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Phylogenetic Generalised Least Square (PGLS) is the tool of choice among phylogenetic 26 
comparative methods to measure the correlation between species features such as morphological 27 
and life-history traits or niche characteristics. In its usual form it assumes that the residual 28 
variation follows a homogenous model of evolution across the branches of the phylogenetic tree. 29 
Since a homogenous model of evolution is unlikely to be realistic in nature, we explored the 30 
robustness of the phylogenetic regression when this assumption is violated. We did so by 31 
simulating a set of traits under various heterogeneous models of evolution, and evaluating the 32 
statistical performance (type I error -the % of tests based on samples that incorrectly rejected a 33 
true null hypothesis- and power -the % of tests that correctly rejected a false null hypothesis) of 34 
classical phylogenetic regression. We found that PGLS has good power but unacceptable type I 35 
error rates. This finding is important since this method has been increasingly used in comparative 36 
analyses over the last decade. To address this issue, we propose a simple solution based on 37 
transforming the underlying variance-covariance matrix to adjust for model heterogeneity within 38 
PGLS. We suggest that heterogeneous rates of evolution might be particularly prevalent in large 39 
phylogenetic trees, whilst most current approaches assume a homogenous rate of evolution. Our 40 
analysis demonstrates that overlooking rate heterogeneity can result in inflated type I errors, thus 41 
misleading comparative analyses. We show that it is possible to correct for this bias even when the 42 
underlying model of evolution is not known a priori. 43 
 44 
Keywords. Comparative methods, PGLS, non-stationarity, statistical performance, Phylogenetic 45 
Generalised Least Square.  46 
 47 
Introduction  48 
Comparative methods are among the key tools for understanding ecological and evolutionary 49 
processes (Felsenstein 1985; Harvey & Pagel 1991) and are used to test hypotheses about the 50 
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correlated evolution of traits (e.g. Pearman et al. 2014). Since species share common ancestry, 51 
they should not be considered statistically independent units, thus traditional statistical methods 52 
such as Ordinary Least Square (OLS) regression are not appropriate for analyzing comparative 53 
data. When analyzed by OLS, the two major issues that arise from shared evolution are increased 54 
type I error when traits are uncorrelated with each other and reduced precision in parameter 55 
estimation when traits are correlated with each other (Revel 2010). Therefore, interspecific trait 56 
data should be analysed within a phylogenetic framework (Harvey and Pagel 1991, Freckleton et 57 
al. 2002, Revell 2010). 58 
Multiple methods have been proposed to account for phylogenetic non-independence of species 59 
when regressing two (or more) continuous or categorical traits (Felsenstein 1985, Grafen 1989, 60 
Maddison 1990, Lynch 1991, Garland et al. 1992, Martins and Hansen 1997, Diniz-Filho et al. 61 
1998, Freckleton et al. 2002, Paradis and Claude 2002, Ives and Garland 2010). The phylogenetic 62 
regression based on a generalised least square, where the inverse of the phylogenetic covariance 63 
matrix is used as weights, is perhaps now the most widely adopted (Grafen 1989; Martins & 64 
Hansen 1997): it is a generalisation of phylogenetic independent contrasts (Rohlf 2001) originally 65 
proposed by Felsenstein (1985) and a particular case of general linear models (Rencher & 66 
Schaalje, 2007). Phylogenetic regression assumes that the model residual error ε is distributed 67 
according to ߪఌଶ۱ where and ߪఌଶ represents the residual variance and C is a n × n matrix (n is the 68 
number of tips, i.e., species in most cases) describing the evolutionary relationships among species 69 
(i.e., a phylogenetic covariance matrix with diagonal elements estimated as the total branch length 70 
between each tip and the root, and off-diagonal elements estimated as the evolutionary time shared 71 
by each species pair). 72 
In its simplest form, PGLS assumes a Brownian Motion (BM, Edwards & Cavalli-Sforza 1964) 73 
model of evolution with a single rate, σ2. Nevertheless, PGLS is highly flexible and it can be 74 
extended to alternative evolutionary models (Martins and Hansen 1997). For example, recent 75 
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PGLS implementations have incorporated tree transformation models that capture different modes 76 
of evolution (e.g. early vs. late trait diversification, continuous vs. punctual evolution, Pagel 1997, 77 
1999; Freckleton et al. 2002; Revell 2010) or selective regimes (e.g. Ornstein–Uhlenbeck [OU] 78 
models, Hansen 1997; Butler & Kings 2004; Lavin et al. 2008). This model flexibility has been 79 
key in reducing type I errors due to model misspecification, one of major issues in comparative 80 
biology (Freckleton 2009). 81 
Despite recent advances, however, current PGLS implementations still assume that the tempo and 82 
mode of evolution remain constant across the phylogenetic tree (although they allow for rate 83 
variation over time), whereas it is likely that both are highly heterogeneous (Simpson 1944, Gould 84 
2002), particularly in the case of large phylogenetic trees (O’Meara 2012). The construction of 85 
very large (Jetz et al. 2012) hand in hand with the increased availability of corresponding large 86 
trait datasets (e.g. Wilman et al. 2014) has generated an increasing need to consider more complex 87 
models of evolution within the regression framework. Heterogeneous trait evolution, where trait 88 
evolution has been markedly different across multiple clades is a potential source of bias that has 89 
been largely overlooked. If two traits evolved under complex models of evolution, standard PGLS 90 
(i.e. assuming a single rate of evolution) may not be appropriate. Since it has been demonstrated 91 
that an incorrectly defined VCV matrix in PGLS increases the type I error rate (Revell 2010) for 92 
simple homogeneous models, it naturally follows that for large comparative phylogenetic datasets, 93 
where evolutionary processes are likely heterogeneous, there will also be an increase in type I 94 
error rates and/or reduced statistical power. 95 
One potential solution arises from the development of heterogeneous models of evolution, which 96 
allow the fit of highly complex VCV matrices. Variation in evolutionary rates across the 97 
phylogenetic tree can be modeled, for instance, with a heterogeneous BM process where σ2 varies 98 
across the phylogenetic tree (O’Meara et al. 2006, Thomas et al. 2006). Similarly, heterogeneous 99 
OU models with multiple optima, strength of selection and evolutionary rates have be proposed to 100 
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model adaptive peaks (Beaulieu 2013; Ingram & Mahler, 2013). These models have been 101 
successfully applied in the literature to investigate how a single trait has evolved across the 102 
phylogeny (e.g. to study the evolution of a clade life form, Adams et al. 2009; Boucher et al. 103 
2012) but they are not yet incorporated into the toolbox of comparative analyses of trait 104 
correlation. Transforming the phylogenetic tree according to a heterogeneous model of trait 105 
evolution fitted with the data and using this transformed tree to derive a new VCV matrix could 106 
help in increasing the flexibility of the PGLS framework, but this potential has remained 107 
unexplored. 108 
Here using simulations, we first explore the performance (type I error rate and statistical power) of 109 
PGLS under models of heterogeneous trait evolution. We simulate multiple models of trait 110 
evolution and cross correlations among traits, and contrast power and type I error rates. We show 111 
that complex models of evolution lead to inflated type I error rates, but PGLS is able to handle 112 
such complexities when the correct VCV matrices is known. We then propose an implementation 113 
of PGLS that has valid type I error rates even under models with large rate heterogeneity where 114 
the underlying model of evolution is not known a priori 115 
 116 
Methods & Results 117 
Simulating traits under complex evolutionary models 118 
Simulation model 119 
Our simulations considered two traits (X and Y) generated by the following basic equation, setting 120 
a to zero (following Revel 2010): 121 
Y = a + βX + ε (Eqn. 1) 122 
We defined evolutionary models by manipulating the phylogenetic covariance structure and rates 123 
of evolution (see below) and simulate X and the residuals error ε assuming normally distributed 124 
values N(0, σ2); where σ2 represents the instantaneous rate of evolution that was set depending on 125 
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the specific scenarios of homogenous (one single evolutionary rate) and heterogeneous (multiple 126 
changes in evolutionary rates) models of trait evolution (see below). Type I error for a given 127 
method was assessed by simulating data with β=0 while statistical power was assessed by 128 
simulating data with β=1 (Appendix A). In both cases, we tested the null hypothesis H0: β=0 and 129 
reported the percentage of simulations in which H0 was rejected with an alpha level of 0.05 (i.e., 130 
type I error rate as number of rejections when β=0 and statistical power as the number of 131 
rejections when β=1). For β=0, Y=ε and the evolution of X and Y are simulated independently. 132 
For β=1, the evolutionary model for Y was a function of the two evolutionary processes 133 
generating X and ε. We consider three different scenarios representing different evolutionary 134 
models for X and ε (Appendix A). We generated X and ε under (1) the same evolutionary model, 135 
(2) different models or (3) assuming that only ε followed an evolutionary model while X was 136 
drawn from a normal distribution (with mean of 0 and a standard deviation of one).  137 
Phylogenetic trees 138 
To make sure our results were not just representative of a particular phylogenetic topology, we ran 139 
all analyses on two very different phylogenetic topologies of 128 species each (rescaled so that 140 
their total depth equaled one). One tree was completely balanced, whereas the second one was 141 
obtained using a pure birth process leading to a more realistic unbalanced tree (see Appendix B).  142 
Homogeneous models of trait evolution 143 
We considered three classic models (Brownian motion (BM, Edwards & Cavalli-Sforza 1964), 144 
Ornstein–Uhlenbeck (OU, Hansen 1997) and the lambda (λ) tree transformation (Pagel 1999)). 145 
For BM, the change in species traits over time was expressed as: 146 
dX(t) =σdB(t)  (Eq. 2) 147 
where dX(t) is the change in trait X over time period dt. The parameter σ measures the rate of 148 
evolution, while the term B(t) is random noise ~ N(0, dt). 149 
For an OU process, the change in species traits over time was expressed as: 150 
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dX(t) =α[θ-X(t)]dt + σdB(t)   (Eq. 3) 151 
where θ represents the mean trait value (often interpreted as the trait optimum) and alpha measures 152 
the rate of decay of trait similarity through time (often interpreted as the intensity of stabilizing 153 
selection). When α = 0, the OU model simplifies to a BM model (see Eq. 2). 154 
The λ tree transformation model simply rescales the phylogenetic tree before applying the classic 155 
BM model. In our case, λ is the multiplier of internal branches and we considered values between 156 
1 (no transformation: the trait evolved under a classical BM) and 0 (the tree is a star phylogeny 157 
and the trait has no ‘phylogenetic signal’, i.e. related species do not tend to share similar trait 158 
value). Continuous characters (representing X and ε) under each model had a starting value of 0 at 159 
the root of the tree and were evolved tipward according to each model. 160 
Heterogeneous models of trait evolution 161 
For heterogeneous BM models, we simulated traits with two different rates of evolution occurring 162 
in different parts of the phylogenetic tree. In the simplest case, one sub-clade evolved with a rate 163 
σ2=1 while the other sub-clade evolved with one of the following σ2:  1/1000, 1/100, 1/10, 1/4, 1/2 164 
or 3/4. In this case we simulated a single rate shift near the root of the phylogenetic trees so that 165 
the two major sub-clades of the phylogeny evolved under different σ2 (see Appendix B). We also 166 
generated traits evolving under multiple rate shifts (3, 5 and 9) within each of the two major 167 
clades, but we kept the total number of rate values restricted to two (see Appendix B).  168 
For heterogeneous OU models, we simulated optima shifts and kept σ2 and α constant at 1 and 0.5, 169 
respectively. The initial OU regime started with an optimal value of θ (either 1, 2, 3 or 4) and then 170 
shifts to – θ at the same node as described for BM rate shifts above (see Appendix B).  171 
For heterogeneous λ-transformed models, we simulated a single shift occurring near the root of the 172 
tree (i.e. separating two major clades A and B, see Appendix C) by multiplying the internal branch 173 
length of clade A by λ, keeping the internal branches lengths of clade B unchanged. The resulting 174 
sub-clades therefore differed in their root-to-tip distances and tip-to-internal branch length ratios. 175 
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If we had used a single σ2 for this transformed tree, the trait evolution of the two sub-clades would 176 
thus have different rates and phylogenetic signal. Because we were interested here in the 177 
differences in phylogenetic signal only, we rescaled the transformed branches of clade A so that 178 
all species in the complete tree had the same root-to-tip distance (same overall evolutionary rate) 179 
but differed in their ratio of tip-to-internal branch length (see Appendix C). For λ, we restricted 180 
our analysis to the balanced tree (see above) because it is not straightforward to retain tree 181 
ultrametricity for more complex tree topologies, potentially confounding comparisons between our 182 
alternative models. As for the homogenously evolved traits, traits had a starting value of 0 at the 183 
root of the tree and were evolved tipward according to each model and evolutionary rates σ2 that 184 
were clade dependent. 185 
 186 
Result 1: assessing power and type 1 error rates of the phylogenetic regression. 187 
We fitted two classical linear regression models to each of the different simulated datasets 188 
(scenarios). We first fitted an OLS regression, for which we tested the significance of the slope 189 
with a t-test using n-2=126 d.f. Note that a t-test was used given its common usage in the 190 
comparative analysis literature, though a likelihood test contrasting the slope and the intercept-191 
only models could had been equally applied.  Implementation of the latter could be the object of 192 
future studies. Second we fitted a PGLS (using the pgls function in the caper R package) that also 193 
simultaneously optimized a single λ value for the residuals of the model (λ=”ML” in the pgls 194 
function, ‘PGLSglobal_λ’ hereafter). The λ parameter (Pagel 1999) is a multiplier for the off-195 
diagonal elements (i.e. the internal phylogenetic branches) of the VCV matrix and usually varies 196 
between 0 and 1. If λ=1, the VCV is left unchanged and the PGLS assumes a BM while if λ=0, the 197 
VCV is a diagonal matrix and the PGLS reduces to an OLS. Any value between 0 and 1 indicates 198 
that the phylogenetic strength in the residuals is reduced in contrast to a BM. As such, the 199 
optimization of λ in PGLS allows encompassing both classical OLS and PGLS. As for OLS, we 200 
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then tested the significance of the slope with a t-test with n-2-1=125 d.f. (λ is an additional 201 
parameter).  202 
Power analysis 203 
First, we simulated X and ε independently from each other to generate Y (Y = βX + ε with β=1).  204 
Under this scenario, both OLS and PGLSglobal_λ had good statistical power (i.e. they both detected 205 
the simulated correlation) for all models of evolution tested (Table 1 and Appendix D). 206 
Type 1 error analysis 207 
Second, we simulated Y and X independently from each other (Y = βX + ε with β=0, so ε=Y), and 208 
evaluated the percentage of simulations where a correlation was (incorrectly) detected (i.e. false 209 
positives). The type I error of a valid test should equal the alpha value selected when assessing test 210 
significance (5% here). Results differed across the three simulated scenarios (Table 1 and see 211 
Appendix E-F): (1) When X was simulated without phylogenetic signal and Y followed different 212 
models of trait evolution (i.e. heterogeneous BM and OU models), both OLS and PGLS had 213 
correct type I error rates (Fig. F1 in Appendix F); (2) When X and Y followed different models of 214 
trait evolution (e.g. X followed a heterogeneous BM model and Y followed a heterogeneous OU 215 
model), OLS showed inflated type I error while PGLSglobal_λ still performed well (i.e., it had 216 
correct type I error rates, Fig. F2 in Appendix F); (3) When X and Y followed the same 217 
heterogeneous model of trait evolution results were more mixed. When we simulated BM with 218 
heterogeneous Pagel λ, all methods had an inflated type I error, which covaried with the 219 
heterogeneity in the strength of the phylogenetic signal (see Figure 1). When we simulated BM 220 
models with heterogeneous rates of evolution (different σ2 across the tree), type I error rates were 221 
also inflated, and varied with the strength of the evolutionary rate variation, but were only weakly 222 
influenced by the number of rate shifts (Fig. 2). We did not evaluate type I error rates under a 223 
heterogeneous OU model of evolution for reasons described in the Discussion section PGLS and 224 
hidden selective trends. Unbalanced and balanced tree gave qualitatively similar results (see Fig. 2 225 
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and Fig. F3 in Appendix F, respectively), for brevity we report only values for the unbalanced tree 226 
in the main text. 227 
Providing the correct VCV to PGLS led to correct type I error rates in all cases (Fig. 2 and Fig. F3 228 
in Appendix F). However, this is obviously not a viable solution for most empirical studies since 229 
the true VCV is not known a priori, but it nonetheless shows that PGLS is able to deal with 230 
complex models of evolution when they are correctly estimated. 231 
 232 
Result 2: a solution to correct for inflated type 1 error 233 
Our simulations showed that PGLS had inflated type I error rates under heterogeneous BM but 234 
that it could theoretically handle such models when a correct VCV was provided. 235 
To correct for inflated type I errors when the correct VCV is not known, we studied the statistical 236 
performance of the following three step procedure: 1) fit heterogeneous BM models of trait 237 
evolution to the raw OLS residuals; 2) use this fit to modify the VCV matrix used in the standard 238 
PGLS; and 3) apply a significance criterion (see Modified method for significance testing below) 239 
that allows for proper inference (i.e., correct type I error) associated to the two initial fits that 240 
themselves involve one statistical test each. For clarity, note that the correction in step 3 is 241 
completely independent from the issues of inflated type I errors in comparative analysis involving 242 
multiple rates of evolution (the focus of this paper). However, because our proposed framework is 243 
based on a two-step procedure, one would incur additional type I errors if a multiple testing 244 
criterion was not applied.   245 
We tested two approaches to detect rate shifts on the OLS residuals: the auteur bayesian approach 246 
(Eastman et al. 2011, implemented in the R package geiger) and the trait medusa approach 247 
(Thomas and Freckleton 2012, implemented in the R package motmot). As auteur and trait 248 
medusa yielded similar results but auteur being much faster, we present in the main text the 249 
detailed procedure and results for auteur (PGLSauteur hereafter). The details and results of the 250 
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procedure involving trait medusa are provided in Appendix G. We provide R code and example 251 
data of both procedures as a supplement (Supplements 1 & 2). 252 
Detecting evolutionary rate shifts with auteur.  253 
auteur (Eastman et al. 2011) is a recently developed Bayesian approach to model evolutionary rate 254 
heterogeneity along a phylogeny. It uses a reversible jump Markov chain Monte Carlo procedure 255 
to sample a distribution of multi-rate BM models in inverse proportion to their poorness of fit. In 256 
the optimization procedure, the Markov chain jumps from models of differing complexities (i.e. 257 
number and position of the shifts in the phylogenetic tree). 258 
We sampled parameters every 500 generations for a total of 20,000 generations. We removed 25% 259 
of the sampled parameters as burn-in to obtain marginalized distributions of relative rates for each 260 
branch of the tree.  261 
Using fitted multi-rate models in standard PGLS 262 
We then used the parameter estimates from auteur to rescale the phylogenetic tree using the 263 
function rescale in the geiger package. The rescaled tree was then used in a standard PGLS 264 
procedure (PGLSauteur, function pgls in the R package caper) as described above. We then tested 265 
the significance of the slope with a t-test with n-2 d.f. (PGLSauteur, see Fig. 3). As described above, 266 
this stepwise procedure may be expected to have a slight inflated type I error rate because it 267 
represents a two-step procedure (Fig. 3), and each step has independent errors (the same reasoning 268 
applies to the PGLStrait medusa procedure, Appendix G). Step 1 estimates the evolutionary model of 269 
the OLS residuals, and step 2 fits PGLS using the estimated VCV matrix in step 1. As before, 270 
because two statistical tests were involved here, we applied a modified significance testing 271 
criterion. 272 
Modified method for significance testing  273 
Statistical testing when using a two-step procedure is likely to have inflated incorrect family wise 274 
type I error.  This has been previously recognized by ter Braak et al. (2012) when testing for the 275 
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links between trait to environmental variation. Their procedure was based on a two-step procedure 276 
in which the links between species trait variation and species distributions, and the links between 277 
environmental variation and species distributions were both tested.  They adopted a rejection 278 
criterion for establishing the significance of the links between environment and trait variation in 279 
which the largest probability of the two tests involved needed to be below the pre-established 280 
alpha-level (i.e., 0.05).  Retaining the largest p-value is equivalent to conducting only one 281 
statistical test instead of two, assuring correct type I errors.  Following ter Braak et al. (2012), we 282 
thus considered the relationship between Y and X (PGLScombination) and retained the largest p-value 283 
between the PGLSglobal_λ and PGLSauteur. This approach produced correct type I error rate in all 284 
cases (Fig. 3).  285 
 286 
Discussion 287 
With the increasingly availability of well resolved phylogenetic trees, PGLS has become routinely 288 
employed in the analysis of interspecific data over the past decades (Felsenstein 1985, Grafen 289 
1989, Martins and Hansen 1997, Freckleton et al. 2002). By assuming an explicit model of 290 
evolution, PGLS contrasts with some other approaches, for example, non-parametric eigenvector 291 
decomposition (Diniz-Filho et al. 1998, Freckleton et al. 2011). While it has been argued that the 292 
inclusion of an explicit evolutionary model within PGLS allows for increased efficiency of 293 
estimation, decreased variance in parameter estimates, and decreased Type I errors (Freckleton et 294 
al. 2011), misspecifying the evolutionary model may have important consequences for hypotheses 295 
testing (Revell 2010) (though not for parameter estimation, see e.g. Rohlf 2006). One solution is 296 
to simultaneously estimate the parameters of the PGLS model and the model of evolution of the 297 
residuals. For some simple models of trait evolution, in which both the tempo and mode of 298 
evolution remain constant across the phylogenetic tree, it is possible to adjust the PGLS model 299 
residuals using Pagel’s (1999) lambda tree transformations (Freckleton 2002). However, such 300 
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simple models of evolution are likely rare, particularly for large trees (O’Meara 2012), which have 301 
become widely used in the comparative literature with the increasingly availability of large scale 302 
mega-phylogenies including several thousand species. Here we evaluated the performance (power 303 
and type I errors) of PGLS methods, under more complex evolutionary scenarios. We show that 304 
most developed methods around PGLS have good power, but unacceptably high type I errors 305 
under some scenarios with heterogeneous evolutionary rates. Nonetheless, PGLS methods perform 306 
well when the VCV matrix is estimated properly.  307 
X and Y follow different models of evolution 308 
When there is no phylogenetic signal in the independent variable (i.e. X was normally distributed 309 
and independent from phylogeny) but the residuals (of Y) follow a heterogeneous model of 310 
evolution (either BM or OU), all methods (OLS and PGLS) showed correct type I error rate. 311 
Similar results have been reported for homogeneous BM models (see Revell 2010). However, 312 
when we simulated a heterogeneous BM in the independent variable (X) and the dependent 313 
variable (Y) followed a heterogeneous OU, OLS shows inflated type I error rates, but PGLS still 314 
performs well. 315 
X and Y follow the same model of evolution 316 
When we simulated X and Y with the same heterogeneous model of evolution all classical 317 
methods (OLS and PGLS) showed inflated type I error rates. Nevertheless PGLS is theoretically 318 
able to handle such bias (Martins and Hansen 1997), and we demonstrated empirically that 319 
providing the correct VCV leads to valid test of correlated evolution with appropriate type I error 320 
rates. 321 
Because knowing the correct VCV transformation a priori is difficult for traits evolving under 322 
complex evolutionary models, we implemented a simple approach that allowed us to estimate the 323 
model of evolution on the residuals of the OLS, and used this to transform the VCV matrix for 324 
PGLS. Here we used two methods (a Bayesian approach and a bootstrap approach in conjunction 325 
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with an algorithm for estimating multiple rate shifts) to identify the appropriate model for 326 
transforming the VCV matrix, though we acknowledge that alternative methods are available (see 327 
Revell et al. 2012 for an example). We show that assuming the transformed VCV matrix, PGLS 328 
had appropriate type I errors after correcting for the two-step model selection procedure (ter Braak 329 
et al. 2012). However, we caution that one of the methods used is sensitive to overfitting (a known 330 
problem with the medusa algorithm assuming the AICc stopping criterion) and that a wrongly 331 
defined VCV matrix can lead to type I error rates as high as for raw OLS models. It is crucial, 332 
therefore, to use a methodology that correctly assigns rate shifts, or to test overfitting by 333 
parametric bootstraping (Boettiger et al. 2012). 334 
It is possible that more efficient strategies will become soon available for fitting PGLS under 335 
heterogeneous models of evolution, nonetheless we have shown that our approach works well, and 336 
is reasonably transparent. Due to computational constrains, it was not feasible to explore the full 337 
range of possible evolutionary models, tree shapes, and trees sizes (the combinations of which are 338 
effectively infinite), but we see no reason why our approach should fail under different conditions 339 
except when clades sizes for which rate changes have occurred are too small to accurately infer 340 
the correct evolutionary model.  341 
Last, we note that we do not provide a solution for the heterogeneous phylogenetic signal 342 
scenario; however, future advances that allow the fit of heterogeneous phylogenetic signal to the 343 
tree could be easily implemented within our framework. 344 
PGLS and hidden selective trends 345 
We did not evaluate type I error rates under a heterogeneous OU model of evolution. Under this 346 
scenario, even for B=0 (i.e. no expected correlation between X and Y), the two traits might be 347 
significantly correlated if both have followed the same selective trends (i.e. optima and selection 348 
strength shifts). In this case, we are no longer considering type I error rates, but rather Power of 349 
the method and it is not straightforward to derive expectations if the two traits follow slightly 350 
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different models. For example, one could imagine that the two traits show the same general trends 351 
but with slightly different optima, strength of selection or location of shifts. One interesting idea 352 
would be to simulate traits with different OU parameters and positions, and plot the percentage of 353 
detected correlations against the amount of difference between the two models using a version of 354 
PGLS that takes into account the drift part of the OU model. It might also be informative to 355 
explore models where traits co-evolve, or the evolution of one is driven by the evolution of the 356 
other, causing consistent time-lags between their evolutionary shifts. It would then be possible to 357 
compare the likelihood of such a model with another in which traits evolve independently. This 358 
would avoid the direct correlation of extant species traits. Finally, in the present study we have 359 
assumed a parametric method for estimating changes in evolutionary rates in the sense that the 360 
procedures here estimate variance-covariance phylogenetic matrices based on families of known 361 
models of evolution. Another potential solution, not explored here, would be to use an iterative 362 
weighted least-square implementation (e.g., Björck 1996) in order to estimate an appropriate 363 
variance-covariance structure that would make model residuals independent.  364 
Taken together, we have shown that currently implemented phylogenetic comparative methods 365 
have unacceptable type I error rate when species’ traits evolve under heterogeneous models of 366 
evolution. We proposed a flexible solution based on PGLS and showed that it had correct type I 367 
error. Our framework is potentially extendible to most complex evolutionary scenarios.  368 
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Table 1. Table 1 summarizes the statistical performance (type I error -the % of tests based on 477 
samples that incorrectly rejected a true null hypothesis- and power -the % of tests that correctly 478 
rejected a false null hypothesis) of classical PGLS (optimized for a single λ) under different 479 
simulation scenarios. Complex evolutionary models were used to simulate either X and the 480 
residuals of Y (column 1), only X (column 2) or only the residuals (column 3). ‘KO’ indicates 481 
reduced power or inflated type I error, ‘OK’ indicates good power and correct type I errors. 482 
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Figure 1. Effect of heterogeneous phylogenetic signal on type I error. Effect of variation in 485 
phylogenetic signal heterogeneity on Type I error rates for the different comparative methods: 486 
classical OLS, PGLS that jointly optimises a single λ value for the residuals together with 487 
parameter estimates (‘PGLSglobal_λ‘) and a PGLS that uses the true VCV matrix (‘PGLSTrueVCV’). 488 
The X-axis represents λ of clade B (λ of clade A is set to one). Plotted below the X-axis are the 489 
corresponding transformed trees for a homogeneous signal (λ[Clade A] = λ[Clade B] =1) and a 490 
heterogeneous signal (λ[Clade A] = 1; λ[Clade B] =0.01). The type I error represents the 491 
percentage of simulation that detected a significant correlation at the 5% level (1000 simulations) 492 
between the two traits which is expected to be 5% for a valid method (black horizontal line). 493 
Figure 2. Effect of heterogeneous rate of trait evolution on type I error. Effect of variation in 494 
evolutionary rate heterogeneity (i.e. the ratio of rate evolution between clades) on Type I error 495 
rates for different comparative methods (see legend of Figure 1). Different models of rate 496 
heterogeneity are presented (i.e. from 1 to 9 rate shifts). For the simplest case (one single rate 497 
shift), we plotted below the X-axis the corresponding transformed trees for a homogeneous rate 498 
(σ2 [Clade 1] = σ2 [Clade 2] =1) and a heterogeneous signal (σ2 [Clade 1] = 1; σ2 [Clade 2] =0.01). 499 
The type I error represents the percentage of simulation that detected a significant correlation at 500 
the 5% level (1000 simulations) between the two traits which is expected to be 5% for a valid 501 
method (black horizontal line). 502 
Figure 3. Type I error rates for modified PGLS. Comparison of type I error rate for classical 503 
(OLS, PGLSglobal_λ, and PGLSTrueVCV) and modified (PGLSauteur and PGLScombination) comparative 504 
methods as a function of evolutionary rate heterogeneity between clades. We show here the result 505 
for the simplest model of rate heterogeneity (i.e. one single rate shift) and plot below the X-axis 506 
the corresponding transformed trees for a homogeneous rate (σ2 [Clade 1] = σ2 [Clade 2] =1) and a 507 
heterogeneous rate (σ2 [Clade 1] = 1; σ2 [Clade 2] =0.01). The type I error represents the 508 
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percentage of simulation that detected a significant correlation at the 5% level (1000 simulations) 509 
between the two traits which is expected to be 5% for a valid method (black horizontal line). 510 
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