 2003; Guisan & Thuiller, 2005; Hierro 

 

et al

 

., 2005),

particularly given that: (1) most invasive species in South Africa

were introduced within the last 100–150 years (e.g. Shaughnessy,

1986); (2) that those introductions were generally confined to

just a few localities; and (3) that even species with long-range

dispersal have few propagules dispersing more than a kilometre

(Nathan 

 

et al

 

., 2002; Higgins 

 

et al

 

., 2003; Midgley 

 

et al

 

., 2006).

Given these limitations, it is highly unlikely that the species has

achieved its realized niche in every area it has invaded; in some

areas it may have reached its limits, in others it may not (Welk,

2004; Mau-Crimmins 

 

et al

 

., 2006). Nevertheless, and contrary to

Hirzel 

 

et al

 

. (2002), we believe that modelling the climatic envelope

of an invading species is useful because data on areas that are

likely to be highly suitable are more useful than data on where it

is has a low probability of invading (Thuiller 

 

et al

 

., 2005;

Richardson & Thuiller, 2007). Although initial introductions and

the processes from naturalization to invasion do have an element

of chance, the subsequent invasion processes tend to generate

regular patterns that can be used in analysing species distribu-

tions (Arim 

 

et al

 

., 2006; Thuiller 

 

et al

 

., 2006).

The third issue is the assumption that abiotic factors are the

primary determinants of a species distribution and that biotic

factors – including competition, pathogens and facilitatory

relationships – are relatively unimportant (Keane & Crawley,

2002; White 

 

et al

 

., 2006). However, a number of species have

demonstrated an ability to invade novel environments that do

not closely match those of the environment they evolved in,

examples being a number of pine species (Richardson & Bond,

1991). There are two main hypotheses about why this occurs: (1)

small populations of the species that are introduced are able to

evolve rapidly to become invasive (Lavergne & Molofsky, 2007)

due to, for example, rapid adaptation and selection to overcome

Allee effects (Taylor & Hastings, 2005); or (2) the primary factor

is either (i) the species is inherently a superior competitor or (ii)

it is the release from inhibiting factors (biotic inhibitors) such as

pathogens, pests, better competitors and predators which gives

the species a competitive advantage (Keane & Crawley, 2002; Vilà

& Weiner, 2004; Hierro 

 

et al

 

., 2005; Callaway & Maron, 2006).

However, some studies have not found a significant degree of

release, especially from generalist herbivores (Joshi & Vrieling,

2005; Parker 

 

et al

 

., 2006). Although rapid evolution may be

important, especially in species with marked lags between

introduction and invasion (Py

 

ß

 

ek & Hulme, 2005), we suggest

that for most species the release from inhibiting biotic factors is

the most important factor, and may often be the cause of their

apparently superior competitive ability. This rationale is

supported by the successes that have been achieved in biocontrol

where the introduction of carefully selected pests or pathogens

has often turned a major invader into a minor one or even

reversed its invasions (Hoffmann & Moran, 1998; Keane &

Crawley, 2002). If biotic inhibitors generally are the primary

determinants of species distributions, this suggests that limits on

the distribution of relatively pest- and pathogen-free invading

species should be determined primarily by their climatic

tolerances, i.e. they more closely approach the fundamental

niche (

 

sensu

 

 Hutchinson, 1957) of the species, although

interspecific competition may still be important.

At least five 

 

Hakea

 

 species have been introduced to South

Africa and four species have become important invaders

(Table 1). This paper only focuses on the major invaders in the

fynbos biome: 

 

Hakea sericea

 

, 

 

Hakea gibbosa

 

 and 

 

Hakea drupacea

 

.

 

Hakea drupacea

 

 and 

 

H. gibbosa

 

 have invaded relatively limited

areas compared with 

 

H. sericea

 

 (Fig. 1). The reasons for these

differences are not entirely clear. All three species were

introduced more than 150 years ago with 

 

H. sericea

 

 being the last

to be introduced (Table 1). Active promotion of 

 

H. drupacea

 

for hedges probably began in the 1850s and was maintained

until at least the early 1900s (Shaughnessy, 1986). The most

widely distributed species, 

 

H. sericea

 

, was introduced last, was

promoted the least and had few seeds sold (Kruger 

 

et al

 

., 1986;

Shaughnessy, 1986), yet it has an order of magnitude more

populations and the greatest distribution range (Table 2) with

nearly 40% of all populations east of 20

 

°

 

 E. These patterns

support the hypothesis that although people played a key role in

introducing 

 

H. sericea

 

, its subsequent spread was largely due to

its inherent invasiveness (Fugler, 1979; Richardson, 1984;

Kruger 

 

et al

 

., 1986; Shaughnessy, 1986), primarily due to its

short juvenile period and high seed production (Table 1;

Richardson 

 

et al

 

., 1987).

A number of studies have suggested that home (native) range

data can be useful when predicting potential distributions (e.g.
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Welk, 2004; Hierro 

 

et al

 

., 2005) but others have found that they

add little value (Mgidi 

 

et al

 

., 2007) although they may provide

useful insights (Mau-Crimmins 

 

et al

 

., 2006). There are descrip-

tions of the native distribution of the 

 

Hakea

 

 species in Australia

(Flora of Australia Online: http://www.environment.gov.au/

biodiversity/abrs/online-resources/flora/main/, accessed 13

November 2006) but they do not include actual locality records

and are not suitable for this study.

A key characteristic of all three invasive 

 

Hakea

 

 species is the

large crop of seeds which is retained in the serotinous fruit until

a fire kills the parent plant, releasing the seeds for dispersal by the

wind (Richardson 

 

et al

 

., 1987). The results of a seed-dispersal

simulation model for 

 

H. sericea

 

 (Le Maitre 

 

et al

 

. 2008) suggest

that many seeds can disperse more than 100 m and sufficient

seeds disperse 500 m or more from the parent for very rapid

range expansions after fires. The evidence of rapid population

growth and spread by 

 

H. sericea

 

 suggests strongly that its current

distribution in mountain areas in the vicinity of Cape Town,

where it has been present for more than 100 years, is not limited

by seed dispersal and therefore approximates the environmental

envelope. However, the distributions of 

 

H. gibbosa

 

 and 

 

H. drupacea

 

are more restricted and may not approximate their potential

environmental envelope.

 

INNOVATION

Developing an approach for filtering pseudo-absences

 

The problem with generating spatially random pseudo-absence

data for use in presence–absence modelling techniques is that a

given sample of random spatial pseudo-absence points is likely to

include some points which fall within the range of the climate

Table 1 Ecological information on four of the Hakea species introduced to South Africa. Data collated from Neser (1983a,b); Neser & Fugler 
(1983); Shaughnessy (1986); Richardson et al. (1987) and the South African Plant Invaders Atlas (SAPIA) data base (Henderson, 1998).

Species

Date of 

introduction

Reason for, and 

extent of, dissemination

Vegetation type 

invaded (biome)

SAPIA records & 

percentage of 0.25° 

squares in fynbos

Seed bank size, 

seed survival of fire, 

juvenile period

Hakea sericea Schrad. 1858 Hedges, accidental; 

not widely planted

Fynbos: montane, grassy 228 W and E Cape Large; moderate; 

2–3 yearsGrassland: coastal 

grassland*

1 KwaZulu-Natal

64%

Hakea drupacea (Gaertn. F.) 

Roemer & Schultes 

(H. suaveolens R.Br.)

1850 Hedges; widely planted Fynbos: montane, 

grassy, lowland

58 W and E Cape Small; moderate; 

6 years17%

Hakea gibbosa (Sm.) Cav. 1835 Hedges, sand stabilization; 

moderately widely planted

Fynbos: montane, 

grassy

34 W and E Cape Small; high; 2 years

11%

Hakea salicifolia 

(Vent.) Burtt.

1835? Hedges; widely planted Fynbos 3 W Cape Intermediate; 

low; not givenGrassland 2 KwaZulu-Natal

1.6%

*The Pondoland coastal grassland occurs on a geological formation which is part of the same group that is dominant in the fynbos biome and the 

vegetation includes many species with phylogenetic relationships with fynbos (van Wyk & Smith, 2001).

Table 2 Summary of the distributions of three Hakea species based on quarter-degree square data (0.25° latitude × longitude, QDS) from the 
South African Plant Invaders Atlas data base (SAPIA; Henderson, 1998) and records from the Protea Atlas data base (A. G. Rebelo, personal 
communication, 2006).

Species

SAPIA records|number 

of QDSs

Protea Atlas records|number 

of 1′ squares

Localities (QDS) recorded in 

SAPIA but not in Protea Atlas

Localities (QDS) recorded in 

Protea Atlas but not in SAPIA

Hakea drupacea 58|29 518|171 4 1

Hakea gibbosa 36|21 765|221 3 1

Hakea sericea 226|85 6005|1719 5 18

Easternmost (SAPIA*) Easternmost (Protea Atlas) Mean location (Protea Atlas data) Range (deg latitude)

Hakea drupacea 26.12° E, 33.38° S 25.58° E, 32.69° S 18.89° E, 34.20° S 7.26

Hakea gibbosa 26.63° E, 33.38° S 25.55° E, 32.84° S 19.27° E, 34.31° S 7.21

Hakea sericea 30.12° E, 30.88° S 30.19° E, 30.93° S 20.58° E, 33.88° S 11.86

*Calculated as the centre of the quarter-degree square.

http://www.environment.gov.au/biodiversity/abrs/online-resources/flora/main/
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Figure 1 Locality map and the current distributions of three Hakea species in South Africa based on records from the Protea Atlas data base (A. G. Rebelo, personal communication, 2006).
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values found in the presence data. Records from inside the limits

of climate values found in the presence data are potentially false

absences, at least in terms of the climatic variables being assessed

and should, ideally, be excluded from the pseudo-absence data.

This rationale is followed in this paper where we compare

models developed using data sets which include or exclude

absence samples from within ranges of climatic factors believed

to represent true limits of the potential distribution of the

invading species. The first step is to screen potential variables

using general ecological principles, and knowledge of the species,

to identify those that are most likely to be limiting. The second

step is to use thresholds in one of more of these variables to

divide the areas where there are no presence records into: (1)

those that are probably invadable because they fall within those

thresholds (false absences); and (2) those considered non-

invadable because they fall outside those thresholds (true

absences). The variables used to define the thresholds must

be excluded from the subsequent modelling because stepwise

models would select them because they are directly linked to the

presence and absence thresholds.

 

Study area

 

The potential study area was the whole area covered by the

available climate data sets, namely South Africa, Lesotho and

Swaziland (Fig. 1). The selection of threshold values for the

climatic variables reduced this total area substantially depending

on the particular variables. A 1

 

′

 

 

 

×

 

 1

 

′

 

 latitude 

 

×

 

 longitude grid

(based on the WGS 1984 datum) was used as the basic grid for

the analyses and modelling in this study and is referred to as the

1MS grid.

 

Species distribution data

 

Data on the spatial distribution of 

 

Hakea

 

 species in South Africa

are available from the South African Plant Invaders Atlas

(SAPIA) (Henderson, 1998) as well as the Protea Atlas (Rebelo,

1991). There are important differences between these data sets in

species distributions and numbers of records (Table 2). The Pro-

tea Atlas data were selected because they are available at a much

finer resolution (< 1

 

′

 

 of latitude 

 

×

 

 longitude) and generally give a

more thorough coverage (Table 2). More than 7400 records are

available for the three 

 

Hakea species used in this study: 518

for H. drupacea, 765 for H. gibbosa and more than 6000 for

H. sericea. Population sizes at each locality were recorded in

four classes: 1–9 individuals, 10–100, 100–10,000 and > 10,000

plants. Populations could also be recorded as extinct where

there were dead adults but no regeneration. ‘Extinct’ records

were included in this study because they indicate that the species

had been able to invade this site. The value of each climatic

variable for each Hakea atlas record was obtained by using the

Identity function in ArcGIS to overlay the presence (point) data

on the underlying gridded climatic data.

Two presence data sets were used in the analyses. The complete

presence data were used in the determination of thresholds and

initial analyses. For the regression model fitting, a random

sample of 10% of the presence records for each species was

selected using the random sampling option in the Animal

Movement extension developed for ArcView 3.2 (Hooge &

Eichenlaub, 1997; http://www.absc.usgs.gov/glba/gistools/animal_

mvmt.htm; copy of Version 2.0 downloaded 2 March 2007).

This was done to reduce the number of true absence samples

(see below) required to provide similar numbers of presence

and absence records, i.e. moderate prevalence as recommended

by McPherson et al. (2004), whilst balancing this with the general

finding that increasing sample sizes result in asymptotic

improvements in model accuracy (Stockwell & Peterson, 2002;

Kadmon et al., 2003; Reese et al., 2005; Heikkinen et al., 2006;

but see Elith et al., 2006). In this case there were at least 100

presence and absence records for each analysis.

Absence data

A set of 1500 1MS grid cells from the entire study area was

selected using random coordinates. A random subsample of

500 of these was chosen for use in the models which included

all absences (i.e. true and false absences). A second random

set of 500 absence records was selected after the original

1500 had been filtered to exclude those with values that lay

within the predetermined thresholds. These were used as the

true absences.

Statistical analyses and modelling

Statistical analyses and the generation of the sample of 1500

coordinates, for selection of true absence locations, were done

using sas version 9.1.2 (SAS Institute Inc., 2004) and Microsoft®

Office Excel 2003. The processing of the spatial data was done

using ArcView 3.2a and ArcGIS 9.1. The distribution model

fitting was done with the biomod package (version 2006.01.26)

developed by one of the authors (Thuiller, 2003) and imple-

mented within the R software (http://cran.r-project.org/; copy of

Version 2.3.1 (2006-06-01) downloaded 20 August 2006). The

biomod package fits a range of statistical models to species

presences and absences and the values for environmental

variables for the same localities. The model mainly used in this

analysis was the generalized linear model (GLM). The results

of the generalized additive model (GAM) were generally very

similar. biomod also fits a surface range envelope (SRE) which

simply uses the upper and lower limits of each of the climate

variables in the presence records to define a multidimensional

envelope. Potentially nonlinear responses to climatic variables

were included by allowing both GLM and GAM models to fit

low-order polynomial relationships.

The goodness of fit was evaluated using the residual deviance

and the Akaike information criterion, the predictive accuracy

was estimated using the area under the receiver operating curve

(AUC) and the presence–absence cut-off was selected as the one

maximizing the percentage of presences and true absences which

were correctly predicted. biomod randomly partitioned the data

(70% model calibration and 30% for model evaluation) as

recommended by Guisan & Zimmermann (2000).

http://www.absc.usgs.gov/glba/gistools/animal_mvmt.htm
http://cran.r-project.org/
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Climate data and variables

The basic climatic data were taken from Schulze et al. (1997) and

are available for a 1′ × 1′ latitude × longitude grid (Table 3). The

seasonal rainfall concentration values, calculated using the

method due to Markham (1970), were taken from Schulze et al.

(1997). Fifteen basic climatic parameters were derived by Mgidi

et al. (2007) from climatic data in Schulze et al. (1997) and were

included in this analysis. We also included the variables used by

Rutherford et al. (2000) which were based on those derived by

Schulze & Perks (1999) for current climatic conditions.

Selection of variables and thresholds

It is very difficult to be sure whether the limits of a distribution

are determined only by environmental or biotic factors or by

some combination of these distinct types. In this study climatic

factors were chosen because they tend to define absolute limits

which are easy to interpret and easy to use for delimiting potential

distributions, particularly temperature and moisture availability

(see review by Woodward, 1987; Cramer et al., 2001). Non-climatic

factors which have been used in studies of the Cape flora include

vegetation indices, elevation (which is correlated with temperature

and rainfall) and soil fertility, texture and pH, which have

been found to have statistically significant associations with the

distributions of fynbos species (Rutherford et al., 2000; Gelfand

et al., 2006; Latimer et al., 2006; Midgley et al., 2006). However, a

preliminary screening indicated that soil fertility (which is corre-

lated with soil texture and pH) is only weakly associated with the

presence and absence of Hakea species, so soil fertility was not

included in this analysis. The robustness of the chosen limits

depends on the reliability of the species records and the climate

data interpolation. The resolution of the climatic data and the

Protea Atlas data are the best available.

The initial screening of the climatic variables was done using a

standard chi-square test of the goodness of fit between values for

cells with Hakea and all the cells in the study area. The number of

classes and class intervals were chosen to minimize the occur-

rence of zero counts in a class. Variables with non-significant

chi-square values were excluded from further analysis. The

variables used to define the potential distribution were also

assessed visually, focusing on areas where there are steep climatic

gradients and Hakea invasions are known to have been present

for several decades in the vicinity (within 1–2 km). The area

chosen for this was the mountain areas inland of Cape Town

where Hakea was introduced more than 100 years ago and

historical invasions were very extensive (Fugler, 1979). A

three-step process was followed: (1) A threshold value was

selected for a given climatic variable and overlaid on the presence

records using GIS. (2) The value was adjusted iteratively and the

boundary redrawn until it enclosed all the presence records while

still including potentially invadable areas. The latter criterion was

included because most of the lowland areas, with lower rainfall,

have been converted for agriculture (Cowling & Pressey, 2003)

and are no longer invadable (e.g. cultivated land). Thus the lower

threshold for rainfall had to take land conversion into account.

The invadable areas were taken as being the natural remnants in

the land-cover data set created for conservation planning

(C.A.P.E. Natural Remnants http://bgis.sanbi.org/c.a.p.e/

naturalRemnants.asp accessed February 2007). (3) The selected

threshold value was tested across all the presence records and,

in most cases, covered the rest of the records as well. There were

just 14 exceptions to the threshold value for the mean minimum

temperature of the coldest month, which were all located in one

Table 3 Summary of the chi-square tests for the basic rainfall and 
temperature variables from Schulze et al. (1997), Mgidi et al. (2007) 
and from variables developed by Schulze & Perks (1999) and used by 
Rutherford et al. (2000). The number of classes used was based on 
the range of the data and an analysis of the distribution of all the data 
relative to the cells where Hakea occurred. Equal size classes were 
used in most cases. All chi-square values are significant (P > 0.05).

Variable Chi-square value

Mean annual rainfall (mm) 2790.28

Rainfall of wettest month (mm) 1796.47

Rainfall of driest month (mm) 5365.57

Rainfall of wettest quarter (mm) 2530.36

Rainfall of driest quarter (mm) 7624.97

Rainfall of coolest quarter (mm) 10854.85

Rainfall of warmest quarter (mm) 1145.89

Rainfall concentration (%) 1966.18

Mean annual temperature (°C) 516.66

Average temperature range (°C) 1763.04

Minimum temperature of coolest month (°C) 1854.92

Maximum temperature of warmest month (°C) 651.43

Mean temperature of coolest quarter (°C) 759.31

Mean temperature of warmest quarter (°C) 843.25

Mean temperature of wettest quarter (°C) 2495.38

Mean temperature of driest quarter (°C) 1310.25

Coefficient of variation of the annual rainfall (%) 2302.15

Mean monthly rainfall – winter1 months (mm) 11321.21

Mean monthly rainfall – summer1 months (mm) 874.11

Potential evaporation2 – July (mm) 1042.05

Potential evaporation2 – January (mm) 1650.52

Mean annual A-pan evaporation (mm)3 2186.92

Mean duration of the growing season (days) 2429.67

Moisture stress days3,4 – July (%) 10075.72

Moisture stress days4 – January (%) 1026.62

Mean soil moisture days3,5 – summer6 (days) 848.76

Mean soil moisture days3,5 – winter6 (days) 10042.60

Mean winter1 heat units3 (degree-days > 10 °C) 515.89

Mean summer1 heat units3 (degree-days > 10 °C) 838.32

Annual heat units3 (degree days > 18 °C) 785.31

1Winter = April to September, summer = October to March.
2Estimated using the FAO58 method (Schulze et al., 1997).
3Variables used by Rutherford et al. (2000).
4Soil moisture stress days are those where transpiration is < 50% of the
potential maximum because plant available water in the A-horizon was
< 40% of the maximum (Schulze et al., 1997).
5The inverse of the soil moisture stress days summed for the respective
months.
6Winter = May to August, summer = November to February.

http://bgis.sanbi.org/c.a.p.e/naturalRemnants.asp
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portion of a remote mountain range. Adjustment of the thresh-

old by 2 °C to include these outliers would add 15% to the total

area of the envelope so it was more reasonable to accept that the

modelled climate parameters for this remote area were inaccurate

than to adjust a threshold which was robust in well-instrumented

areas.

Spatial autocorrelation and multicollinearity

Spatial autocorrelations and multicollinearity within and

between the input variables alter the model statistics and bias

the goodness of fit measures, making them overestimate the

accuracy of the model (Legendre, 1993; Guisan & Zimmermann,

2000; Robertson et al., 2001). Multi-collinearity was minimized

by a priori exclusion of correlated variables and spatial correlation

was reduced by randomly subsampling the climate data. This

does not eliminate spatial autocorrelation completely (Legendre,

1993; Guisan & Thuiller, 2005; Dormann, 2007). The remaining

spatial autocorrelation is not considered to be an issue in this

analysis because the emphasis is on comparing model outputs,

all of which would be subject to the same degree of bias, rather

than the accuracy with which specific models fitted the data.

HAKEA  SPECIES RESULTS

Abundance data

Both the complete and the random sample presence data sets on

population sizes and on the numbers of records per 1MS cell

were tested to see if they were related to any climatic variables.

None of the relationships were significant nor were there signifi-

cant differences between abundance classes in the mean values of

any of the climatic values. Thus there was no evidence that the

number of plants in the population or the number of popula-

tions per 1MS was greater near the centre of the range of values

for different climatic variables. Nor was there any evidence that

small populations or numbers or records per unit area occur

mainly at or near the margins of the distributions. Therefore the

data used in the subsequent analyses were treated as simple

presence–absence values.

Climatic variables

The best predictors were, in order: rainfall in the coldest quarter

(RCQ), mean monthly rainfall of the winter months, percentage

of moisture stress days in July and mean soil moisture days in

winter (Table 3). The next highest chi-square values were for:

rainfall in the driest quarter (RDQ) and the rainfall in the driest

month. The RCQ has a strong and nonlinear relationship with the

occurrence of Hakea (Fig. 2). The high chi-square value (Table 3)

is mainly because only 15% of the Hakea-invaded 1MS cells have

an RCQ of < 100 mm compared with 95% of those in the study

area. The corresponding values for < 50 mm are 0.7 and 89%,

respectively. Inspection of the spatial distribution showed that

the low frequency of Hakea records from areas with > 1000 mm

is because most of these 1MS cells are found at high altitude

where the limiting factors may be low winter minimum temper-

atures rather than rainfall.

The RDQ also shows a markedly different frequency distribu-

tion than that for South Africa, with no Hakea invasions at

< 5 mm and very few at less than 10 mm (Fig. 3). The rainfall

concentration had a relatively low chi-square value. The variables

moisture stress days and mean soil moisture days showed

marked seasonal contrasts: both having high chi-square values

for winter months (July and May to August, respectively) and

low values for the summer months (Table 3). The differences for

the winter months seem to be primarily due to most Hakea

records being from the winter rainfall areas in the west and south

of their range. The high chi-square value for the percentage of

moisture stress days in July is mainly because there are only nine

Hakea-invaded cells with > 75% of days compared with about

50% of the study area.

Figure 2 Relative frequency of 1′ × 1′ squares (1MS) in different 
classes of rainfall during the coldest quarter (mm) for South Africa 
and for those invaded by Hakea species. Values on the x-axis are the 
upper boundary of the class. Data from Mgidi et al. (2007), raw data 
from Schulze et al. (1997). Note the logarithmic scale on the y-axis 
and the truncated bar for < 100 mm.

Figure 3 Relative frequency of 1′ × 1′ squares (1MS) in different 
classes of rainfall of the driest quarter (mm) for South Africa and for 
those invaded by Hakea species. Values on the x-axis are the upper 
boundary of the class. Data from Mgidi et al. (2007), raw data from 
Schulze et al. (1997). Note the logarithmic scale on the y-axis.
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None of temperature variables had comparably high chi-square

values (Table 3). The highest chi-square value was for the mean

temperature of the wettest quarter followed by the average

temperature range and the temperature of the coldest month

(TCM). There were no recorded Hakea invasions with a TCM of

≤ 0 °C (Fig. 4) with only one Hakea invaded 1MS occurring in an

area with an estimated minimum of < 1 °C. Nearly 30% of all the

1MSs in the South Africa region have a TCM of ≤ 1 °C. None of

the variables using heat units had high chi-square values.

All the recorded populations of Hakea were confined to

elevations less than 1400 m. Only about 5% of the 1MSs in the

study area have a greater elevation, but it is notable that these

areas are uninvaded even where they are adjacent to numerous

Hakea populations and well within the seed dispersal range.

Defining the climatic thresholds for screening 
pseudo-absence records

The final choice of the variables and the thresholds that would be

used to define the boundaries of the potential distribution of

Hakea was made by: (1) Selecting the variables with high chi-

square values and comparing them visually with the distribution

of the Hakea records from the Protea Atlas data set generalized to

a 1MS resolution. (2) Selecting the variable with the next highest

chi-square that was not strongly correlated with the RCQ.

The strongest candidates were: mean winter monthly rainfall

(MWMR), moisture stress days in July and mean soil moisture

days in winter and rainfall of the driest quarter (RDQ). The first

three were all strongly correlated (r 2 > 0.75, P < 0.01). Soil

moisture balance modelling introduces additional sources of

error so the simplest variables, those derived directly from

measurements, were chosen. The final choice was to use the RCQ

as the first variable. The next uncorrelated variable with a high

chi-square value was the rainfall of the driest quarter (RDQ).

After some preliminary analysis and visual interpretation the

threshold for the RCQ was set at 30 mm and the RDQ at 6 mm

which excluded only 14 (0.7%) of the 2065 Hakea-invaded 1MS

grid cells. The addition of further variables made little difference

to the boundaries so no further variables were chosen for use in

screening.

Modelling with and without predetermined climatic 
thresholds

The SRE model was used to generate a map which would show

the climate envelope defined for the Hakea species using all the

presence records from the Protea Atlas data (Fig. 5) and all the

climate variables: rainfall of the coolest quarter (RCQ), rainfall of

the driest quarter (RDQ), mean minimum temperature of the

Figure 4 Summary of the relative frequency all 1′ × 1′ grid cells in 
the study area and for those invaded by Hakea in classes of the mean 
minimum temperature for the coldest month (May to August). 
Data from Mgidi et al. (2007), raw data from Schulze et al. (1997). 
Note the logarithmic scale on the y-axis.

Figure 5 The potential distribution of 
Hakea species using the surface range 
envelope (SRE) model (0 = absence and 
1 = presence) based on all the Protea Atlas 
records. QDS = the quarter degree squares 
where Hakea populations were recorded 
during the Protea Atlas study (data supplied 
by Dr A. G. Rebelo, SANBI).
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coldest month (TCM), mean rainfall of the summer months

(MSMR), mean duration of the growing season (MDGS, days)

and mean temperature of the wettest quarter (TWQ). The map

shows the full extent of the potential distribution for all species

based on the maximum and minimum values of all the climatic

variables for all the presence records using a scale of either absent

(0) or present (1). The potentially invadable area includes all the

coastal and inland mountain ranges of the Western and Eastern

Cape and extends in a broad band up the east coast but not into

north-eastern KwaZulu-Natal. The results of the SRE model

fitted to the subsample of the Protea Atlas records used in the

other models (below) shows a much more restricted climate

envelope, particularly in the Eastern Cape and KwaZulu-Natal

(Fig. 6) although it still includes virtually all the presence

records.

The GLM model for all the species, and with all the pseudo

absence records, used the two threshold variables (RCQ and

RDQ and the TCM (Table 4). All the fitted relationships were

nonlinear and used third-order (cubic) polynomials. Both

RCQ and RDQ had regressions with a threshold near the

chosen values (30 mm and 6 mm, respectively) and TCM used

a quadratic form with a maximum probability at about 4 °C

and zero probability at 0 °C and 10 °C, similar to the actual

distribution (Fig. 4).

The potential distribution of H. sericea based on a GLM using

all the selected climatic variables and all the absences is shown in

Fig. 7. The climate variables used for this model were RCQ,

RDQ, MSMR, MDGS and TWQ (Table 4). The GLM model used

polynomial models with RCQ, RDQ and TCM as variables. The

selected threshold to transform the probability values into binary

presence and absence is 0.343 and this boundary would include

94% of the sample records. This still excludes some of the records

in the 10% random sample of presence records, particularly the

record from the north-eastern part of the Eastern Cape.

The potential distribution based on a priori exclusion of false

absence records with an RCQ < 30 mm and RDQ < 6 mm shows

some interesting contrasts (Fig. 8). The GLM used TWQ, MSMR

and TCM as the strongest predictors (Table 4). The extent of the

potential distribution has been increased and the boundaries are

now much sharper with few areas in intermediate probability

classes. The threshold value for presence–absence is 0.56, which

is higher than for the previous analysis and includes 99.8% of the

sampled records but still excludes the presence records in the

Wild Coast. The modelled potential distribution in this case

includes montane areas on the northern side of Lesotho as well as

areas of the northern coast of KwaZulu-Natal (Fig. 8). These

areas were not included in the SRE model for the full set of Hakea

records (Fig. 5) or for the 10% random subsample (Fig. 6).

Similar results were obtained for H. drupaceae and H. gibbosa

(Fig. 9). In each case, excluding the false absences (i.e. those with

a high likelihood of being true presences) increased the extent of

the area projected by the model as indicating a high invasion

potential and the proportion of intermediate probabilities

declined. Taking H. sericea as an example, 1.5% of the 1MS grid

cells were classified as having a presence probability of > 0.8 for

the full pseudo-absence set compared with 6.5% when the false

absences were excluded. The zero probability 1MS cells increased

from 90.0% to 92.7% in H. sericea and H. drupaceae but

decreased in H. gibbosa. The predicted distributions included

most of the recorded populations of these two species with a high

probability of their being present. Using the full sample of

pseudo-absence data for H. sericea, only 4.5% of the presence

records were given an invasion potential probability of less

than the threshold of 0.34 (Table 4), and only 3.4% of the

pseudo-absence records a probability > 0.34. When the false

absences were excluded, these percentages decreased to 0.75%

and 0.22%, respectively, although the presence–absence

probability threshold was now 0.56.

Figure 6 The potential distribution of Hakea 
species using the surface range envelope (SRE) 
model: 0 = absence and 1 = presence based on 
a subsample of the Protea Atlas records. 
QDS = the quarter degree squares where 
Hakea populations were recorded during 
the Protea Atlas study (data supplied by 
Dr A. G. Rebelo, SANBI).
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Table 4 Summary of the variables and the functions fitted to the data using the generalized linear model with summary statistics on the fit of 
the model. The second- and third-order functions are quadratic and cubic, respectively. 

Species

Excluding false 

absence records Variable Function

Null 

deviance

Degrees of 

freedom

Residual 

deviance AIC

Cut-off 

(ROC) Sensitivity Specificity

All No RCQ 3rd order 1553.28 1385 231.36 251.36 0.412 96.53 96.44

RDQ 3rd order

TCM 3rd order

Yes TWQ 2nd order 1503.67 1285 13.13 12.2 0.04 99.18 99.26

MSMR 3rd order

TCM 2nd order

H. drupacea No RCQ 2nd order 302.02 1078 55.64 65.64 0.08 98.04 97.52

TCM 2nd order

Yes TWQ 2nd order 308.48 978 < 0.01 12.0 0.99 100 100

MSMR 2nd order

TCM 1st order

H. gibbosa No MSMR 2nd order 406.42 1095 33.44 49.45 0.001 97.33 98.06

RCQ 3rd order

PEt07 2nd order

Yes TWQ 2nd order 442.38 995 0.001 10.0 0.99 100 100

MSMR 2nd order

H. sericea No RCQ 3rd order 1358.20 1323 221.78 239.78 0.34 96.26 96.11

RDQ 3rd order

TCM 2nd order

Yes TWQ 2nd order 1340.31 1223 14.81 38.81 0.56 99.75 99.77

MSMR 3rd order

TCM 3rd order

MDGS 3rd order

AIC, Akaike information criterion; RCQ, rainfall of the coldest quarter; RDQ, rainfall of the driest quarter; TCM, temperature of the coldest month; 

TWQ, temperature of the wettest quarter; MSMR, mean summer month (October to March) rainfall; PEt07, July potential evaporation; MDGS, mean 

duration of the growing season in days; Cut-off (ROC), the probability threshold for presence as determined from the area under the receiver operating 

characteristic curve; sensitivity, the proportion of the presence records correctly predicted; specificity, the proportion of absence records correctly 

predicted.

Figure 7 The potential distribution of Hakea 
sericea using a generalized linear model (GLM) 
shown as a probability surface fitted to the full 
set of climatic variables. QDS = the quarter 
degree squares where H. sericea populations 
were recorded during the Protea Atlas study 
(data supplied by Dr A. G. Rebelo, SANBI). 
This figure is available at high resolution in 
the Supplementary Material (Figure S1).
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DISCUSSION

The results of this study show that a priori screening of absence

records using climatic variables can be a useful approach to

refining our understanding and ability to define the potential

distribution of an invading species. The chi-square analysis,

supplemented with visual assessment of an overlay of the dis-

tribution records on the climatic variables, proved to be a useful

way of identifying the climatic variables with strong relationships

with the presence and absence of Hakea species. One advantage

of the chi-square analysis is that it does not assume a particular

form of environmental response, meeting the concerns of Austin

(1980, 1999, 2007) and others (e.g. Green, 1971) about fitting

appropriate forms of the response functions. Where the test

shows there are marked differences, and these are situated in

the upper or lower range of the values of a given variable, they

give a strong indication of the existence of a threshold.

The choice of variables selected for the GLM and GAM models

was also consistent with the chi-square ranking (Table 4): RCQ,

RDQ and TCM were generally included when the full pseudo-

absence data set was used. When the RCQ and RDQ were

excluded the TCM, MSMR and TWQ were consistently used.

The consistent use of these variables suggests that they are robust

variables to use in screening plants and should be considered for

other studies in the future as they can be derived from very basic

climatic data. The importance of TCM is interesting, particularly

the possibility that Hakea species have been prevented from

invading mountain areas with TCM less than about 1 °C which

corresponds roughly with an elevation greater than 1400 m. This

relationship was not identified in a previous study of the factors

determining its distribution (Richardson, 1984) although TCM

was used to define H. sericea’s invasion potential by Richardson

et al. (2000). The mapped native distributions of these species in

Australia do not include high mountain areas (Flora of Australia

Online, http://www.environment.gov.au/biodiversity/abrs/

online-resources/flora/main/, accessed 13 November 2006),

indicating that these species may be sensitive to low temperatures.

Our results emphasize that relationships between environ-

mental factors and species responses are often nonlinear and

asymmetric (Austin, 1980). In this study most of the relation-

ships were curvilinear, with many having a sigmoid or asymptotic

form (often represented by a third-order polynomial) or quadratic

(Table 4), although in some cases they seemed to be multimodal.

The issue of non-unimodal relationships between environmental

factors and species responses is an interesting one and difficult to

conceptualize. Intuitively, we would expect a unimodal response

to a single factor, an approach exemplified in the results of the

classical gradient studies of Whittaker (1975). A multimodal

relationship with a particular variable could be the result of the

influence of a second, probably uncorrelated, climatic or

non-climatic variable which results in there being relatively few

occurrences within a particular range of the first variable.

Deviations from monotonic relationships may offer new insights

and merit some additional research. An alternative approach to

the problem of defining the a priori thresholds more objectively

is quantile regression, which can fit upper and lower quantiles to

data similar to those used in this study (Koenker & Hallock,

2001; Cade & Noon, 2003). Algorithms and R-code for quantile

regression using binomial response variables are currently under

development (R. Koenker, personal communication, February 2007).

Correlation analyses found that many of the input variables

were strongly correlated with each other, both positively and

negatively. In this study we deliberately excluded the strongly

correlated variables because we believe that the a priori exclusion

of correlated variables is an important step in reducing multi-

collinearity in the independent variables. We suggest that the use of

the basic variables such as rainfall and temperature reduces the

uncertainties in the estimates and is just as meaningful ecologically.

A number of other studies have included minimum temperature

variables (e.g. TCM) and elevation (e.g. Gelfand et al., 2005;

Figure 8 The potential distribution of 
Hakea sericea using a generalized linear 
model (GLM) shown as a probability surface 
fitted to the reduced set of climate variables 
and excluding absence samples within the 
predefined climate boundaries. See the text 
for more information. QDS = the quarter 
degree squares where H. sericea populations 
were recorded during the Protea Atlas study 
(data supplied by Dr A. G. Rebelo, SANBI). 
This figure is available at high resolution in 
the Supplementary Material (Figure S2).

http://www.environment.gov.au/biodiversity/abrs/online-resources/�ora/main/
http://www.environment.gov.au/biodiversity/abrs/online-resources/�ora/main/
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Latimer et al., 2006) but the strong correlations between these

variables imply that using both increases the multicollinearity.

The lack of a strong relationship between the climatic factors

included in this analysis and the number of populations per

1MS or the population size, from the Protea Atlas data, was

unexpected. This was particularly so because of the significance

of the chi-square analyses of the relationships between the values

of the climatic variables for all records and those where Hakea

had invaded (Table 3, Figs 2–4). A previous study of Protea species

found that abundance data were useful in understanding

environmental preferences and site history (Latimer et al., 2006).

Our expectation was that the same conditions that favour the

establishment of populations would also favour the competitiveness

and growth rates of the species and the recruitment of large

populations, as recognized by Grinnell (1917) (for recent reviews

and discussions of this issue see Arim et al., 2006; Austin, 2007),

although non-climatic factors may also determine abundance

(Hutchinson, 1957; Barry & Elith, 2006). The typically exponential

relationship between the time since that population was founded

and number of individuals in that population could be a con-

founding factor (see Wilson et al., 2007), provided that new and

old invasion foci were more or less evenly distributed or that old

foci occurred near the edge of the current distribution. The impact

of human activities in determining where the source populations

were established may be a factor. Livestock corrals tend to be situated

where the climatic conditions are suitable for human habitation.

This would tend to be on the lower mountain slopes and in valleys

where the climatic conditions are closer to those that indicate the

limits of the current distributions of the three species.

The robustness of this absence filtering approach depends

strongly on an adequate knowledge of the ecology, invasion

history and current distribution of that species but it also

provides more insights than a single ‘best’ model (Lütolf et al.,

2006). The more knowledge and insight that can be generated

through the modelling process, the better the guidance that can

be provided to managers. Given that agencies involved with

invasive species have to make choices anyway, studies that can

reduce the degree of uncertainty or offer new insights can

provide valuable information for designing control strategies

and making tactical choices.
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SUPPLEMENTARY MATERIAL

The following supplementary material is available for this article:

Figure S1 The potential distribution of Hakea sericea using a

generalized linear model (GLM) shown as a probability surface

fitted to the full set of climatic variables. See legend to Fig. 7 for

additional details.

Figure S2 The potential distribution of Hakea sericea using a

generalized linear model (GLM) shown as a probability surface

fitted to the reduced set of climate variables and excluding absence

samples within the predefined climate boundaries. See legend to

Fig. 8 for additional details.

Figure S3 The potential distributions of Hakea drupacea and

Hakea gibbosa using a generalized linear model (GLM) shown as

probability surfaces fitted to the full set of climate variables (a and

b) and excluding pseudo-absence samples with the predefined

climate boundaries (c and d). See legend to Fig. 9 for additional

details.

This material is available as part of the online article from:

http://www.blackwell-synergy.com/doi/abs/10.1111/

j.1466-8238.2008.00407.x

(This link will take you to the article abstract).
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the authors. Any queries (other than missing material) should be
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