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A variety of predictive models is currently used to map the spatial distribution of earth
surface processes and landforms. In this study, we tested statistical consensus methods in
order to improve the predictive accuracy of geomorphological models. The distributions
of 12 geomorphological formations were recorded at a resolution of 25 ha in a sub-arctic
landscape in northern Finland. Nine environmental variables were used to predict
probabilities of occurrence of the formations using eight state-of-the-art modelling

Keywords: techniques. The probability values of the models were combined using four different
Glriccertaint consensus methods. The accuracy of the models was calculated using spatially
Lan dformsy independent test data by the area under the curve (AUC) of a receiver-operating

characteristic (ROC) plot. The mean AUC values of the geomorphological models varied
between 0.711 and 0.755 based on single-model techniques, whereas the corresponding
values based on consensus methods ranged from 0.752 to 0.782. The weighted average
consensus method had the highest predictive performance of all methods. It improved the
accuracy of 11 predictions out of 12. The results of this study suggest that the consensus
methods have clear advantages over single-model predictions. The simplicity of the
consensus methods makes it straightforward to implement them in predictive modelling
studies in geomorphology.

Predictive modelling

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Knowledge of the spatial distributions of earth surface
processes, landforms and the underlying environmental
factors affecting them has an important role in geomor-
phological research (Allen, 1997). However, data on the
distribution of different processes and landforms are often
scarce and can be difficult to acquire. One potential means
to complement the insufficient information concerning
the distribution of geomorphological phenomena and
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suitable physical environments for them is provided by
predictive geomorphological modelling (Vitek et al., 1996;
Luoto and Hjort, 2005).

Recently, spatial modelling has become one of the key
issues in geomorphology, e.g. in assessing the stability of
steep terrain (Dai and Lee, 2002; Guzzetti et al., 2006),
mapping of the glaciated landscapes (Brown et al., 1998),
mapping of soil and bedrock properties (Kheir et al., 2008)
and periglacial processes (Mackay et al., 1992; Graff and
Usery, 1993; Luoto and Seppdld, 2002; Hjort and Luoto,
2006). Previous studies have shown that modern spatial
modelling techniques can provide useful forecasts of
geomorphological phenomena in unsurveyed parts of
landscapes (Luoto and Hjort, 2005), and can provide
valuable contributions to theoretical (Walsh et al., 1998)
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and applied research (Haeberli, 1992; Harris et al.,
2001ab; Gude and Barsch, 2005).

Development of spatial modelling in geomorphology is
based on three trends: growth in the availability of
remotely sensed (RS) data and development of GIS
techniques integrated with novel statistical methods
(Walsh et al, 1998). In a methodological study, Luoto
and Hjort (2005) compared different modelling techni-
ques in predictive geomorphological mapping. Most
importantly, although predictive models perform rela-
tively accurately, they do not always provide robust
spatial predictions. Such variability in modelling results
is not surprising given that spatial models are correlative
and therefore sensitive to the data and the mathematical
functions utilized to describe the distributions of geomor-
phological phenomena in relation to environmental
parameters. Process-based models using theoretical and
experimental knowledge provide an alternative that is less
dependent on empirical relationships. However, their
implementation at the landscape level is difficult because
of the complex processes and interactions that must be
represented; and variability in forecasts is also common
(AraGjo and New, 2006). To overcome the problem of
variability in predictions, the use of multiple models
within a consensus modelling framework has been
presented in various fields of research, e.g. in ecology
(Huang and Lees, 2004; Thuiller, 2004; Aradjo et al.,
2005b; Huang and Lees, 2005), economy (Gregory et al.,

Arclic Ocean

2001), biomedicine (Nilsson et al., 2000), meteorology
(Sanders, 1963), climatology (Benestad, 2004) and hydrol-
ogy (Goswami and O’Connor, 2007).

In this study, eight state-of-the-art modelling techni-
ques were utilized to predict the distribution of 12
geomorphological landform types in sub-arctic Finland.
Next, the predictive performances of four consensus
methods combining the model outputs (probability
values) of eight modelling techniques were evaluated.
We put special emphasis on model testing, and therefore
we assessed the accuracy of the predictive models with
spatially independent evaluation data (Fig. 1). The use of
spatially independent data are of particular value since
alternative approaches, including re-substitution and one-
time data splitting, have been shown to lead to over-
optimistic estimates of the model predictive capabilities
in new areas and biased signals of the importance of
different predictors (Fielding and Haworth, 1995; Peterson
and Vieglais, 2001; AraGjo et al., 2005a; Randin et al.,
2006).

2. Study area

The study area is located in sub-arctic Finland (Fig. 1).
The topography of the area is characterized by eroded
fells with elevations ranging from ca. 200 to 640m
above sea level (a.s.l.). Geologically, the area belongs to
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Fig. 1. Location of study area (black box) in northern sub-arctic Finland. Two spatially independent data sets “calibration” and “evaluation” are indicated

by B and A. Total of 2032 grid squares are also shown on map.
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a Pre-cambrian granulite complex about 1.9 billion years
old (Merildinen, 1976). Surface deposits consist of glaci-
genic till, peat, as well as sand and gravel deposits. The
area lies within the zone of discontinuous permafrost
(King and Seppdld, 1987). The mean annual air tempera-
ture was —2.0°C and mean annual precipitation ca.
400mm during the period 1962-1990 (Climatological
Statistics in Finland 1961-1990, 1991). Botanically,
the region lies to the north of the northern limit of the
continuous Scots pine (Pinus sylvestris L.) forest in the
Orohemiarctic Zone with mountain birch (Betula pub-
escens ssp. czerepanovii) as the prevailing tree species
(Ahti et al., 1968). Mires belong to the palsa and sub-
alpine mire types (Luoto and Seppdld, 2002). A more
detailed description of the study region can be obtained
from Hjort (2006).

3. Material and methods
3.1. Material

The 12 geomorphological landforms utilized in this
study were peaty permafrost mounds (palsas), frost-
formed fine-scale hummocks (convex non-sorted circles,
earth hummocks and peat pounus), sorted patterned
ground features (stone pits, sorted nets and sorted
stripes), solifluction landforms (non-sorted solifluction
terraces, sorted solifluction sheets and streams) as well as
wind deflation sites (Hjort and Luoto, 2006). Despite the
fact that landforms can be grouped, the features were
treated as distinct types because different processes
govern their formation (Washburn, 1979; French, 1996).

The landforms were mapped and converted to grid-
based modelling data in a four-step process (Hjort, 2006):

(1) A detailed stereoscopic interpretation of black-and-
white aerial photographs (1:31,000 scale) was per-
formed to identify landforms from the study area
before fieldwork.

(2) The features were mapped utilizing pre-mapping
results in the field during the summers of 2002 and
2003. The positions of the landforms were located
with a Global Positioning System (GPS) device
(Garmin eTrex personal navigator; spatial accuracy
ca. 10 m).

(3) The field-mapping results were digitized in a vector
format on ortho-rectified aerial photographs utilizing
GIS software.

(4) A binary variable (1 = present, 0 = absent), indicating
the occurrence of the landform, was allocated to
each modelling square using the geomorphological
database.

The explanatory data utilized in the modelling were
collected from three different information sources, namely
a digital elevation model (DEM; Fig. 1), biotope database
and digital soil map (Hjort and Luoto, 2006). Three
topographical parameters, three soil-type variables and
three vegetation variables were compiled using Arc/Info
GRID at 500m cell size resolution (25ha; Table 1).

Table 1
Explanatory (environmental and spatial) variables utilized in statistical
analyses and their description Moore et al. (1991)

Variable Description

Mean altitude (m) Temperature, snow distribution,
potential energy, vegetation zone
Potential energy, water flow,
snow distribution, radiation, soil
thickness

Potential soil moisture, cold air
distribution during inversion, silt
content

High water-holding capacity,
nonconductor (dry peat)

Frost susceptible, different size of
soil particles

Frost-resistant, dry, sparse ground
layer vegetation

Snow thickness and distribution,
soil moisture and temperature
Snow thickness and distribution,
air temperature

100—(a+b)

Mean slope angle (deg)

Mean wetness index

Peat cover (100 m?)

Glacigenic deposit cover (100 m?)
Sand and gravel cover (100 m?)
Cover of schrub (%) (a)

Cover of canopy (%) (b)

Cover of alpine vegetation (%)

This rather coarse resolution was chosen based on the
accuracy assessment of the used GIS data (Hjort and
Luoto, 2006) and in an attempt to minimize the potential
risks of spatial autocorrelation in statistical analyses
(e.g. McCullagh and Nelder, 1989).

3.2. Evaluation of the models

The accuracies of the models and consensus methods
(described in Sections 3.3 and 3.4) were calculated using
spatially independent test data by the area under the
curve (AUC) of a receiver-operating characteristic (ROC)
plot (Fig. 1). The range of AUC values is from 0.0 to 1.0.
A model providing excellent prediction has an AUC higher
than 0.9, a fair model has an AUC between 0.7 and 0.9, and
a model is considered as poor if it has an AUC lower than
0.7 (Swets, 1988). Based on AUC values, a “rank average”
index indicates the average of the ranks of the modelling
technique computed for each geomorphologic landform.
In this study, eight modelling techniques and four
consensus methods were tested. The rank values vary
between 1 and 12, 12 indicating the highest model
performance. A Wilcoxon signed ranks test was used to
compare the statistical difference between the models.

3.3. Methods

All implemented modelling techniques were run in R
environment' under the BIOMOD framework (Thuiller,
2003). These techniques can be assigned to three main
categories: (1) regressive algorithms [generalized linear
models (GLMs), generalized additive models (GAMs), multi-
ple adaptive regression splines (MARS)], (2) classification
techniques [classification tree analysis (CTA) and mixture
discriminant analysis (MDA)] and (3) machine-learning

! R Development Core Team, 2004. R: a language and environment
for statistical computing. Vienna, Austria. http://www.R-project.org.
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methods [generalized boosting methods (GBMs), artificial
neural networks (ANNs) and random forest (RF)]. It is
important to stress that all models were used with a
predictive rather than inductive goal in this study. In such
circumstances, accuracy of model predictions is more
important than the significance of particular environmental
variables. We did not further investigate autocorrelation
aspects or the relative importance of different variables
(Legendre, 1993).

GLMs are mathematical extensions of linear models
(McCullagh and Nelder, 1989). Recently, GLMs appear to
be increasingly popular as the statistical model to be used.
This is due to the ability of GLMs to handle nonlinear
relationships and different types of statistical distribu-
tions characterizing spatial data. We used an automatic
stepwise procedure based on the Akaike information
criterion (AIC) in model calibration. Examples of the use
of GLMs in geomorphological studies can be found in
Atkinson et al. (1998), Rowbotham and Dudycha (1998),
Dai and Lee (2002), Luoto and Seppald (2002) and Luoto
and Hjort (2004).

GAMs are non-parametric extensions of GLMs. They
provide a flexible data-driven class of models that permit
both linear and complex additive response shapes, as well
as the combination of the two within the same model
(Hastie and Tibshirani, 1990). GAMs have been recently
used in geomorphological studies (Hjort and Luoto, 2006;
Brenning et al., 2007).

Multivariate adaptive regression splines (MARS) repre-
sent a relatively new technique that combines classical
linear regression, mathematical construction of splines
and binary recursive partitioning to produce a local model
in which relationships between response and predictors
are either linear or nonlinear (Friedman, 1991). An
important feature of MARS is its sensitivity to outliers
and to collinearity between the variables (Deichmann
et al., 2002). Examples of the use of MARS in geomorpho-
logic studies can be found in Luoto and Hjort (2005), in
climatology in Corte-Real et al. (1995) and in geophysics
in Deveaux et al. (1993).

CTA is an alternative to regression techniques, and uses
a tree structure (Breiman et al., 1984). It is a rule-based
method defined by binary decision splits about the values
of predictors (Venables and Ripley, 2002). CTA is used
rather frequently in geomorphological and environmental
studies (Franklin, 2002; Luoto and Hjort, 2005).

Discriminant analysis is used in statistics to identify
the linear combination of features which best separate
two or more classes of object. MDA is an extension of the
well-known linear discriminant analysis (LDA) (Venables
and Ripley, 2002), in which classes are modelled as a
mixtures of subclasses, with each subclass represented by
a Gaussian distribution. An example of the use of MDA in
geomorphology was presented by Merritt and Wohl
(2003).

GBM is a sequential method based on binary trees
(Ridgeway, 1999). GBM is considered as a machine-
learning method using adaptive weighting of multiple
outputs of numerous classification algorithms. The
boosted classifier’s prediction is based on an accuracy
weighted vote across the estimated classifiers (Ridgeway,

1999). Boosting methods are novel statistical techniques,
which have been used recently in ecological modelling
(Elith et al., 2006). However, to the best of our knowledge
GBM has not previously been used in geomorphological
research.

ANN are powerful rule-based modelling techniques,
which are frequently used in spatial modelling. ANN
provide an alternative way to generalize linear regression
functions (Venables and Ripley, 2002). Neural networks
have received considerable attention as a means of
building accurate models for prediction when the func-
tional form of the underlying equations is unknown (Lek
and Guegan, 1999). Luoto and Hjort (2005) evaluated the
reliability of ANN for geomorphologic mapping, and
Guzzetti et al. (1999) used this method to evaluate slope
stability. ANN is also used more widely in geomorphologic
topics such as the modelling of suspended sediment flux
in rivers (Zhu et al., 2007).

RF is a classifier belonging to the machine-learning
category based on the multiple trees method (Breiman,
2001). RF generates hundreds or thousands of trees
forming a “forest”. Each tree is grown by selecting
randomly a training dataset, with replacement from
the original dataset. In addition, the number of imple-
mented explanatory variables in each tree varies ran-
domly. To our knowledge, RF has never been used in
geomorphology.

3.4. The consensus methods

As early as 1878, ]. Willard Gibbs introduced into
statistical mechanics the notion of ensemble. It is an
idealization consisting of a large number of copies
(i.e. predictions) of a system, considered all at once, each
of which represents a possible state that the real system
might be in at some specified time (AraGjo and New,
2006). The emphasis in predictive modelling is on
combining the individual predictions in order to obtain
an enhanced one. Recently, AraGjo et al. (2005b) and
Thuiller (2004) proposed that consensus methods are
more accurate than single-model predictions. This study
presents four consensus methods: a non-selective median
technique, two selective median techniques and a selec-
tive weighted average technique (Aradjo et al., 2005b;
Goswami and O’Connor, 2007).

Median(all) consensus method is the median value of
the outputs of all eight modelling techniques. Median(all)
has been used in an ecological context by Aradjo et al.
(2005b).

Median(PCA) is run after a selective processing for the
eight single-model techniques based on a principal
component analysis (PCA). The eight single-model tech-
niques still project as previously, but an inner evaluation
is performed to select them. The original data set of
calibration (1316 grid squares; Fig. 1B) is divided into two
inner data subsets using a 70%/30% random split. The two
created subsets are called “inner calibration” (921 grid
squares) and “inner evaluation” (395 grid squares). These
both inner subsets are used to preselect four single-
models among the eight disposal ones.
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Median(PCA) consists of calculating for each geomorpho-
logic formation the median value of only four modelling
techniques, which were selected via a criterion based on a
PCA. A PCA provides for each modelling technique a rate
reflecting its ability to follow the general trend of projection
of the eight modelling techniques (see Thuiller, 2004). An
overlapped scatterplot of the eight individual predictions is
prepared, referring to the environmental variables. The first
principal component (PC1) reflects the general trend followed
by the eight single-models, for each threatened plant species.
The four models whose multi-variable scatterplot predictions
along PC1 were the greatest were selected and the median
value of these four single-models was computed. The models
that were not following the general trend were then
discriminated and not taken into account. This method was
used in the past by Thuiller (2004), Aradjo et al. (2005b) and
Thuiller et al. (2005) in a biogeographical context.

Median(AUC) consensus method, like Median(PCA), is
based on an inner validation process, however, the next step
of selection criterion is rather different. Four modelling
techniques are selected from among the eight ones on the
basis of their inner validation AUC criterion (i.e. the single-
models were calibrated and evaluated using the inner
calibration and inner evaluation data subsets). The eight
modelling techniques are ranked and the four best ones are
selected. Then the median value of these four modelling
techniques is calculated. An attempt of this nature was
made by Hartley et al. (2006) in a biogeographic context.

The weighted average (WA) consensus method utilizes
the predictive performance of the modelling techniques.
Firstly, the four modelling techniques with highest
accuracy are selected. Secondly, a WA is calculated based
on inner evaluation AUC values of the selected modelling
techniques, as described by following:

_ AUGCjp1 x m1; + AUGp x m2; + AUCp3 x m3; + AUCpy x m4;
- AUCpq + AUCp; + AUCp3 4+ AUCp4

WA,

(1)

Table 2
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where m1;, m2;, m3; and m4; are the probability values
of the ith geomorphological landform to be present
in a given grid cell for the four selected single-models.
This consensus method has been used in hydrology by
Goswami and O’Connor (2007).

4. Results
4.1. Predictive accuracy of the eight modelling techniques

The predictive accuracies of the eight modelling
techniques are presented in Tables 2 and 3. At maximum,
two geomorphological formations out of 12 were excel-
lently classified by the single-models. The mean AUC
values of the modelling techniques varied from 0.711 for
MDA and CTA, to 0.755 for GAM, with an average of 0.737.
Palsas were projected with the highest accuracy, the AUC
values varying from 0.813 (CTA) to 0.928 (GBM) with a
mean value of 0.880. Figs. 2 and 3 represent the predictive
distribution maps of earth hummocks and stone pits
based on GAM (A) and ANN (B).

4.2. Predictive accuracy of the consensus methods

On the basis of the results presented in Table 2, the
Median(All) consensus method did not perform better
than the single-model techniques. The AUC range varied
from 0.590 to 0.905 with a mean of 0.752. The “rank
average” index of Table 3 reflects this behavior. For a
given projection technique (single-model techniques and
consensus methods) this number is the average of the
projection modelling technique’s rank for each geomor-
phologic formation. The rank average of Median(All) is 7.6,
which is lower than that of GAM (7.7). GAM provides
equal or even better projection than Median(All). The
mean AUC value of GAM (0.755) and Median(All) (0.752)
for the 12 geomorphological formations underlines the

AUC values of predictions based on evaluation data of eight modelling techniques and four consensus methods (Median(All), Median(PCA), Median(AUC) and WA)

ANN CTA GAM GBM GLM MARS MDA RF Median Median Median WA
(All) (PCA) (AUC)
Palsa 0924 0813 0.866 0928  0.871 0.871 0.846 0.924 0.905 0.923 0.892 0.916
CNSC 0.660 0.506 0.607 0.592 0.607 0.562 0.605 0.637 0.608 0.641 0.624 0.713
SEC 0635 0625 0659 0635 0656 0627 0607 0612 0644 0.652 0.655 0.669
Earth 0.878 0.868 0.886 0.888 0.883 0.877 0.826 0.880 0.897 0.886 0.896 0.906
hummock - - - - -
Peat pounu 0.834 0.852 0.879 0.878 0.864 0.867 0.816 0.852 0.878 0.880 0.887 0.891
Stone pit 0.693 0.718 0.739 0.740 0.738 0.696 0.711 0.707 0.761 0.742 0.758 0.774
Sorted net 0.629 0.519 0.626 0.573 0.614 0.581 0.568 0.553 0.605 0.606 0.615 0.641
Sorted stripe 0.832 0.846 0.849 0.851 0.849 0.832 0.842 0.839 0.845 0.843 0.842 0.876
NSS terrace 0.600 0.618 0.599 0.601 0570 0.602 0.568 0.577 0.605 0.586 0.592 0.607
SS sheet 0.903 0.789 0859  0.890 0.860 0.859 0.814 0.886 0.859 0.893 0.867 0.909
SS stream 0.859 0.807 0.881 0.830 0.888 0.827 0.823 0.829 0.832 0.886 0.886 0.893
Deflation site 0562 0567  0.614 0581 0592 0578 0505 0567 0590 0.590 0.590 0.594
Mean 0.751 0.711 0.755 0.749 0.749 0.732 0.711 0.739 0.752 0.761 0.759 0.782

Italic values reflect modelling techniques used for Median(PCA). Underlined values reflect those selected for Median(AUC) and WA. Bold values indicate
best modelling technique/consensus method for a given geomorphologic case. “Mean” is mean value of each modelling/consensus technique over all 12
geomorphologic formations (CNSC = convex non-sorted circle; SEC = stony earth circle; NSS terrace = non-sorted solifluction terrace; SS sheet = sorted

solifluction sheet; SS stream = sorted solifluction stream).
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Table 3

Number of models in different accuracy classes of AUC based on eight modelling techniques and four consensus methods

ANN CTA GAM GBM GLM MARS MDA RF Median(All) Median(PCA) Median(AUC) WA
Excellent 2 0 0 1 0 0 1 1 1 0 3
Fair 4 7 7 6 7 6 6 6 7 5
Poor 6 5 5 5 5 6 5 5 5 5 4
Rank average 6.1 3.5 7.7 7.3 7.0 4.1 2.2 4.7 7.6 8.2 8.1 11.5

“Rank average” indicates average of ranks of modelling techniques computed for each geomorphologic case (12 indicates best model).

Excellent = AUC> 0.9, fair = 0.7 <AUC<0.9 and poor = AUC<0.7.

. 0  2km

: 2 —
Probability
of occurence
[ ] 000-0.10

S [ 0.10-0.50
0.50-0.90
I 0.90-1.00

Fig. 2. Estimated spatial distribution of earth hummocks in sub-arctic Finland by GAM (A; AUC = 0.886), ANN (B; AUC = 0.878) and WA (C; AUC = 0.906).
Gray levels represent different levels of probability of presence. Recorded presences (true) are shown with black dots.

equivalence of the results. A statistical analysis based on
the Wilcoxon signed ranks test confirms these similar
performances (p-value of 0.689).

The Median(PCA) and Median(AUC) methods with
mean AUC values of 0.761 and 0.759 had similar
predictive abilities. The results of the inner validation
processes are summarized in Table 4. The selected single-
model techniques were different for these two consensus
methods. On average, two or three selected modelling

techniques were common. Median(PCA) had an AUC range
from 0.590 to 0.923 with a mean of 0.761. For Media-
n(AUC), the corresponding three values were 0.590, 0.896,
and 0.759. In Table 3, the rank average of these two
consensus methods reflects the similarity of the
consensus methods [8.1 for Median(AUC) and 8.2 for
Median(PCA)]. However, considering all eight single-
model techniques, none of these consensus methods
provided the best projection for all geomorphological
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Fig. 3. Estimated spatial distribution of stone pits in sub-arctic Finland by GAM (A; AUC = 0.739), ANN (B; AUC = 0.693) and WA (C; AUC = 0.774). Gray
levels represent different levels of probability of presence. Recorded presences (true) are shown with black dots.

Table 4

AUC values of eight modelling techniques computed during inner validation process

ANN CTA GAM GBM GLM MARS MDA RF

Palsa 0.861 0.851 0.984 0.978 0.981 0.851 0.978 0.972
CNSC 0.869 0.793 0.866 0877 0.874 0.869 0.825 0.884
SEC 05636 0.606 0.706 0673 0.702 0.682 0.643 0673
Earth hummock 0.903 0.868 0.908 0913 0.909 0.911 0.879 0.915
Peat pounu 0.866 0.839 0.928 0.931 0.924 0.927 0918 0.928
Stone pit 0.750 0536 0.799 0.817 0.795 0.728 0.775 0.311
Sorted net 0.764 0.721 0834 0.829 0.851 0.710 0.742 0.799
Sorted stripe 0.909 0.842 0.951 0.924 0.948 0.888 0.887 0.900
NSS terrace 0.628 0.635 0677 0.704 0.660 0.654 0.659 0.677
SS sheet 0911 0.874 0.925 0913 0.924 0.912 0.903 0.908
SS stream 0.839 0.808 0.924 0.909 0.923 0.910 0.880 0.903
Deflation site 0.788 0.740 0.806 0.828 0813 0.820 0.791 0.805

Italic values are those selected by PCA and underlined ones are four best ones considering AUC criteria. Bold values indicate best models for a given
geomorphologic formation (CNSC = convex non-sorted circle; SEC = stony earth circle; NSS terrace = non-sorted solifluction terrace; SS sheet = sorted

solifluction sheet; SS stream = sorted solifluction stream).

formations. Both methods were statistically compared
with GAM and significant differences were not observed
[p-values of 0.790 and 0.346 for Median(PCA) and
Median(AUC), respectively].

The WA consensus method was the only consensus
method, which performed statistically better (p-value

0.011) than the most accurate single-model technique
(GAM). Fig. 4 illustrates the differences between the
predictive distribution maps based on GAM and WA for
four geomorphological landforms. For 11 geomorphological
formations out of 12 WA provided higher accuracy than
GAM (Tables 2 and 3). AUC values of WA varied from 0.594
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Fig. 4. Estimated spatial distribution of palsa mires (A and E), convex non-sorted circles (B and F), sorted stripes (C and G) and sorted solifluction sheets
(D and H) in sub-arctic Finland by GAM (top row; AUC values of 0.866, 0.607, 0.849 and 0.859, respectively) and WA (bottom row; AUC values of 0.916,
0.713, 0.876 and 0.909, respectively). Gray levels represent different levels of probability of presence. Recorded presences (true) are shown with black

dots.

to 0.916 with a mean value of 0.782, which is the highest
among the four consensus methods [Median(All): 0.752;
Median(PCA): 0.761; Median(AUC): 0.759]. The rank
average of 11.5 highlights the performance of WA.
Furthermore, the WA consensus method provides the
highest number of excellent (3 of 12) and the least poor
(4 of 12) predictions. The convex non-sorted circles
illustrate this performance. The AUC of WA (0.713) was
clearly higher than the value of Median(PCA) (0.641). The

maps presented in Figs. 2 and 3 represent the spatial
distribution of earth hummocks and stone pits estimated
by WA (C).

5. Discussion

Predictive modelling has been increasingly utilized
in several research topics (Walsh et al.,, 1998; Aradjo
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et al., 2005a; Heikkinen et al., 2006; Thuiller et al., 2006;
Pearson et al., 2007). In geomorphology, predictive
modelling has the advantage of providing relevant and
useful information on earth surface processes and land-
forms over extensive areas, such data being unavailable
through more conventional survey methods (Atkinson
et al., 1998; Rowbotham and Dudycha, 1998; Etzelmiiller
et al., 2001; Nilsson et al., 2002; Gurney and Bartsch,
2005). Spatial modelling can be used to develop predic-
tions of the locations of the most suitable sites for a given
geomorphological feature in unsurveyed parts of land-
scapes and to improve the targeting of efforts and
resources to such sites (Walsh et al., 1998; Luoto and
Hjort, 2005). Spatial modelling studies in geomorphology
have usually been conducted by employing only one
modelling approach (Atkinson et al., 1998; Luoto and
Hjort, 2004; Walsh and MacNally, 2003). Some variation is
expected from using different techniques, because differ-
ent models use different of assumptions, algorithms
and parameterizations. Thus, when studies use a single-
modelling technique there is no information about
whether the selected method provides the best predictive
accuracy for the particular data set used (Aradjo and New,
2006). In a global change study, Ara(jo et al. (2005a)
emphasized the current need to reduce the uncertainties
of model predictions. As a response to the variability in
model performance between different methods, two
recent developments to reduce the uncertainty in spatial
modelling have been defined (Aradjo and New, 2006).
Rather than using a single-modelling technique, investi-
gators can use different consensus methods: (i) choose a
framework including different methods and models for
each response variable and select the most accurate
technique using different evaluation methods, or (ii) take
a majority vote criterion approach among multiple models
thus deriving a single projection that represents the
central tendency across all models considered (Huang
and Lees, 2004; Heikkinen et al., 2006).

In this study, we tested four statistical consensus
methods to improve the modelling accuracy of geomorpho-
logical models. The predictive performances of the different
modelling techniques were somewhat variable because of
the variety of the mathematical algorithms on which the
methods are based. In addition to the technical differences,
distribution, abundance and environmental specificity of the
modelled geomorphological phenomena varied considerably
in the study area, which affected the ability of the models to
predict the occurrences of different periglacial landforms
(Hjort and Luoto, 2006; Hjort et al., 2007).

Table 5
Advantages and drawbacks of tested consensus methods

The median consensus method did not improve the
performances of the eight individual modelling techni-
ques. This was due to the median mathematical function
itself. The Median(All) method does not have any pre-
selective process of the models’ predictions. Only the
techniques with the fourth and the fifth largest probabil-
ities of the eight were directly taken into account to
calculate the new presence probability value, for each grid
square. Consequently, the resulting probability of occur-
rence can be over- or underestimated. This partly explains
the limits of the method. Nevertheless, considering the
rank average index, its average performances were at the
same level as GAM, which was on average the best-
performing single-model technique.

Median(PCA) has been used to increase the reliability
of forecasts of species extinction under climate change
scenarios. As in the study carried by Aragjo et al. (2005b),
Median(PCA) provided in general more reliable predic-
tions than single-model techniques. The same observation
also held for Median(AUC). Both methods provide the
same predictions of accuracy and the pre-selective
processing of the predictions’ models avoids the effects
of the low performing single-model techniques on the
predictions. The median function combined the second
and the third largest probability values among the
selected techniques to obtain a new projection. Our
results confirm the good performance of median con-
sensus methods obtained by Aradjo et al. (2005b).

As in the hydrological study presented by Goswami
and O’Connor (2007), the WA consensus method also
provided the most robust predictions in the present study.
Goswami and O’Connor (2007) compared this method to
other consensus methods and the obtained predictions
were promising. In the present study, in contrast to the
other evaluated consensus methods, WA was a combina-
tion of the four best single-model techniques based on
calibration data, which made it more robust compared
with the other consensus methods.

In this study, it appeared clearly that the consensus
methods were as accurate or better than the best single-
model (see Table 5). It confirms the relevance of the use of
consensus algorithms. Huang and Lees (2004, 2005)
studied the ability of consensus methods based on
majority and weighted votes for forest mapping. In their
study, methods based on weighted votes improved the
accuracy of single-models, which agrees with our results.
However, the improvement of accuracy is not similar for
all landforms. The predictive accuracy of palsa mire was
not improved by any consensus methods, whereas the

Pre-selection Statistical improvement Complexity
Median(All) None 1 Least accurate method None. P-value: 0.689 +
Median(PCA) Principal component analysis (four models) None. P-value: 0.790 ++
Median(AUC) AUC criterion None. P-value: 0.346 ++
WA AUC criterion 4 Best method Yes. P-value: 0.011 ++

Column “rank” indicates predictive accuracy of methods. Column “statistical improvement” reflects ability of methods to improve statistically accuracy of
ensemble of predictions based on Wilcoxon signed ranks tests. Column “complexity” indicates computational elaborateness of methods.
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prediction of stone pit was more accurate using consensus
methods. Huang and Lees (2004) defined a confidence
index of predictions based on the similarity of the
predictions. However, in our study, the ability of con-
sensus methods to improve the prediction of single-
models was not correlated with the confidence index.

6. Conclusion

There is a strong need for robust predictions in
geomorphologic research. Consensus methods based on
the predictions of several single-models appear to be a
powerful approach to improve the reliability of geomor-
phologic predictions. The weighted average consensus
method provided superior predictions when compared
with the other consensus methods and single-model
techniques. The weighted average consensus method,
which has not previously been used in a geomorphologic
context, improved the accuracy of 11 predictions out of
12. Spatial modelling is used in various topics of physical
geography. Although improved accuracy can be delivered
through the traditional tasks of trying to build better
models with improved data and statistical techniques, we
propose that consensus methods should be utilized more
often in theoretical and applied research projects in
geomorphology.
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