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ABSTRACT

Aim

 

Spatial modelling techniques are increasingly used in species distribution
modelling. However, the implemented techniques differ in their modelling performance,
and some consensus methods are needed to reduce the uncertainty of predictions. In
this study, we tested the predictive accuracies of five consensus methods, namely
Weighted Average (WA), Mean(All), Median(All), Median(PCA), and Best, for 28
threatened plant species.

 

Location

 

North-eastern Finland, Europe.

 

Methods

 

The spatial distributions of the plant species were forecasted using eight
state-of-the-art single-modelling techniques providing an ensemble of predictions. The
probability values of occurrence were then combined using five consensus algorithms.
The predictive accuracies of the single-model and consensus methods were assessed
by computing the area under the curve (AUC) of the receiver-operating characteristic plot.

 

Results

 

The mean AUC values varied between 0.697 (classification tree analysis)
and 0.813 (random forest) for the single-models, and from 0.757 to 0.850 for the
consensus methods. WA and Mean(All) consensus methods provided significantly
more robust predictions than all the single-models and the other consensus methods.

 

Main conclusions

 

Consensus methods based on average function algorithms may
increase significantly the accuracy of species distribution forecasts, and thus they show
considerable promise for different conservation biological and biogeographical applications.

 

Keywords

 

Distribution modelling, ensemble, machine learning methods, model selection,

 

predictive accuracy, regression and classification methods.

 

INTRODUCTION

 

Predictive species distribution models have an important role in

ecology and biogeography (Guisan & Zimmermann, 2000; Scott

 

et al

 

., 2002; Guisan & Thuiller, 2005), and are increasingly

used in a range of applications including regional biodiversity

assessments, conservation biology, wildlife management and

conservation planning (Elith 

 

et al

 

., 2006; Elith & Leathwick, 2007;

Rodriguez 

 

et al

 

., 2007; Thuiller, 2007). The increase in applications

of species distribution models is based on the growth in the

availability of remotely sensed (RS) data and development of GIS

techniques integrated with novel statistical methods (Guisan &

Zimmermann, 2000). Carefully generated predictive models can

effectively contribute to the insufficient field survey and museum

data (Muñoz 

 

et al

 

., 2005; Guisan 

 

et al

 

., 2006; Rodriguez 

 

et al

 

.,

2007), and occasionally even provide a more useful basis for

biodiversity assessments than existing published range maps and

national atlases (Bustamante & Seoane, 2004).

However, alongside the growth in the use of species distribution

models, a number of studies have addressed the errors and

uncertainties embedded in such models (Elith 

 

et al

 

., 2002; Barry

& Elith, 2006; Heikkinen 

 

et al

 

., 2006; Hernandez 

 

et al

 

., 2006).

The sources of uncertainty are diverse and range from measure-

ment errors, small sample size, missing covariates and biased

samples (Edwards 

 

et al

 

., 2006) to uncertainties in model building

procedures. Recently much attention has been paid to investigation

of the model-based uncertainty in species range prediction. This

attention is of utmost importance because the performance of

different modelling techniques has been shown to vary considerably

in predicting both broad-scale biogeographical (Thuiller, 2004;

Lawler 

 

et al

 

., 2006; Pearson 

 

et al

 

., 2006) and regional species

distributions (Manel 

 

et al

 

., 1999). There are two main approaches

to reduce the model-based uncertainty in species range simula-

tions: (i) gathering understanding, via extensive model com-

parisons, concerning which of the methods will generally provide

the best predictive performance and in what conditions
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(Segurado & Araújo, 2004; Elith 

 

et al

 

., 2006; Prasad 

 

et al

 

., 2006),

and (ii) the use of consensus methods or ensemble forecasting of

species distributions (Thuiller, 2004; Thuiller 

 

et al

 

., 2005). In this

paper we focus on consensus methods, which provide means to

combine ensembles of species range forecasts and in this way

overcome the problem of variability in predictions.

Consensus methods are based on combinative algorithms of

the predictions provided by different single-models (Gregory

 

et al

 

., 2001; Thuiller, 2003; Thuiller, 2004; Araújo & New, 2007).

These techniques have earlier been employed in economics

(Gregory 

 

et al

 

., 2001), biomedicine (Nilsson 

 

et al

 

., 2000; Nilsson

 

et al

 

., 2002), meteorology (Sanders, 1963), climatology (Benestad,

2004) and hydrology (Goswami & O’Connor, 2007). They have

recently been applied in broad-scale conservation studies,

particularly to examine the impacts of climate change on various

species (Thuiller, 2004; Araújo 

 

et al

 

., 2005b, 2006; Thuiller 

 

et al

 

.,

2005). The consensus approach is based on the idea that different

predictions are copies of possible states of the real distributions,

and they form an ensemble. Already in the 19th century, Laplace

(1820) emphasized the relevance of combinative algorithms

in increasing the accuracy of an ensemble of predictions:

‘In combining the results of these two methods, one can obtain

a result whose probability law of error will be more rapidly

decreasing’. In other words, a relevant combination of several

unbiased (i.e. with a fair accuracy) model outputs will result in a

more accurate prediction. Each sample taken into account

contains some information that will be 

 

de facto

 

 transmitted to

the resulted estimate. Some grid squares may be well classified

by some methods and misclassified by others, even if all the

methods have similar global accuracy. The term ‘consensus’

refers to a majority view or to an agreement of different model

outputs (Gregory 

 

et al

 

., 2001; Thuiller, 2004). The matter resides

in finding a relevant algorithm, the output of which follows a

majority trend. However, although the consensus approach

clearly has a number of attractive features, our understanding

of its merits is still limited. There are different ways to build

consensus predictions, and it has rarely if ever been tested

which of the consensus methods provide the best predictive

performance and whether these methods are able to consistently

generate more accurate species range predictions than recent

novel single-model methods available for species distribution

modelling (cf. Elith 

 

et al

 

., 2006).

In this study, the predictive performances of five consensus

methods were tested. As the basis for the consensus methods we

used outputs from eight state-of-the-art modelling techniques,

including generalized linear models (GLM), generalized additive

models (GAM), multivariate adaptive regression splines

(MARS), artificial neural networks (ANN), general boosting

method (GBM), random forests (RF), classification tree analysis

(CTA), and mixture discriminant analysis (MDA). These eight

single-models provided the ensemble of predictions, which

contained the eight separate predictive distributions generated

for 28 threatened plant species in north-eastern Finland. The five

consensus methods employed here form a representative sample

of the most commonly used techniques. Two methods

(Median(All) and Mean(All)) are based on global (i.e. output of

all eight single-models) median and mean functions, whereas

Weighted Average (WA), Best, and Median(PCA) methods

preselect the single-models based on certain predefined criteria.

In WA, half of the single-model outputs are preselected on the

basis of the AUC values. The selected single-models are

combined using an average function. Best proceeds via picking

up the most accurate single-model, and Median(PCA) is based

on the median of half of the single-models outputs, preselected

by a principal component analysis. The main aims of this study

were to investigate (i) which of the consensus algorithms can

improve the accuracy of predictions from single-models, and

how much, and (ii) the statistical differences in predictive ability

of the eight single-model techniques.

 

METHODS

Study area

 

The study area (41 750 km

 

2

 

) is located between 31

 

°

 

–32

 

°

 

45

 

′ 

 

E and

65

 

°

 

–67

 

°

 

50

 

′ 

 

N in north-eastern Finland. Phytogeographically, the

area lies within the northern boreal zone (Ahti 

 

et al

 

., 1968),

where pine- and spruce-dominated forests prevail. Numerous

wetlands, lakes, and rivers characterize the landscape. The

bedrock is calcium-rich, providing favourable conditions for

species-rich plant communities. The climate is more continental

than in most of northern Europe but with a humid element

added (Atlas of Finland, 1987).

The species data consisted of presence records of 28 threatened

vascular plant species with 10 or more records in 1677 grid

squares with a resolution of 25 ha (Parviainen 

 

et al

 

., 2008).

According to the IUCN classification (Gärdenfors 

 

et al

 

., 2001),

24 (86%) of these plant species were defined as vulnerable and

four (14%) as endangered species. The flora in the study area is

relatively well known because it has traditionally been a target

for numerous studies of vascular plant species. Consequently,

we assumed that the absence of a record in any of the 1677 grid

squares corresponded to true absence of the species (Eyre 

 

et al

 

.,

2004), given the quasi-exhaustive sampling strategy.

 

Calibration – evaluation

 

The data set of 1677 25-ha grid squares was first randomly split

into two main subsets: the model calibration data set including

70% of the grid squares, and the evaluation data set containing

the remaining 30% of the grid squares. The calibration data set

was further divided randomly into two subsets, which were

called ‘inner-calibration’ and ‘inner-validation’ data sets. In

summary, we used four different data sets in the subsequent

analysis: inner-calibration, inner-validation, calibration and

evaluation, which contained 821, 352, 1173 and 504 grid squares,

respectively (see Fig. 1a). These four data sets have different

functions in the study design, which consists of two steps. First,

the inner-calibration and inner-validation data sets were used in

consensus preselective algorithms (see section 

 

Consensus

methods

 

). The inner-calibration data set was used to calibrate the

single-models before implementing them in the inner-validation
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data set. Both data sets were used in pre-evaluating the predictive

performances of the eight individual single-models (Fig. 1b).

This pre-evaluation constituted an obligatory element in the

consensus preselective algorithms. At the second step, the eight

single-models and five consensus methods that were built using

the calibration data set were then fitted in the evaluation data set.

This procedure yielded the assessment of the predictive performance

of both the single-models and the consensus methods. We used

area under the curve (AUC) of the receiver-operating characteristic

(ROC) plot as the means to evaluate the performance of the

models (Fielding & Bell, 1997).

We acknowledge here that our evaluation data set does not

represent a totally independent test set for assessing the predictive

abilities of different models (cf. Araújo 

 

et al

 

., 2005a; Randin

Figure 1 (a) Presentation of the four data sets and their relationships. (b) Schematic representation of the study design.
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et al

 

., 2006; Heikkinen 

 

et al

 

., 2007). However, as the 25-ha grid

cells in both our model calibration and evaluation data sets were

distributed rather sparsely across the whole study area (grid cells

used in modelling covered only 

 

c

 

. 1% of the whole study area; see

Fig. 3), we assume that the predictive capabilities of different

models were assessed in our case rather well. For illustrative

purposes, we projected the simulated distribution based on the

model calibration data for selected species and selected models

over the whole study area, which consisted of 166 968 25-ha grid

cells (see Fig. 3).

 

Explanatory variables

 

The single-models were run with 16 explanatory variables: three

climate, four topography, four geology and five land-cover

variables were calculated for each grid square. The climate data

were derived from the Finnish Meteorological Institute climate

data sets (Venäläinen & Heikinheimo, 2002) and averaged for the

time period 1961–90. These data were downscaled from the

original 10-km grid to 0.5-km (25 ha) grid by using kriging

interpolation (Parviainen 

 

et al

 

., 2008). Climate variables

included growing degree days (> 5 

 

°

 

C), mean temperature of the

coldest month (January; 

 

°

 

C), and water balance (mm). The

topography variables included mean elevation (m), mean

topographical wetness index, mean radiation (kj/cm

 

2

 

/a), and

proportion of steep topography (> 15

 

°

 

). These variables were

derived from the digital elevation model (DEM) at 25-m

resolution using the ArcGIS and ArcView software (ESRI, 1991).

The geology variables, related in the study as percentage covers

for each study square, were sand/gravel soil, calcareous rock,

quartzite rock and rock terrain. These variables were derived

from digital maps of Quaternary deposit and pre-Quaternary

rocks (Atlas of Finland) using ArcGIS software (ESRI, 1991). The

land-cover variables selected and employed were the percentage

covers of open mire, forested peatland, deciduous–mixed forest

on mineral soil, rivers, and alpine area. We utilized European

land-cover and land-use classification CORINE (Coordination

of Information on the Environment) as land-cover information

in our analysis (European Commission, 1994).

 

Single-models

 

We simulated the distribution of 28 threatened plant species

using the BIOMOD tool (Thuiller, 2003), as implemented for R

software. Eight techniques were used in modelling analyses:

GLM, GAM, MARS (constituting the three regression methods),

ANN, GBM, RF (the three machine learning methods), CTA,

and MDA (the two classification methods). GLM, GAM, CTA

and, ANN are described and discussed in the original BIOMOD

paper (Thuiller, 2003). MARS represents a relatively new

technique that utilizes classical linear regression (Friedman,

1991), and was recently tested in an extensive study comparing

16 predictive techniques (Elith 

 

et al

 

., 2006). MDA (Hastie &

Tibshirani, 1996) and RF (Breiman, 2001; Cutler 

 

et al

 

., 2007)

were also used as promising modelling methods. GBM is a

machine learning method which was only recently introduced in

ecology. GBM is highly efficient in fitting the data and combines

the strengths of different modern statistical techniques (Ridge-

way, 1999; Thuiller 

 

et al

 

., 2006). It was classified as one of the most

predictive methods by Elith 

 

et al

 

. (2006).

 

Consensus

 

The main aim of consensus methods is to decrease the predictive

uncertainty of single-models by combining their predictions, as

illustrated in Fig. 1b (Araújo 

 

et al

 

., 2005b). Some consensus

methods contain a preselective algorithm. Such selective

algorithms are based on various approaches such as PCA (Thuiller,

2004; Araújo 

 

et al

 

., 2005b) and statistical criteria (Johnson &

Omland, 2004), or on basic mathematical functions such as

averages and medians of ensembles of predictions (Gregory

 

et al

 

., 2001; Araújo & New, 2007).

This study employs five of the most commonly used consensus

methods (Gregory 

 

et al

 

., 2001; Johnson & Omland, 2004;

Thuiller, 2004; Araújo 

 

et al

 

., 2005b; Araújo & New, 2007;

Goswami & O’Connor, 2007): two non-selective approaches and

three using a preselection of the modelling techniques. Eight

single-models were first generated separately for each of 28

threatened vascular plant species. The combining of the outputs

of the single-models then provided the ensemble of predictions,

which contained eight forecasted distributions (probability

values) for each species.

 

Median(all)

 

 consensus method is the median value of the

outputs of all eight single-models. Median(all) has been used in

an ecological context by Araújo 

 

et al

 

. (2005b). Gregory 

 

et al

 

.

(2001) considered this method to belong to the same class as

computing the mean value of the whole predictions ensemble

(

 

Mean(all)

 

). In our understanding, Median(all) is less frequently

used than Mean(all). Examples of studies using Mean(all) can be

found in McNees (1987) and Araújo & New (2007).

The

 

 WA

 

 consensus method utilizes pre-evaluation of the

predictive performance of the single-models. In this approach,

half (i.e. four) of the eight single-models with highest accuracy

are selected first, and then a WA is calculated based on the

pre-evaluated AUC of the single-models as described by Eqn 1

(1)

where 

 

mj

 

i

 

 are the probability-of-occurrence values of the 

 

i

 

th

threatened plant species in a given grid cell for the

 

 j

 

-selected

single-models for which pre-evaluation AUC values were the

highest. There are different algorithms to assign weights to

single-models (see Hartley 

 

et al

 

., 2006). Goswami & O’Connor

(2007) used weighted averages in hydrology, and in their study,

the weights of the single-models were computed via a least

square procedure. Araújo & New (2007) also presented this

method with a Bayesian approach.

 

Median(PCA)

 

 approach was based on calculating the median

value of only four single-models out of eight for each threatened

plant species. Half (i.e. four) of the eight single-models were

selected via a PCA. A PCA provides for each single-model a rate

reflecting its ability to follow the general trend of projections of

WA
AUC mj

AUCi
j mj i

j mj

i

i

  
(   )

=
∑ ×

∑
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the eight single-models (see Thuiller, 2004). The first principal

component (PC1) reflects the general trend followed by the eight

single-models, for each threatened plant species. The selection

algorithm of this consensus method was based on this approach.

The four models for which the variance of predictions along PC1

was the greatest were selected. Then the median value of the

output of these four single-models was computed. The models

that did not follow the general trend were then rejected and

not taken into account. This method was used by Thuiller

(2004), Araújo 

 

et al

 

. (2005b), and Thuiller 

 

et al

 

. (2005) in a

biogeographical context.

The fifth consensus method, Best, proceeds via picking up the

best of the eight separate single-models for each plant species.

Here, the best model was selected based on the highest pre-

evaluated AUC value. Overall, various approaches for selecting

the best model exist and the approach of picking up the best

single-model based on some predefined criterion is commonly

used in biogeography (Thuiller, 2003; Segurado & Araújo, 2004;

Elith 

 

et al

 

., 2006). Johnson & Omland (2004) presented various

selective criteria to choose the best single-models, such as the

Akaike information criterion (AIC), the Bayesian information

criteria, and the likelihood ratio tests (LRT).

 

RESULTS

 

The predictive accuracies of the eight single-models and five

consensus methods are summarized in Table 1 and Figs 1 and 2

(see also Table S1 in Supporting Information). The mean AUC

values of the eight single-models ranged from 0.697 (CTA) to

0.813 (RF) and from 0.757 (Median(PCA)) to 0.850 (WA) for

the consensus methods. A total of six species were classified

excellently with RF, whereas four were classified poorly. The five

consensus methods showed varying levels of predictive accuracy.

WA and Mean(All) consensus methods provided significantly

more robust predictions than all the single-models and the other

consensus methods (Wilcoxon signed rank test; 

 

P

 

-value < 0.05;

Table 2). The most superior consensus method was WA, with a

mean AUC value of 0.850 and classifying nine plant species

excellently. WA showed higher predictive performance for 21

plant species models out of 28 than did the single-models.

Table 1 Distribution of the 28 threatened vascular plant species in different accuracy classes of area under the curve (AUC) with respect to the 
eight modelling techniques and the five consensus methods. Rating of the model accuracy: excellent = AUC > 0.9, fair = 0.7 < AUC < 0.9 and 
poor = AUC < 0.7 (Swets 1988).

ANN CTA GAM GBM GLM MARS MDA RF Mn(All) WA Best Md(All) Md(PCA)

Excellent 7 3 1 3 0 1 3 6 9 9 6 4 5

Fair 16 10 19 17 21 18 12 18 17 16 17 21 16

Poor 5 15 8 8 7 9 13 4 2 3 5 3 7

ANN, artificial neural networks; CTA, classification tree analysis; GAM, generalized additive models; GBM, general boosting method; GLM, generalized 

linear models; MARS, multivariate adaptive regression splines; MDA, mixture discriminant analysis; RF, random forests; Mn(All), Mean(All); 

WA, Weighted Average; Md(All), Median(All); Md(PCA), Median(PCA).

Figure 2 A box-whisker plot illustrating the 
predictive accuracies of the eight single 
models (left part of the Figure) and five 
consensus methods (right). The boxes show 
median and 1st and 3rd quartile values. The 
mean area under the curve (AUC) value out of 
the 28 threatened plant species is indicated 
under the boxes for each single model and 
consensus method.
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Figure 3 illustrates the predictions based on WA compared to

single-models based on MARS and RF for two threatened plant

species, 

 

Cypripedium calceolus

 

 and

 

 Dactylorhiza incarnata

 

 ssp.

 

cruenta

 

.

Table S3 in Supporting Information shows the summary

information of the explanatory variables selected in the single-

models, i.e. how many times a given variable was selected in the

distribution models developed for the 28 species by each of the

eight modelling techniques. CTA led to the simplest single-

models, with a mean of 4.4 explanatory variables, whereas ANN,

MDA, and RF produced the most complex single-models

including all 16 variables. Among the explanatory variables,

temperature of the coldest month (mean 24.1 

 

°

 

C) and growing

degree days (mean 23.3 

 

°

 

C) were the most often selected

variables in all single-models. Additionally, the cover of open

mire (mean 22.3%), water balance (mean 22.1 mm), and

elevation (mean 21.3 m) were often significantly related to the

distribution patterns of the studied 28 vascular plant species.

These variables appear to reflect the main biophysical gradients

with a recognized, physiological influence on plant species in the

taiga forest landscapes.

 

DISCUSSION

 

Predictive species distribution modelling can provide a valuable

and cost-effective tool for conservation planning and biodiversity

management, especially in poorly surveyed regions that are

under accelerating pressure of habitat loss and degradation

(Austin, 2002; Bustamante & Seoane, 2004; Araújo & Guisan,

2006; Rodriguez 

 

et al

 

., 2007). However, in order to generate as

useful and accurate models as possible, researchers should have a

thorough understanding of the limitations and uncertainties

embedded in species distribution modelling (e.g. Elith 

 

et al

 

.,

2002; Loiselle 

 

et al

 

., 2003; Barry & Elith, 2006; Gibson 

 

et al

 

.,

2007). Loiselle 

 

et al

 

. (2003) and Wilson 

 

et al

 

. (2005) argued that

in present-day conservation planning, too little attention has

been paid to how robust the different species distribution models

are, or to the discrepancies among the outputs from different

models. Our results echoed these concerns with respect to the

regional conservation planning of threatened vascular plants in

northern landscapes, which due to the limited resources may

often need to be based on simulated distribution maps.

In agreement with earlier studies on climate change impacts

on species distributions (Thuiller, 2004; Araújo 

 

et al

 

., 2005b;

Pearson 

 

et al

 

., 2006), model comparison studies based on

present-day distributions of species have reported important

differences in the spatial predictions from different models

(Loiselle 

 

et al

 

., 2003; Elith 

 

et al

 

., 2006; Heikkinen 

 

et al

 

., 2007).

The first strategy to reduce the inconsistencies between different

species distribution models is to conduct thorough model

comparison evaluations and adopt the most promising techniques

for modelling (Elith 

 

et al

 

., 2006; Lawler 

 

et al., 2006; Prasad et al.,

2006). A general outcome of the model comparisons has been

that novel modelling techniques, such as RF and GBM, con-

sistently outperform more established techniques (Cutler et al.,

2007). Our results also provide support for arguments of the

excellent performance of RF, at least in such cases where the

projections of the model are generated under similar ecological–

geographical conditions and space that were used when calibrating

the model.

However, the second option, i.e. the use of consensus methods

(Laplace, 1820; Thuiller, 2004; Araújo & New, 2007), provides

Table 2 Statistical differences in the predictive performance of eight different single-models and five consensus methods for 28 threatened plant 
species occurrences. Statistical tests of the differences among the predictive accuracies of different methods were tested by Wilcoxon signed rank 
test. In the upper part of the table P-values are presented, whereas comparisons of the predictive performance of the single-models and consensus 
methods are presented in the lower part of the table. Ranks: (positive;negative;tied). Positive or negative ranks refer to models located in the left 
column (for example: RF-ANN: (12;15;1) means AUCRF > AUCANN 12 times, AUCRF < AUCANN 15 times, AUCRF = AUCANN once).

ANN RF GBM GAM GLM MARS MDA CTA Mn(All) WA Best Md(All) Md(PCA)

ANN – 0.773 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 0.001 0.001 0.501 0.909 0.113

RF (12;15;1) – < 0.001 0.003 0.007 < 0.001 < 0.001 < 0.001 0.007 0.004 0.872 0.882 0.199

GBM (5;23;0) (6;22;0) – 0.577 0.136 0.017 0.020 < 0.001 < 0.001 < 0.001 0.001 < 0.001 0.387

GAM (5;23;0) (6;22;0) (13;15;0) – 0.079 0.014 0.013 < 0.001 < 0.001 < 0.001 0.004 < 0.001 0.487

GLM (3;25;0) (9;19;0) (9;19;0) (11;17;0) – 0.473 0.439 0.067 < 0.001 < 0.001 0.002 < 0.001 0.161

MARS (4;24;0) (4;24;0) (7;21;0) (6;22;0) (12;16;0) – 0.733 0.400 < 0.001 < 0.001 0.001 < 0.001 0.210

MDA (3;25;0) (4;23;1) (7;19;2) (8;18;2) (12;16;0) (14;14;0) – 0.531 < 0.001 < 0.001 < 0.001 < 0.001 0.021

CTA (1;27;0) (2;26;0) (5;23;0) (6;22;0) (8;20;0) (11;16;1) (12;16;0) – < 0.001 < 0.001 < 0.001 < 0.001 0.015

Mn(All) (24;4;0) (20;8;0) (26;2;0) (27;1;0) (26;2;0) (27;1;0) (27;1;0) (28;0;0) – 0.594 0.001 0.003 < 0.001

WA (22;6;0) (21;7;0) (25;3;0) (27;1;0) (26;2;0) (27;1;0) (27;1;0) (28;0;0) (15;11;2) – < 0.001 0.007 < 0.001

Best (5;11;12) (9;10;9) (21;4;3) (22;5;1) (22;5;1) (22;4;2) (22;5;1) (26;2;0) (5;23;0) (3;25;0) – 0.829 0.280

Md(All) (11;15;2) (14;14;0) (23;5;0) (25;3;0) (25;3;0) (23;5;0) (24;3;1) (26;2;0) (4;22;2) (4;22;2) (13;15;0) – 0.046

Md(PCA) (11;17;0) (11;16;1) (18;10;0) (18;10;0) (19;9;0) (17;11;0) (20;8;0) (23;5;0) (1;24;3) (3;23;2) (12;15;1) (9;16;3) –

ANN, artificial neural networks; RF, random forests; GBM, general boosting method; GAM, generalized additive models; GLM, generalized linear 

models; MARS, multivariate adaptive regression splines; MDA, mixture discriminant analysis; CTA, classification tree analysis; Mn(All), Mean(All); 

WA, Weighted Average; Md(All), Median(All); Md(PCA), Median(PCA).
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two attractive features that are lacking from single-models. First,

it is not certain that the model with the highest accuracy with the

species data at hand will provide the most realistic simulations

of the species distribution in a new area or under future climate

conditions (Thuiller, 2004; Araújo et al., 2005a). Such observa-

tions have increased interest in the careful selection of the

choice of most appropriate models to carry out interpolation or

extrapolation modelling. Some single-models such as RF are

accurate in interpolation modelling (Cutler et al., 2007).

However, models based on continuous curves (e.g. GLM and

GAM) may be more reliable than those based on classification

trees (Thuiller et al., 2004) in order to transfer the calibrated

models into new areas or time periods via extrapolation

modelling (where inputs may be outside the range within which

the models were built). Curves can still be defined out of the

range of calibration, even if the interval of confidence becomes

large. The consensus method based on combinative algorithms

circumvents this problem by summarizing agreements among

projections generated by different models. Second, the consensus

method may be intuitively a more realistic approach than the search

for a superior single-model technique because many model com-

parison studies have been unable to report a superior performance

for any of the techniques. Instead, the model with most accurate

predictions often varies from species to species (Thuiller, 2003).

In this study, we performed an extensive evaluation of the

predictive ability of five consensus methods and eight single-model

Figure 3 Predicted distribution of Cypripedium calceolus provided by multivariate adaptive regression splines (MARS) (a) and the weighted 
average (WA) consensus method (b), and of Dactylorhiza incarnata ssp. cruenta provided by random forest (RF) (c) and the WA consensus 
method (d). The black dots emphasize the observations of these threatened species in the study area. The area under the curve (AUC) values 
reflect the accuracy of the models based on the evaluation data set.
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techniques. In the field of biogeography and ecology, the only

comparable previous study that focused on predictive modelling

is that of Araújo et al. (2005b), which was based on four single-

models and two consensus methods. The other studies in the

field dealing with consensus methods (e.g. Thuiller, 2004; Araújo

& New, 2007) have not addressed the evaluation of predictive

performance of the methods.

The explanatory variables included in this study were chosen

so that they covered a broad spectrum of the possible ecological

determinants of the distributions of the modelled vascular

plant species. The variables that were most often selected in the

single-models were reasonable with respect to the a priori

understanding of the ecological characteristics of the study

species (for a more detailed discussion see Parviainen et al.,

2008). Certain climate variables, particularly growing degree-

days, temperature of the coldest month, and water balance,

appeared as significant determinants of the 28 studied threatened

plant species across all eight modelling techniques. Such variables

represent primary environmental regimes related to the physiological

tolerances of organisms (Austin et al., 1990; Box et al., 1993), and

factors with a significant effect on plant growth and reproduction,

as well as over-wintering survival (Skov & Svenning, 2004). A

number of land-cover variables were also often selected in the

different models. Links between a certain species distribution

and a given land-cover variable were often based on clear biological

inferences. For example, open mire contributed significantly to

the distribution models for the studied species, which was only

logical as many of our study species rarely occur outside peat

soils (see Parviainen et al., 2008).

However, although certain environmental variables were

important across all the modelling techniques, there were

nevertheless differences in which variables were selected in the

models. Such differences in final model variables may be a

function of underlying design and model form (Edwards et al.,

2006), because different methods combine responses to individual

predictors in different ways (Elith et al., 2005). All the single-

models selected the environmental variables that best discriminate

the suitability of habitats to the presence of a certain species,

except for ANN and MDA that do not have a selective algorithm.

Thus ANN and MDA may lead to exceedingly complex models,

and thus to overfitting problems (Guisan & Thuiller, 2005). The

consensus algorithms also inherently include many explanatory

variables because they include all the explanatory variables

selected by the combined single-models.

In our study, the most efficient consensus methods were the

WA consensus method based on AUC values and Mean(All).

They improved significantly the predictive accuracy of all single-

models. The high potential of these methods has been advocated

in a number of studies (Gregory et al., 2001; Johnson & Omland,

2004; Araújo & New, 2007; Goswami & O’Connor, 2007), and

our results support these arguments. The good performance of

consensus methods based on average function may be explained

by the low-pass filtering ability of the average function. In signal

processing, a low-pass filter can be obtained by calculating the

neighbour average (e.g. spatial average in image processing,

temporal average in signal processing; (Araújo et al., 2005b;

Russ, 2006)). In cases in which several methods (less than

half of the whole number of single-models, i.e. four in this study)

overestimate the distribution of some species compared to other

methods, isolated predicted occurrences may be removed. In

other words, there is a ‘cleaning’ effect, which was also visible in

our results (Fig. 3). The southern part of the predicted distribution

of both plant species based on WA is much ‘cleaner’ and less

sparse than the prediction based on a single-model in the

same area. The use of WA prevented the appearance of isolated

predicted occurrences which apparently resulted from the

overestimated predictions of single-models. However, if most of

the single-models underestimate the distribution of a given

species, the cleaning effect may be too strong and affect the

accuracy of the species distribution forecasts. Average methods

will thus work best when single-models that over- or underestimate

the spatial distributions of a given species are in the minority

among the used panel of models. To fulfil this condition, the

use of several single-models based on various algorithms is

recommended.

The consensus method based on Median(PCA) has been

applied in species–climate impact studies by Thuiller (2004) and

Araújo et al. (2005b) to select the most consensual single-

models. The study of Araújo et al. (2005b) also provided a test of

transferring single-models and two consensus methods from the

models calibrated with climate and bird data from the UK at one

point in time to evaluation data collected at another point in

time. The outcome of this test was that the Median(PCA)

method was able to increase the accuracy of the model projec-

tions compared to four single-models considered. In contrast to

these results, Median(PCA) did not provide more accurate

predictions than half of the single-models in our study. This

discrepancy between our results and those of the earlier studies

may be caused by the differences in the study settings. In our

study, we investigated the transferability of the models at one

point in time and between ecologically similar grid squares in

one region, whereas the study by Araújo et al. (2005b) included a

temporal transferring of the models, which is often a more

demanding test for the models (Araújo et al., 2005a). However,

more research is clearly required to identify the study settings in

which the different consensus methods are likely to perform best

in different conditions or times.

The two remaining consensus methods used in this study, Best

and Median(All), did not improve significantly the predictive

accuracies of the two most accurate single-models, RF and ANN.

According to Araújo & New (2007), ANN and RF incorporate the

notion of ensemble forecasting. This may well explain the good

predictive performances of these two modelling techniques

compared to the other single-models, and their similarity in

accuracies with Best and Median(All). However, inclusion

of Best among the consensus methods should be made with

caution. Thuiller (2004), Araújo et al. (2005b), and Gregory et al.

(2001) considered a consensus method to be a method based on

an algorithm detecting a consensual trend of predictions. In this

study, Best did not contain such an algorithm, because the used

model selection criterion (AUC) did not reflect the consensual

trend of predictions. However, when Best is based on a PCA,
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such as choosing the single-model for which the PC1 were the

highest, the method belongs clearly to the group of consensus

methods. However, an apparent deficiency in the consensus

models applied here is that it is rather difficult to conclude

with certainty the number of single-models that should be

preselected. The predictive accuracy of Best suggests that the

selection of a single-model is not efficient. WA preselected half of

the single-models, whereas Mean(All) included all the eight

modelling techniques. In addition to the presented results of this

study, we evaluated the predictive performance of Mean(Best 4)

and Median(Best 4), which compute the mean and median

values of the output of the four single-models preselected via the

same preselective algorithm of WA. However, there were no

significant differences in the predictive AUC values of Mean(Best

4) and Median(Best 4) and their ‘all-models-count-partners’,

Mean(All) and Median(All). We also tested yet another alternative

to WA, a consensus model into which different single-models

were preselected if their inner validation AUC value was higher

than 95% of the AUC of the best single-model. This approach is,

to some extent, analogous to the method described by Burnham

& Anderson (2002). However, the predictive AUC value of the

‘highest-95%-AUC’ WA method was 0.840, without significant

differences between Mean(All) and WA. Thus, we can conclude

that preselecting only a part of the most accurate single-models

for consensus methods significantly improved the predictive

accuracy of the consensus methods in our study material.

CONCLUSIONS

In this study, we provide support for the argument that sig-

nificant improvements in the accuracy of species distribution

predictions can be achieved by applying consensus methods,

especially those based on the average function. Our findings may

have important consequences for regional conservation and

management planning studies in which biased or insufficient

field data should be complemented as accurately as possible

using modelling of species distributions. However, our results

also showed that consensus methods do not necessarily always

improve the predictive accuracy of the single-models. In sum, the

accuracy of the consensus methods is always dependent on the

accuracy of the single-models on which they are based (Araújo

et al., 2005b; Araújo & New, 2007). Therefore, equally important

in developing reliable forecasts of species distributions is also

to pay attention to different critical underlying issues in single-

models (e.g. Barry & Elith, 2006; Heikkinen et al., 2006), and to

aim at generating better models with improved data.
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