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ABSTRACT

Aim Conservation planning exercises increasingly rely on species distributions

predicted either from one particular statistical model or, more recently, from

an ensemble of models (i.e. ensemble forecasting). However, it has not yet been

explored how different ways of summarizing ensemble predictions affect con-

servation planning outcomes. We evaluate these effects and compare common-

place consensus methods, applied before the conservation prioritization phase,

to a novel method that applies consensus after reserve selection.

Location Europe.

Methods We used an ensemble of predicted distributions of 146 Western Pal-

aearctic bird species in alternative ways: four different consensus methods, as

well as distributions discounted with variability, were used to produce inputs

for spatial conservation prioritization. In addition, we developed and tested a

novel method, in which we built 100 datasets by sampling the ensemble of pre-

dicted distributions, ran a conservation prioritization analysis on each of them

and averaged the resulting priority ranks. We evaluated the conservation out-

come against three controls: (i) a null control, based on random ranking of

cells; (2) the reference solution, based on an expert-refined dataset; and (3) the

independent solution, based on an independent dataset.

Results Networks based on predicted distributions were more representative of

rare species than randomly selected networks. Alternative methods to summa-

rize ensemble predictions differed in representativeness of resulting reserve net-

works. Our novel method resulted in better representation of rare species than

pre-selection consensus methods.

Main conclusions Retaining information about the variation in the predicted

distributions throughout the conservation prioritization seems to provide better

results than summarizing the predictions before conservation prioritization.

Our results highlight the need to understand and consider model-based uncer-

tainty when using predicted distribution data in conservation prioritization.

Keywords

Consensus predictions, efficiency, optimization, rare species, systematic

conservation planning, uncertainty.

INTRODUCTION

Systematic conservation planning (SCP) aims at cost-efficient

use of scarce resources available for conservation (Margules

& Pressey, 2000). It typically uses optimization tools to

identify networks that represent as much biodiversity as pos-

sible while keeping the costs or total area to a minimum

(Ball et al., 2009; Moilanen et al., 2009). The SCP framework

starts by mapping the features of conservation interest within

the entire planning region. As such information is rarely
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available and requires tremendous effort to collect, species

distribution models (SDMs) have been suggested as provid-

ing a useful and cost-efficient tool to generate maps of biodi-

versity (Guisan & Thuiller, 2005; Wilson et al., 2005; Elith

et al., 2006).

Successful use of SDMs in conservation planning requires

the model predictions to be accurate and able to identify

sites of high suitability for a species (Guisan et al., 2006). At

the same time, the model should be able to generalize the

prediction outside the locations for which data exist, that is,

avoid over-fitting. Both omission and commission errors

misdirect allocation of conservation resources and reduce the

effectiveness of actions (Rondinini et al., 2006). Validation of

models is difficult, as truly independent validation data typi-

cally do not exist – and if they did, those data could be used

in the planning directly. However, assessment of the uncer-

tainty in predicted distributions, and the impact of this

uncertainty on conservation outcomes, is not a standard

practice (Langford et al., 2011).

Conservation planning exercises using predicted distribu-

tion data have previously relied mostly on predictions from

a single statistical technique. However, as the field of species

distribution modelling has been evolving rapidly, more reli-

able alternatives are becoming available. Ensemble modelling,

where predictions of species distributions are produced with

several statistical techniques together instead of any single

modelling technique, has been suggested to improve predic-

tions of the current range of a species (Thuiller, 2004; Ara�ujo

et al., 2005; Marmion et al., 2009b) as well as patterns in

species richness (Parviainen et al., 2009) and diversity

(Mateo et al., 2012). Given that the choice of modelling

technique is a major source of variability in the predictions

(Pearson et al., 2006; Buisson et al., 2010; Garcia et al.,

2011) and that selecting a best model a priori is not straight-

forward (Elith & Graham, 2009), it seems reasonable to use

several, generally well-performing techniques and to thereby

assess where their predictions agree or disagree. If different

statistical techniques fit similar responses of species occur-

rence to environmental factors, then these techniques would

be expected to make similar predictions. Combining such

techniques within an ensemble would add little additional

information compared with using just one single technique.

However, statistical techniques often differ in how they are

affected by geographical range properties (Marmion et al.,

2009a) and sensitivity to sample size and species prevalence

(Wisz et al., 2008). Therefore, variability across techniques

can provide an estimate of an important source of uncer-

tainty. Using that information in reserve selection might be

expected to yield more reliable identification of conservation

priorities.

To date, ensemble modelling has been applied to conser-

vation planning in order to assess the impacts of climate

change on current areas of conservation priority (Coetzee

et al., 2009; Ara�ujo et al., 2011; Kujala et al., 2011). It has

also been used to identify protected area networks that are

resilient to climate change (Carroll et al., 2010) and robust

against uncertainty in the predictions (Carvalho et al.,

2011). However, the consequences of subjective decisions in

using the ensemble outputs in conservation planning have

not yet been examined. As ensembles are collections of pre-

dictions, there is a preference towards summarizing the

information across the multiple projections to aid decision-

making.

However, there are several possible ways of summarizing

the ensemble of predictions into one, or a few, predictive

map(s) of species distribution (Ara�ujo & New, 2007; Marm-

ion et al., 2009b). In previous studies, ensembles have been

summarized a priori to spatial conservation prioritization so

that the summary maps are used as inputs for identifying

conservation priorities. Alternatively, the range of predictions

in the full ensemble could be used to identify multiple sets

of conservation priorities, and a summary could be made of

those priorities a posteriori. This alternative approach is

expected to retain more information about the variability

across model predictions throughout the conservation priori-

tization exercise while demanding less computation power

than running conservation prioritization across all possible

combinations of the full ensemble.

Here, we evaluate and compare the pre-selection and

post-selection consensus approaches in conservation prioriti-

zation. As the latter approach has not been used in any pre-

vious study, we develop and assess a novel parsimonious

method for using data representative of the full ensemble in

the conservation prioritization process. We evaluate the per-

formance of each approach by comparing the representa-

tiveness of the resulting protected area network with that

achieved by (1) randomly selected networks, to test for

overall performance, (2) a quasi-independent reference data-

set, to test for solution efficiency and (3) a truly indepen-

dent evaluation dataset. Essentially, we ask: Would

conservation decisions based on ensemble predictions of

species distributions be different depending on how the

ensemble is pre-processed? We discuss how the choice of

approach may depend on the properties of species data that

are available, and why it is critical to assess the reliability of

species distribution modelling in any given conservation

planning context.

METHODS

Bird distribution data

We used extent of occurrence data of 158 bird species in the

Western Palaearctic region to conduct the analysis. These

species are in the Annex I of the European Union Birds

Directive and thereby have a legal conservation status at the

EU level. Distribution maps from The Birds of the Western

Palaearctic database (BWPi, 2006) were digitized at a resolu-

tion of 50 950 km (Barbet-Massin et al., 2012b). We cali-

brated the models using species distributions across the

whole Western Palaearctic region to cover the full extent of

their niches (Barbet-Massin et al., 2010).
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Climate and land use data

Current climate was represented by 19 bioclimatic variables

from the WorldClim database (Hijmans et al., 2005) at

50-km grid resolution for calibrating the models and 10’ res-

olution for projecting them. We pre-selected variables based

on a principal components analysis and a cross-correlation

matrix to avoid retaining highly correlated variables. We

finally kept five climatic variables in the models: temperature

seasonality (standard deviation *100), maximum temperature

of the warmest month, minimum temperature of the coldest

month, precipitation of the wettest month and precipitation

of the driest month.

Current land cover for the whole Palaearctic was repre-

sented by GlobCover 2009 (Arino et al., 2012) at 300-m res-

olution. We upscaled the data to 50 9 50 km and 10’

resolution by calculating the area of each land cover type

within each pixel, using the level 1 classification (i.e. built-up

areas, arable lands, permanent crops, grasslands, forests and

others). Because the built-up and arable lands variables were

highly correlated, we removed built-up areas from the set of

variables. In addition, we estimated the Simpson diversity

index using the proportional cover of each land cover class

as a weight. This can be interpreted as a measure of land use

heterogeneity.

Species distribution modelling

Species distribution models were calibrated over the whole

Palaearctic region at a resolution of 50 9 50 km and then

projected at 10’ resolution. We used five different algorithms

available within the BIOMOD framework (Thuiller et al.,

2009) to obtain an ensemble of predicted distributions: gen-

eralized additive models (GAM), boosting regression trees

(BRT), classification tree analysis (CTA), multiple adaptive

regression splines (MARS) and random forest (RF). We

chose a restricted set of algorithms because it was beyond

the aim of the study to cover the complete range of available

algorithms, and these have been demonstrated to be per-

forming well in species distribution modelling across a range

of scales and situations (Thuiller et al., 2003; Elith et al.,

2006; Lawler et al., 2006; Prasad et al., 2006). To calibrate

the models, and to evaluate their performance through

cross-validation, we partitioned the original data into two

subsamples: one for calibration–validation and the other for

evaluation (Friedman et al., 2009). For the calibration–vali-

dation subset, a fivefold internal cross-validation was carried

out by randomly sampling 62.5% of the calibration data and

testing the predictions against the remaining 37.5% of the

data. The resulting projections were then validated with the

20% of data that were not used for model calibration or

internal evaluation, using the true skill statistic (TSS) as an

evaluation metric (Allouche et al., 2006). With five repeti-

tions and five modelling algorithms, we obtained an ensem-

ble of 25 predicted distributions for each of our species

(Fig. 1).

To explore whether the performance of different reserve

selection approaches varies for different types of species, we

grouped species based on their model-related uncertainty

using range size and the median correlation (Pearson’s R)

between predictions across models (i.e. a measure of how

different the predictions are from the different models and

the repetitions). We calculated a pairwise Euclidean distance

matrix between species based on these two parameters and

ran a hierarchical cluster analysis on this matrix (Venables &

Ripley, 2003). The number of clusters was determined by

maximizing the Silhouettes index (Rousseeuw, 1987). This

resulted in three distinguishable classes, within which cluster

1 contained 84 species whose cross-model correlation and

range size were both lower than for species in the other two

clusters (Fig. S2; Table S1a). In addition to presenting results

for all species considered in the analysis, we also present

results separately for species in cluster 1, as the high variabil-

ity exhibited by these species within the model ensemble

makes them a good test of ability of different consensus

methods to inform conservation planning. These species are

also rare (occurring in <20% of the cells in the study area),

which make them of conservation interest. We refer to the

species in cluster 1 as ‘rare species’ in the Results section.

Ensemble prediction datasets

To obtain the datasets for the ‘pre-selection consensus tech-

nique’, we summarized the ensemble of predicted species distri-

butions using four different consensus techniques available

within BIOMOD: (1) committee averaging (MeanTSS), where

probabilities of occurrence from different models were first

transformed to presences and absences with a threshold that

maximizes the value of the true skill statistic (Allouche et al.,

2006) and then averaged (Thuiller et al., 2009); (2) weighted

mean probability (MeanWMP), where a weight based on the

evaluation scores was first assigned to the probabilities and no

transformation to presences and absences occurs (Marmion

et al., 2009b; Thuiller et al., 2009); (3) binary committee aver-

aging (BinTSS), where the committee average probabilities were

transformed back to presences and absences with the threshold

that maximized the TSS score during the cross-validation pro-

cedure; (4) binary weighted mean probability (BinWMP),

where the weighted mean probabilities were transformed to

presences and absences with a threshold that maximizes the

TSS of the ensemble predictions (Thuiller et al., 2009).

We produced raster grids of the standard deviation across

the ensemble for each species and grid cell. The standard devi-

ation for each cell, together with the weighted mean probabil-

ity, was used in an approach called distribution discounting

(DistrDisc; Moilanen et al., 2006), previously implemented in

the conservation planning software Zonation (see below).

Additionally, we produced datasets for the ‘post-selection

consensus technique’ by randomly sampling one probability

value of the 25 values available for each species in each grid

cell and repeated this sampling 100 times, thereby achieving

100 datasets altogether.
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We excluded species that: (1) were missing from the eval-

uation datasets or had a different taxonomic interpretations;

or (2) for which the true skill statistics validation score was

lower than 0.3 for one or more models, meaning that the

model fit was poor and predictions unreliable (Ara�ujo et al.,

2011; see Fig. S1a and Table S1a for details on the validation

statistics). We retained 146 species in the final analyses.

Evaluation datasets

Reference evaluation dataset

We used reference data for the species in our analysis

(Maiorano et al., 2013) to assess how closely the reserve

network identified with predicted distributions matched a

Figure 1 We used two evaluation datasets in the analysis: a reference dataset where species distribution data for the analysis were

processed in an alternative way, to provide higher quality distributional information, and an independent dataset from another data

source. The pre-selection consensus datasets were obtained by summarizing the ensemble predictions in four different ways. The

distribution discounting dataset had pre-selection consensus of predicted distributions combined with layers of standard deviations

across the ensemble predictions separately for each species. The post-selection consensus data contained 100 datasets where a probability

of occurrence was randomly sampled from the full ensemble for each species in each cell. The conservation prioritization for the

reference, independent and pre-selection consensus datasets was based on the layers of (predicted) species distributions. For the

distribution discounting set, the standard deviation was subtracted from the probability of occurrence. Conservation priority ranking

was generated for each of the 100 post-selection consensus datasets separately, after which the mean rank of each cell was calculated to

produce the final post-selection consensus ranking.
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network derived using higher quality data. In the reference

dataset, the extent of occurrence (EOO) maps in the Birds of

the Western Palaearctic database (BWPi, 2006) were comple-

mented with data from The EBCC Atlas of European Breed-

ing Birds (Hagemeijer & Blair, 1997). EOO maps were

filtered with land cover and elevation data with resolution of

0.9 km2, following published literature and expert opinion,

considering three main environmental variables: land use

based on GlobCover 2009 (Arino et al., 2012), elevation and

distance to water (see Maiorano et al., 2013 for more details).

Land cover was classified according to suitability for each spe-

cies. Presences were assigned to cells that contained primary

habitat for a species within its EOO range. The resulting

ranges were aggregated to presences and absences at 10’ reso-

lution so that a species was considered present in a cell if

there was at least one suitable 0.9-km2 cell within a 10’ cell.

The agreement between the original data used for model-

ling and the reference evaluation data, quantified as TSS

scores, varied between 0.21 and 0.94, with a median of 0.81.

The TSS scores for the agreement between predicted distri-

butions and reference evaluation data varied between �0.03

and 0.97 (see Fig. S1b and Table S1b for details).

Independent evaluation dataset

We used another evaluation dataset (BirdLife International &

NatureServe, 2012) to test the performance of our approaches

against data from independent sources. The independent eval-

uation dataset includes distribution information compiled

from a variety of sources, including specimen localities from

BirdLife’s Point Locality Database and the Global Biodiversity

Information Facility (GBIF), observer records, documented

occurrences in Important Bird Areas, distribution atlases

derived from systematic surveys, distribution maps in field

guides and other handbooks and expert opinion. The agree-

ment between the original data used for modelling and the

independent evaluation data, quantified as TSS scores, varied

between 0 and 0.98, with a median of 0.77. The TSS scores for

the agreement between predicted distributions and indepen-

dent evaluation data varied between �0.31 and 0.99. The

agreement between reference data and independent data var-

ied between 0.04 and 1.00, with a median of 0.71 (see Fig. S1c

and Table S1c for details).

Reserve selection

To identify priority areas for conservation, we used the

Zonation v.3.0 software for spatial conservation prioritization

(Conservation Biology Informatics Group, University of Hel-

sinki, Helsinki, Finland; Moilanen et al., 2012). Zonation

identifies areas that are important for retaining suitable habi-

tat simultaneously for all the species included in the analysis,

to provide decision support and facilitate cost-efficient con-

servation decisions. The output of Zonation is a hierarchical

map of the landscape, based on the biodiversity value of the

sites. The software operates through backwards-iterative heu-

ristics, at each step calculating conservation value for each

site and removing the one with the lowest conservation

value. We used the algorithm called core-area Zonation that

calculates the conservation value di for each site as

di ¼ maxjðqijwj=ciÞ;

where qij is the proportion of the distribution of species j

located in site i among the sites that are remaining in the land-

scape, wj is the species-specific weight for species j, and ci is

the cost of site i. As we weighted all species equally and did

not use information about land cost in our analysis, the con-

servation value was purely determined by the species that had

the largest proportion of its remaining distribution in cell i.

To assess the performance of the ensemble prediction

datasets in reserve selection, we produced three different

controls (Fig. 1): (1) a null control, based on 100 random

rankings of cells disregarding any information about the spe-

cies; (2) the reference solution, with conservation priority

ranking based on the reference evaluation dataset; and (3)

the independent solution, with conservation priority ranking

based on the independent evaluation dataset.

We derived a conservation priority ranking with each of the

four ‘pre-selection consensus’ datasets (Fig. 1). We also gener-

ated a conservation priority ranking that considered uncer-

tainty through the distribution discounting analysis within

Zonation (Moilanen et al., 2006, 2012) using the MeanWMP

dataset in combination with the standard deviation across the

ensemble for each species (DistrDisc). Here, the standard

deviation of each species and grid cell is subtracted from the

probability of occurrence for that species and cell. Finally, to

obtain the ‘post-selection consensus’ reserve network, we first

derived a conservation priority ranking for each of the 100

datasets we had sampled across the full ensemble. We calcu-

lated the mean rank for each cell across these rankings and re-

ranked the cells by the mean rank. The resulting ranking was

our ‘post-selection consensus’ prioritization (PostCons). The

number of sampled datasets should be balanced so that the

samples are representative of the ensemble while the analysis

is not too heavy in terms of computation. In our case, the

Spearman’s correlation rs between average rank across 10 and

100 runs was already higher than 0.95 (see Fig. S3).

Comparative analysis: similarity and

representativeness

We explored the similarity between networks by quantifying:

(1) pairwise spatial overlaps between the highest 10% priori-

ties of ensemble prediction versus reference and independent

solutions; and (2) pairwise correlations between the overall

priority rankings of ensemble prediction and reference and

independent solutions. To compare the performance of our

methods with the null control, we quantified the number of

times each species was better represented in the ensemble

prediction-based networks than in the networks based on

random ranking of cells.
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We quantified representativeness of species, according to

data in the evaluation datasets, in the reserve networks based on

the ensemble prediction datasets. We used pairwise Wilcoxon’s

signed-rank tests to determine whether species are consistently

better represented in one network or another. The R script and

Zonation set-up for computing the analyses are provided in

Appendix S1 in Supporting Information.

RESULTS

Spatial similarity in conservation priorities

The conservation priorities obtained with the post-selection

consensus approach were most similar to both the reference

and independent priorities, with 39% and 45% spatial over-

lap of the top 10% fraction for the reference and indepen-

dent networks, respectively, and Spearman’s correlation rs of

0.551 and 0.599 for the overall ranking of cells (Fig. 2;

Table 1.). The overlap between pre-selection consensus net-

works and the reference network ranged between 21% and

31% and Spearman’s correlation rs between 0.385 and 0.467,

whereas the distribution discounting network had 28% cells

in common with the reference network, and the Spearman’s

correlation rs was 0.411. Overlap between pre-selection con-

sensus networks and independent network ranged between

27% and 33% and was 29% between distribution discount-

ing network and independent network, while the respective

Spearman’s correlations rs were 0.409–0.499 and 0.468.

Representativeness

Both the evaluation networks (reference and independent) as

well as the ensemble prediction networks were consistently

more representative than random networks for 43–59% of all

species and 67–88% of the rare species, when evaluated with

the reference evaluation data, and for 33–55% of all species

and 54–83% of rare species, when evaluated with independent

evaluation data (Table 2). However, the differences in repre-

sentation between random networks and the network based

on MeanTSS were not statistically significant for all species

against either reference or independent data (Wilcoxon’s

signed-rank test; median P = 0.178 in pairwise comparisons

between MeanTSS and the 100 random networks against ref-

erence data and median P = 0.491 against independent data),

or for all species in the post-selection consensus network

when evaluated against independent data (median

P = 0.086). In all other cases, the differences were statistically

significant (Wilcoxon’s signed-rank test; P < 0.05).

Both evaluation networks represented significantly larger

proportions of species ranges than any of the networks

obtained with the predicted distributions, both for all species

and for rare species (Fig. 3; Tables 3 and S1).

Post-selection consensus yielded consistently higher repre-

sentation for rare species than any of the pre-selection con-

sensus networks, or the distribution discounting network,

when evaluated against the reference data (Fig. 3b; Table 3).

These differences were statistically significant (Wilcoxon’s

signed-rank test; P < 0.05) in all cases except between post-

selection consensus and BinWMP (P = 0.076). When evalu-

ated against the independent evaluation data, the PostCons

network was more representative than any of the other

ensemble prediction networks for rare species (Fig. 3d;

Table 3). There were no significant differences between post-

selection consensus and pre-selection consensus or distribu-

tion discounting for all species, neither against reference nor

independent evaluation data (Table 3).

DISCUSSION

We have presented a new approach to using ensemble model

outputs in reserve selection: the post-selection consensus

approach, where the full range of predictions is sampled to

provide input for spatial conservation prioritization. In our

study, the post-selection consensus approach resulted in

consistently better conservation outcomes for rare species

than using a pre-selection consensus summary of the model

predictions.

Selecting an appropriate approach based on

prediction variability

Patterns of similarity in model predictions across the ensem-

ble can provide valuable information and guide the choice of

approach for conservation prioritization. In our analysis,

widespread species generally had high correlation between

model predictions (mean Pearson’s R 0.94; 1. quartile 0.92;

3. quartile 0.95), and no consistently significant differences

were found between the performance of pre- and post-selec-

tion consensus techniques when such species were included

in the comparison. Species that were present in <20% of the

cells in the study area exhibited higher variation across mod-

els (mean Pearson’s R 0.82; 1. quartile 0.77; 3. quartile 0.89),

and for these species, the post-selection consensus approach

was consistently better than the pre-selection consensus tech-

niques. However, species with very few occurrences were

often represented poorly in the ensemble prediction

networks, particularly when they also had exceptionally low

cross-model correlation (Pearson’s R < 0.75). This suggests

that their distributions were not described by model predic-

tions accurately enough. These species occurred in our study

area only at the margins of their ranges or had a scattered

range, which are probable explanations for the high variabil-

ity. Such species can be included in the planning exercise by

directly using the available observation data instead of

modelled distributions, while using predicted distributions

for the rest of the species (Carvalho et al., 2010).

Virtual experiments can address limitations of this

study

A potential source of uncertainty, not addressed in our

study, arises from our choice of the reference evaluation data
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2 Nested top fractions of conservation priority rankings for: (a) reference, (b) independent, (c) BinTSS, (d) BinWMP, (e)

MeanTSS, (f) MeanWMP, (g) distribution discounting and (h) post-selection consensus.
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that were based on an expert assessment of habitat suitability

within known extent of occurrence, rather than on direct

surveys or observations of species occurrence. We further

assessed pre- and post-selection approaches against an inde-

pendent evaluation dataset, which is also likely to contain

errors. However, the differences in performance of consensus

methods were consistent in both assessments.

Using empirical, and therefore uncertain, data in our

study means that the true performance of the approaches

cannot be known. This shortcoming could be addressed in

the future through virtual experiments (Langford et al.,

2009; Zurell et al., 2010). However, an empirical study such

as ours provides a good starting point for identifying rele-

vant questions that virtual studies can better address. Rele-

vant questions arising from our study are: (1) What role

does variability in ensembles play in the performance of dif-

ferent consensus methods? (2) Does community nestedness

affect the performance of pre- versus post-selection consen-

sus? and (3) How robust are different approaches to

increased uncertainty, for example, under climate change?

The emphasis on robustness should become even more

pronounced when distributions are projected into the future,

and several socio-economic scenarios and climatic circulation

models may be involved in addition to the statistical tech-

niques for SDMs (Buisson et al., 2010; Garcia et al., 2011).

We compared the performance of different approaches

with a network of fixed size. However, it is worth noting that

increasing the coverage of protected area network reduces

sensitivity to errors, as well as increasing the likelihood of

population persistence (Cabeza & Moilanen, 2003; Hannah

et al., 2007).

Using SDM predictions in conservation planning

needs careful consideration

We have shown that conservation decisions based on pre-

dicted species distributions are sensitive to the approach to

summarizing the output of ensembles. Our proposed method

(post-selection consensus) provided a better conservation

outcome than pre-selection consensus methods, which sum-

marize the model ensemble before conservation prioritiza-

tion. However, there were notable differences between the

pre-selection consensus techniques. For example, the network

based on weighted mean probabilities of occurrence

transformed to binary presences and absences was not

significantly less representative of rare species than the

Table 2 The number and proportion of species that were consistently (more than 95 times of 100) represented better in evaluation

and ensemble conservation priority networks than in randomly selected networks of equal size, evaluated with (a) reference and

(b) independent data. The values are reported separately for rare species (n = 84) and all species (n = 146).

Reference

Pre-selection consensus

BinTSS BinWMP MeanTSS MeanWMP DistrDisc Post-selection consensus

(a)

Rare species N 74 61 67 56 65 68 62

% 88.1 72.6 79.8 66.7 77.4 81 73.8

All species N 86 72 79 62 73 76 70

% 58.9 49.3 54.1 42.5 50 52.1 47.9

Independent

Pre-selection consensus

BinTSS BinWMP MeanTSS MeanWMP DistrDisc Post-selection consensus

(b)

Rare species N 70 63 63 45 63 67 64

% 83.3 75 75 53.6 75 79.8 76.2

All species N 80 67 71 48 68 73 69

% 54.8 45.9 48.6 32.9 46.6 50 47.3

Table 1 Spatial overlap between evaluation and test conservation priorities (defined as best 10% of the priority ranking) as well as the

Spearman’s correlation rs of the priority rankings.

Pre-selection consensus

DistrDiscBinTSS BinWMP MeanTSS MeanWMP Post-selection consensus

Reference Overlap (%) 21 27 32 31 28 39

Correlation (rs) 0.385 0.422 0.398 0.467 0.411 0.551

Independent Overlap (%) 27 27 29 33 29 45

Correlation (rs) 0.487 0.467 0.409 0.499 0.458 0.599
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post-consensus network, when evaluated against reference

data. The results of this first case study highlight the need to

carefully contemplate the use of SDM outputs in spatial con-

servation prioritization.

We calibrated our SDMs with comprehensive information

about species distributions in the study area. In most real-

world situations, available data would be less comprehensive

and would therefore exhibit higher levels of error and bias. It

is critical to first assess whether data are appropriate for

SDM before proceeding down this path. Data error, uncer-

tainty and model reliability have attracted considerable

research interest over recent years (Reddy & D�avalos, 2003;

Graham et al., 2004; Barry & Elith, 2006; Barbet-Massin

et al., 2012a), and all of this understanding applies to both

pre- and post-consensus approaches in conservation prioriti-

zation. Neither pre- nor post-consensus reserve selection are

reliable if error and bias in the original data render model

predictions unreliable.

Using high-quality reference data on species distributions

provided the best outcome in our study. This serves as a

reminder that, when available, representative and unbiased

datasets can serve as a suitable basis for conservation plan-

ning even without modelling (Gaston & Rodrigues, 2003).

Any conservation analysis should start by assessing whether
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Figure 3 Representativeness of the reserve networks, as defined by proportions of species ranges, retained in the 10% of cells with

highest priority rank, and evaluated against the reference evaluation data for (a) all and (b) rare species, as well as the independent

evaluation data for (c) all and (d) rare species. The box plots display the median as well as the 50% (box) and 95% (whiskers)

confidence intervals, and the dashed horizontal line indicates the median representation in the evaluation data.
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models are needed for that analysis, and whether the data

are suitable for SDM. In our study, we further showed that

very rare species are particularly difficult to model accurately,

and this variability may not be apparent from the TSS evalu-

ation scores. Such species may be inadequately represented

in the reserve networks because of incorrect model predic-

tions. We caution against disillusion with respect to statisti-

cal techniques and call for using best practices identified by

SDM research (Barry & Elith, 2006; Elith et al., 2006; Guisan

et al., 2006) in conservation planning as well as other fields

of application.

ACKNOWLEDGEMENTS

We are grateful to Simon Ferrier, Bill Langford and an

anonymous referee for their constructive comments on this

manuscript. We thank BirdLife International and Nature-

Serve for providing their data and acknowledge their

endeavour for such a database. The research leading to

these results received funding from the European Research

Council under the European Community’s Seventh Frame-

work Programme FP7/2007-2013 project TEEMBIO (Grant

Agreement No. 281422). Species distributions were mod-

elled using the CIMENT infrastructure (https://ciment.

ujf-grenoble.fr), supported by the Rhône-Alpes region
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