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Abstract. Obtaining reliable predictions of species range shifts under climate change is a
crucial challenge for ecologists and stakeholders. At the continental scale, niche-based models
have been widely used in the last 10 years to predict the potential impacts of climate change on
species distributions all over the world, although these models do not include any mechanistic
relationships. In contrast, species-specific, process-based predictions remain scarce at the
continental scale. This is regrettable because to secure relevant and accurate predictions it is
always desirable to compare predictions derived from different kinds of models applied
independently to the same set of species and using the same raw data. Here we compare
predictions of range shifts under climate change scenarios for 2100 derived from niche-based
models with those of a process-based model for 15 North American boreal and temperate tree
species. A general pattern emerged from our comparisons: niche-based models tend to predict
a stronger level of extinction and a greater proportion of colonization than the process-based
model. This result likely arises because niche-based models do not take phenotypic plasticity
and local adaptation into account. Nevertheless, as the two kinds of models rely on different
assumptions, their complementarity is revealed by common findings. Both modeling
approaches highlight a major potential limitation on species tracking their climatic niche
because of migration constraints and identify similar zones where species extirpation is likely.
Such convergent predictions from models built on very different principles provide a useful
way to offset uncertainties at the continental scale. This study shows that the use in concert of
both approaches with their own caveats and advantages is crucial to obtain more robust
results and that comparisons among models are needed in the near future to gain accuracy
regarding predictions of range shifts under climate change.

Key words: biodiversity; biogeography; climate change; extinction; migration; niche-based modeling;
process-based modeling; species distribution.

INTRODUCTION

Numerous impacts of climate change on plants have

been documented during the last 10 years (Parmesan

2006), including impacts on plant function, in particular

growth (Myneni et al. 1997, Saxe et al. 2001, Korner et

al. 2005) and phenology (Menzel and Fabian 1999, Root

et al. 2003, Menzel et al. 2006, Schwartz et al. 2006), but

also on biotic interactions (Hughes 2000, Suttle et al.

2007) and on species distributions through local

extinction of populations (Parmesan 2006) and range

shifts (Kullman 2002, Walther et al. 2002, 2005,

Parmesan and Yohe 2003). Such impacts can cause

major changes in ecosystem functioning and in biodi-

versity (Lovejoy and Hannah 2005). Assessing species

range shifts is especially crucial for trees as they are a

major component of landscape structure, provide

important services such as wood production and

recreational opportunities, play a major role in forest

ecosystem functioning, and provide critical habitats for

many animal and plant species (Begon et al. 2005).

Evidence of accelerating climate change (IPCC 2007)

heightens the urgency of obtaining accurate predictions

of species range shifts in coming decades so that effective

mitigation strategies can be developed to sustain

ecosystem services and function (MEA 2005, Sutherland

2006). Predicting climate-driven changes in phenology

and plant distribution is a key requirement to forecast

future climate change because of the feedback of

vegetation to the atmosphere through water, carbon,

and heat fluxes (Betts et al. 1997, Sitch et al. 2003). The

situation is complicated, however, because each tree

species cannot be expected to experience the same

impacts given differing exposure to climate change,

physiological tolerance, and niche characteristics. Midg-

ley et al. (2007) predicted that deciduous broad-leaved

trees in the temperate zone will be among the most
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sensitive to climate change and most in need of further

study, especially because global warming is predicted to

be stronger in high latitudes (IPCC 2007).

What then are the best strategies for obtaining

accurate predictions for changes in the distributions of

deciduous temperate trees? At the scale of the geograph-

ic distribution of species, no experiments in situ can be

reasonably carried out to predict possible range shifts

(Woodward 1987). Modeling therefore appears the most

feasible and efficient way to establish useful predictions

(Lovejoy and Hannah 2005, Thuiller 2007), and several

kinds of models have been developed during the

previous decade for this purpose. As reviewed by

Midgley et al. (2007), these models fall into two main

classes: vegetation-type models (dynamic global vegeta-

tion models [DGVMs]) and species-specific models

(niche-based and process-based).

Dynamic global vegetation models (Neilson 1995,

Sitch et al. 2003) use submodels for photosynthesis,

plant carbon balance, and other factors to simulate the

form of vegetation at a particular location but at a

coarse spatial resolution when used with a spatial grid.

For the sake of generality, DGVMs traditionally

simulate groups of species having similar form and

function in ecosystems (plant functional types; PFTs).

For these reasons, they do not aim to focus on specific

species distributions (or on very dominant species),

although some new developments have seen the

emergence of hybrid DGVM–individual-based models

(e.g., LPJ-GUESS, Smith et al. 2001; HYBRID, Friend

et al. 1997) focusing on particular well-known dominant

species (Koca et al. 2006). However, as useful as they

can be, most DGVMs focus on prediction of changes in

vegetation type and are uninformative with regard to

range shifts or risks of extinction for specific species

(Neilson et al. 2005). Therefore we chose to dismiss this

class of model for this study because they as yet cannot

reach the level of precision required and they have not

been calibrated yet for the species selected in this study.

Within the class of species-specific models, niche-

based (NB) models in contrast rely on the establishment

of statistical or theoretical relationships between envi-

ronmental predictors (especially climatic ones, i.e.,

bioclimatic models) and observed species distributions.

Species data can be simple presence, presence/absence,

or abundance observations based on random or

stratified field sampling or observations obtained from

natural history museums. The modeled niche is then

projected into the future using data from general or

regional circulation models (GCM, RCM), highlighting

the areas currently suitable but predicted to become

unsuitable under climate change (and vice versa;

Ohlemüller et al. 2006). Niche-based models have been

widely used in the last 10 years to predict the potential

impacts of both climate (Sykes 1996, Bakkenes et al.

2002, Sutherst 2003, Thuiller et al. 2005, 2006) and land

use change (Bomhard et al. 2005) on species distribu-

tions all over the world (Thomas et al. 2004). One of the

main advantages of NB models is their relative

simplicity, facilitating development of many species-

specific models so long as reliable distributional data are

available. One of the main criticisms of NB models,

however, is their failure to consider relationships such as

biotic interactions, mortality, or growth (Davis et al.

1998, Hampe 2004) and their reliance on observed

distributions, which are the results of long-term histor-

ical factors (e.g., post-glacial recolonization), biotic

interactions, and environmental stochasticity, among

others factors.

Species-specific, process-based (PB) models on the

other hand do predict the response of an individual or a

population to environmental conditions by explicitly

incorporating biological processes calibrated with ob-

servations on individuals in natural populations. These

PB models can predict abundance, cover, or probability

of presence of a species at a given location, and they can

take genetic or ecotypic variability into account when

observations are available for different individuals or

different populations of a species (e.g., Morin et al.

2007). A PB model allows the highlighting of processes

involved in range shifts or extinction. Although various

types of PB models are developed or are under

development, such as gap models (Pacala et al. 1993,

Bugmann 2001), landscape models (Higgins et al. 2000,

Lischke et al. 2006, Scheller et al. 2007), or fitness-based

models (Chuine and Beaubien 2001), the use of these

models to make predictions of species range shifts is still

rare (Schumacher et al. 2004, Scheller and Mladenoff

2005), especially for species ranges at the continental

scale (Hijmans and Graham 2006, Jeltsch et al. 2008).

This scarcity in the number of species for which we

dispose of relevant and calibrated PB models is caused

by the fact that they require a large amount of

knowledge and data to be calibrated. These applications

are thus restricted to well-known species for which

demography or physiology have been studied for a long

time. This important limitation has so far prevented the

use of such models to assess the impact of climate

change on biodiversity (Jeltsch et al. 2008).

Despite their broad use, uncertainties about NB

models predictions remain high (Loehle and LeBlanc

1996, Bolliger et al. 2000, Hampe 2004, Thuiller et al.

2004, Randin et al. 2006), and there have been very few

opportunities to compare NB predictions against other

modeling approaches because relatively few species-

specific PB models have been developed at the conti-

nental scale (but see Hijmans and Graham 2006).

However, as with climatic models (or any other

predictive models), it is important to develop several

models independently and to compare and contrast their

predictions in order to identify both robust results and

model inadequacies (Beaumont et al. 2007). Such cross-

comparisons may provide conclusions on which policy

makers and stakeholders can rely. It is therefore critical

at this time that NB and PB models be developed and

compared for the same species run under the same
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scenarios. Toward this end, in this paper we address two

questions: Do the simulations made with species
distributions models relying on different assumptions

show consistent results for the future? And if not, what
can we learn from these differences in relationship with

the assumptions of each model?
Because NB and PB models focus on different aspects

of species performance across environments, there are
real insights to be gained in such a comparison. The
species-specific PB models at continental scale (Chuine

and Beaubien 2001, Hijmans and Graham 2006) rely on
modeling the fundamental niche of species, i.e., the niche

defined by only abiotic environmental variables under
which individuals of a species can live and reproduce

without any limitation by biotic interactions (Hutch-
inson 1957, Pulliam 2000). Competitive and facilitative

processes at both intra- and interspecific levels are thus
excluded. The NB models in contrast rely on modeling

the distribution realized in the face of biotic factors, land
use legacy, and dispersal abilities that restrict the

geographic expression of the fundamental niche, i.e.,
the realized niche (Pulliam 2000). In this way, they do

not explicitly model abiotic stress and biotic interactions
that drive species distribution, but they integrate the a

posteriori outcome of every potential constraint on the
geographic distribution of species. As they rely on
different assumptions, the natural complementarity of

PB and NB models can be exploited to provide a more
accurate picture of species future distributions (Midgley

and Thuiller 2005, Midgley et al. 2007) through the
comparison of both kinds of models.

At the continental scale of this study, we can expect
that PB models predictions will be more conservative

(i.e., will predict weaker range shifts than NB models) as
they simulate the geographic expression of the funda-

mental niche. But should this hypothesis be true, how
large will this difference be? Will it be consistent across

species? Where will the zones showing similar predic-
tions with both models be located? Comparing predic-

tions for models of each kind, and in particular
highlighting the areas sharing the same predictions, is

certainly a relevant way to reduce prediction uncertain-
ty. Following this idea, we here compare predictions of

range shifts under climate change scenarios for a NB
model with those for a PB model for 15 North American

boreal and temperate tree species.

METHODS

Choice of the species distribution models

For each of 15 northeastern American tree species
(Table 1), we simulated current and future distribution

using (1) a process-based model and (2) an ensemble of
niche-based models. Using more models of each kind

(NB and PB) would have been valuable, but we chose to
focus on one type of model of each kind. In fact we

should note that the framework we used, Biomod, with
few exceptions, calibrates the most well-known and well-

developed NB models. Thus the predictions made with

this framework will be consistent with several common

models and can be seen as an ensemble of the most

reliable models. More generally, NB models share the

same philosophy (i.e., assessing the geographic realiza-

tion of the realized niche by relating observed distribu-

tion and environmental variables) and just differ in the

kind of statistical relationships they use to do so.

Regarding PB models, actually very few models

working at both the tree species level and the continental

scale exist. For temperate trees, although new develop-

ments might lead to promising perspectives soon (see

Introduction, as well as Morin et al. 2008), the PB model

we used, Phenofit, is the only model developed so far at

such a level and such a scale.

The PB model: Phenofit

The process-based model Phenofit (Chuine and

Beaubien 2001, Morin and Chuine 2005, Morin et al.

2007) is so far one of the only process-based models that

predicts temperate tree species distributions at the

continental scale. It relies on the principle that the

adaptation of a tree species to environmental conditions

depends on the synchronization of its timing of

development to the seasonal variations of climate. Thus

Phenofit outputs a mean probability of presence in a

given location by assessing the fitness of an adult tree of

the studied species after several years. It is noteworthy

that most PB models are based on carbon–water balance

and focus on modeling growth of individuals (Sitch et al.

2003, Hijmans and Graham 2006), while Phenofit

focuses instead on the impact of stress limits on fitness.

To do so, this ‘‘fitness-based model’’ focuses on the

ability of trees to survive until the next reproductive

season and to produce viable seeds before the end of the

annual cycle (reproductive success). Appendix A pro-

vides a detailed description of the model. By using sets

of parameters fitted to observations on different

populations, the model can take into account the genetic

differentiation among populations and local adaptation

to climate (Morin et al. 2007). For five of the 15 species

studied (Acer saccharum, Fraxinus americana, Populus

tremuloides, Quercus macrocarpa, and Ulmus america-

na), parameter sets were available for two different

populations, one from northern Ohio and another from

central Illinois. For these five species Phenofit was run

with each set of parameters separately, and the results of

each simulation were combined using a squared inverse-

distance correction. The validation of Phenofit for the 15

species studied here is detailed in Morin et al. (2007).

One of these 15 species (quaking aspen, Populus

tremuloides) is known to significantly propagate with

vegetative reproduction (Russell et al. 1990). Asexual

reproduction is not taken into account in Phenofit,

which may affect the quality of the predictions for this

species. In a range shift context due to climate change,

vegetative reproduction may be important in two

situations: colonizations at the leading edge of the

expanding range and local extinctions of populations at
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the trailing edge. At the leading edge, vegetative

reproduction can allow the dissemination of the species

in areas not suitable for sexual reproduction, although

the rate of colonization by clonal reproduction is

negligible compared to sexual reproduction (e.g., Rice

and Sax 2005). At the trailing edge, vegetative repro-

duction might allow persistence of populations under

new conditions adverse to sexual reproduction, but

vegetative re-sprouts also may well be as sensitive to

frost and drought damage as seedlings. Thus, although

the Phenofit predictions for colonization events by

quaking aspen should be taken with some caution at

local spatial scales, we can expect Phenofit predictions

for this species at the continental scale to be reasonably

accurate. This statement is strengthened by the high

consistency between Phenofit simulations and the

presently observed distribution of Populus tremuloides

(Chuine and Beaubien 2001, Morin et al. 2007).

The NB model: the Biomod framework

We calibrated and evaluated NB models using the

Biomod framework (see details in Thuiller 2003, 2004,

Thuiller et al. 2008b) under the R software (Ihaka and

Gentleman 1996). Biomod enables many NB models to

be run simultaneously on a large suite of species and for

an unlimited number of climate change scenarios.

Models include: (1) generalized linear models (GLM),

(2) generalized additive models (GAM), (3) classification

tree analysis (CTA), (4) feed-forward artificial neural

networks (ANN), (5) generalized boosting models

(GBM; also known as boosting regression trees; BRT),

(6) random forests (RF), (7) mixture discriminant

analysis (MDA), and (8) multivariate adaptive regres-

sion spline (MARS). Generalized linear models, GAM,

CTA, and ANN are described and discussed in Thuiller

(2003). In a recent test of 16 niche models (Elith et al.

2006), including GBM, MARS, GLM, GAM and CTA,

the GBM models performed best. For each species, five

models were calibrated: GLM, GAM, CTA, Random-

Forest, and GBM and then an ensemble approach was

followed.

To evaluate the quality of NB predictions, we divided

the available data into two subsets: one for calibration

and the other for evaluation. We first calibrated the

TABLE 1. Species-specific percentages of extinctions and range extension (with and without migration [Mig] limitation) under the
climate scenarios A2 and B2, for niched-based (NB) and process-based (PB) simulations.

Species
r

(km/yr)

A2 B2

Loss
NB

Loss
PB

Gain
NB

Gain
PB

Mig
NB

Mig
PB

Loss
NB

Loss
PB

Gain
NB

Gain
PB

Mig
NB

Mig
PB

Group 1

Acer saccharinum 1 45.0 16.4 89.3 98.0 19.0 14.1 42.0 10.7 71.5 87.7 18.9 13.4
Acer saccharum 1 54.0 5.1 89.7 122.5 12.6 18.4 53.9 10.6 65.3 109.7 12.8 19.2
Carya ovata 1 39.5 21.4 84.7 85.2 17.1 15.4 34.1 28.1 63.0 88.2 18.0 14.8
Juglans nigra 1 38.6 11.4 84.3 56.3 16.9 11.6 34.0 9.0 62.1 66.2 17.8 14.7
Ostrya virginiana 1 23.8 13.2 89.0 64.8 15.2 8.9 28.7 18.2 61.7 62.5 15.1 11.1
Populus deltoides 10 24.0 5.5 89.9 62.3 89.9 30.8 22.0 4.0 64.1 27.6 64.1 27.6
Populus tremuloides 10 27.4 4.1 31.3 46.9 31.3 32.1 20.4 4.8 27.1 38.9 27.1 29.7
Quercus bicolor 1 91.3 30.3 164.3 124.0 27.9 14.4 73.7 31.5 111.6 106.2 32.2 14.6
Quercus macrocarpa 1 24.9 18.4 162.5 92.4 28.8 10.2 26.7 17.2 120.9 75.5 27.5 11.6
Ulmus americana 4 17.0 2.5 70.8 112.5 49.0 25.7 15.3 4.1 55.6 94.5 41.4 23.7

Mean 38.6 12.8 95.6 86.5 30.8 18.2 35.1 13.8 70.3 75.7 27.5 18.0
SE 6.9 2.8 12.6 8.9 7.4 2.7 5.6 3.1 8.6 8.6 4.9 2.1

Group 2

Fraxinus americana 1 11.0 60.1 64.0 60.3 17.5 17.5 13.0 12.8 52.1 112.7 16.8 22.3
Fraxinus nigra 1 55.0 97.4 110.7 54.0 15.8 4.4 46.2 98.2 79.8 48.2 16.2 4.0

Mean 33.0 78.8 87.3 57.2 16.7 11.0 29.6 55.5 65.9 80.5 16.5 13.1
SE 22.0 18.6 23.4 3.1 0.9 6.6 16.6 42.7 13.9 32.3 0.3 9.1

Group 3

Aesculus glabra 1 19.0 29.4 119.1 57.6 30.4 9.7 33.6 16.4 77.9 57.9 23.9 11.5
Salix nigra 5 5.2 2.9 125.7 61.1 112.4 38.6 3.6 9.3 97.0 50.7 95.0 31.0
Sassafras albidum 1 22.1 20.0 56.2 34.3 13.8 6.0 13.6 10.5 47.9 29.4 16.1 5.4

Mean 15.4 17.5 100.4 51.0 52.2 18.1 16.9 12.1 74.3 46.0 45.0 16.0
SE 5.2 7.8 22.2 8.4 30.5 10.3 8.8 2.2 14.3 8.6 25.1 7.7

Notes: The species have been gathered according to the groups identified (see Results): Group 1, species for which the proportion
of extinctions (in percentages of the number of pixels included in the species distribution in 2000) in NB simulations exceeds the one
in PB simulations; Group 2, species for which the proportion of extinctions in PB simulations exceeds the one in NB simulations;
Group 3, species for which differences in extinctions between NB and PB simulations are small. Specific dispersal rate (r),
percentages of extinctions in 2100 for NB (Loss NB) and PB (Loss PB) models, percentages of pixels colonized in 2100 for NB
(Gain NB) and PB (Gain PB) models, and percentages of pixels colonized in 2100 by taking migration limitation into account for
NB (Mig NB) and PB (Mig PB) models are shown. Means are averaged values for all species. In each case the change (in
percentage) in range size has been calculated in reference to simulated range size in 2000. Explanations for the climate scenarios A2
and B2 can be found in Methods: Climate data.
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models using a random subsample of data (70%) relating

distributions of our 15 study species to six climate

variables: growing degree days above 5.58C, mean

annual precipitation, summer precipitation, winter pre-

cipitation, minimum temperature of the coldest month,

and potential evapotranspiration calculated using the

Food and Agricultural Organization (FAO) 56 Penman

Monteith combination equation (Allen et al. 1998). For

each species, each of the five models was then evaluated

on the remaining 30% of the initial data set. Model

accuracy was calculated using the values obtained from

the area under the curve (AUC) of a receiver operating

characteristic (ROC) plot of sensitivity against 1 �
specificity following Swets (1988). Sensitivity is defined as

the proportion of true positives correctly predicted

across all cells (pixels) in the range, whereas specificity

is the proportion of true negatives correctly predicted

(Fielding and Bell 1997). For each species the five models

were ranked according to the AUC values, and only the

best three simulations (i.e., from the best three models)

conserved. Their rank order was scored 3, 2, or 1, which

were then standardized to produce a vector of weights

whose elements sum to unity. Final projections are a

weighted average of these three best simulations for each

of our 15 study species (Hartley et al. 2006; Marmion et

al., in press). We then transformed the probability of

occurrence (continuous values) into presence/absence

(binary values) using a threshold maximizing the

percentage of presence and absence correctly predicted

(Pearce and Ferrier 2000). For these NB simulations, the

final accuracy of the simulations was assessed using ROC

curves (Thuiller 2003).

Climate data

To simulate the initial distribution of the species, we

used the CRU TS 2.0 data set (Climatic Research Unit,

University of East Anglia, UK [New et al. 2000]). This

data set consists of monthly mean and minimal

temperature and monthly precipitation for the 20th

century (1901–2000) at a 0.58 3 0.58 grid resolution.

These data were obtained by interpolation of observed

climatic data for .20 000 weather stations around the

world (New et al. 2000). The variables required by the

NB models have been directly derived from these data.

As the performance of the PB model was greatly affected

by the temporal resolution of data (Morin and Chuine

2005), we generated daily data (for mean and minimum

temperatures) following the classical method used by

weather generators, e.g., Cligen (Nicks et al. 1995). The

PB model was run using these daily variables. For

further details see Morin and Chuine (2005) and Morin

et al. (2007).

To simulate the future distribution of species, we used

data from the HadCM3 GCM (Hadley Center for

Climate Predictions and Research, UK [Pope et al.

2000]) for the period 2001–2100. We used two Intergov-

ernmental Panel on Climate Change (IPCC) story lines,

A2 and B2 (IPCC 2001). These two scenarios were

chosen because they describe contrasted climatic condi-

tions for the next century. The aim of the study was not

to compare range shifts across a large number of

scenarios but to highlight whether there might be some

specific difference across two contrasting scenarios. The

A2 story line describes a global increase of mean

temperature of 3.28C on average over North America

in 2100. The B2 story line describes a global increase of

mean temperature of 1.08C on average over North

America in 2100. For the PB model we used HadCM3

daily data for mean and minimum temperatures

(provided by the LINK Project; available online),5 while

for the NB models we used monthly averages of these

data. To keep consistency in spatial resolution, the

HadCM3 data (resolution of 3.758 3 2.58) were

disaggregated at the CRU TS 2.0 data set resolution

(i.e., 0.58 3 0.58) with an elevation adjustment (Morin

and Chuine 2005).

Simulations

For Phenofit simulations (the PB model), the initial

distribution of each of the 15 tree species (i.e., current

range) was the distribution simulated by the model at the

end of the 20th century (in 2000) using daily climatic data

generated from the CRU TS 2.0 data set for a 0.58 3 0.58

grid resolution (Morin et al. 2007). Because Phenofit

works at a yearly time step, its predictions are better if

performed on a large number of years, to minimize the

effect of years with extreme values. Thus the modeling of

current distributions using Phenofit was made with a

100-year period. The NB simulations of the initial

distribution of the species were performed using monthly

date from the CRU TS 2.0 data set for 1960–2000.

For both kinds of models, we then simulated the

species distribution for the 21st century using the A2 and

B2 story lines from the HadCM3 GCM data. The NB

model simulations were made using monthly normals

for the period 2060–2100. The Phenofit simulations were

made using daily climatic data between 2001 and 2100

(Morin et al. 2008). For each species, the presence

predicted by Phenofit in each pixel is updated annually.

This constraint requires keeping temporal continuity

between the two data sets (i.e., current and future

climatic conditions), which explains why the Phenofit

simulations have been made for 2001–2100. The last

years of simulation, which drive the final presence or

absence of species, are the same as those used in NB

predictions (2060–2100); this is the key point allowing

meaningful comparison of the two kinds of models.

To consider migration processes, we used specific

migration rate estimates from paleoecological studies on

the last glaciation–deglaciation cycle between 18 000 and

6000 yr before present (BP; Davis 1976, Huntley and

Birks 1983), as in Morin et al. (2008). These estimates

integrate species dispersal ability including long-distance

5 hhttp://badc.nerc.ac.uk/data/link/i
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dispersal events and establishment success probability.

Migration rates vary from 1 to 10 km/yr according to

the species (Table 1). A grid cell in which the species is

not present could be colonized only if the cell were both

(1) reachable and (2) climatically suitable for the

establishment and survival of the species. (1) An empty

cell (a sink cell) was reachable if it was next to at least

one cell where the species is present (a source cell). (2) A

sink cell was colonizable if the predicted probability of

presence was superior or equal to a species-specific

probability of presence, calculated in Morin et al. (2007).

A newly colonized cell can become a source cell only if

the probability of presence is superior or equal to the

specific probability of presence during a specific number

of years s, which depends on the species migration rate r

(in kilometers per year) as follows:

s ¼ 55

r

where 55 km is the length of a cell of 0.58 latitude3 0.58

longitude.

Note that at the beginning of the simulation (i.e., in

2000), grid cells in which the species was present were all

defined as sources. Local extinction in a cell occurred

when the simulated probability of presence was inferior

to the specific probability of presence.

We constrained the migration of the species using the

migration rate estimates on the last glaciation-deglaci-

ation cycle, even if the climate becomes suitable at

greater distances than can be reached by dispersal in a

given time period. For instance, a species with a

migration rate of only 1 km/yr effectively restricts

species movement to a maximum of 0.58 for the 50-year

period until 2050 or 18 for the 100-year period. Any pixel

geographically beyond these dispersal limits for a given

species was assigned a probability of occurrence equal to

zero even if the climate at that pixel was suitable for the

species.

The paleoecological migration rates we used in these

simulations may not represent maximal rates because

during deglaciation species may have been limited first

by the progress of the warming northward, not by their

dispersal ability (Huntley 1991). As the present rate of

warming is unparalleled in the Quaternary (Huntley

1991, Higgins et al. 2003), the actual migration rate

might be larger than those we used. Nevertheless, we will

consider the rates we used as among the largest possible.

Comparisons of models predictions

For each species, we compared the predictions of the

NB and PB models. More precisely, we compared, for

each species (1) the percentage of sites (i.e., pixels) of the

current distribution (in 2000) where a given species is

predicted to go extinct in 2100; (2) the proportion of

sites newly suitable in 2100 (quantified from the area of

the current distribution in 2000); and (3) the proportion

of sites newly suitable in 2100 predicted to be truly

colonized under migration limitations. Note that as NB

and PB simulations of current distributions necessarily

differ, at least slightly, we have only calculated the
proportion of ‘‘shared extinctions’’ from the sites

predicted to be in a species’ range by both kinds of
models.

RESULTS

Niche-based and process-based models’ accuracy

For the current species ranges, the AUC values of the

NB simulations ranged from 0.85 to 0.99 (mean¼ 0.96).
The AUC values of the PB simulations ranged from 0.87

to 0.98 (mean ¼ 0.94) (Morin et al. 2007). These values
of AUC mean that both models showed high levels of

accuracy according to Swets (1988).

Comparisons of niche and process-based predictions

Extinctions.—Species fall into three groups according

to the average of the two scenario simulations for each
species (Fig. 1 and Appendix B): (1) species for which
the proportion of extinctions in NB simulations exceeds

that in PB simulations (Acer saccharinum, Acer saccha-
rum, Carya ovata, Juglans nigra, Ostrya virginiana,

Populus deltoides, Populus tremuloides, Quercus bicolor,
Quercus macrocarpa, Ulmus americana); (2) species for

which the proportion of extinctions in PB simulations
exceeds that in NB simulations (Fraxinus americana,

Fraxinus nigra); and (3) species for which differences in
proportion of extinctions between NB and PB simula-

tions are small (i.e., fewer than five points; Aesculus
glabra, Salix nigra, Sassafras albidum). On average

85.3% of 30 simulations (15 species, two scenarios)
predicted a lower proportion of extinctions with the PB

model than with the NB model (Table 1, Fig. 2). For
scenario A2, only A. glabra, F. americana, and F. nigra

had a percentage extinction greater with the PB model.
For scenario B2, this was only the case for F. nigra and
S. nigra (Table 1, Fig. 2).

The mean proportion of extinctions is ;50% higher in

NB predictions (33.2 vs. 22.6, respectively, for NB vs.
PB simulations in scenario A2; 30.7 vs. 19.0, respective-
ly, for NB vs. PB simulations in scenario B2; Table 1).

Furthermore, the sites where species are predicted to go
extinct in 2100 are not necessarily the same in the two

kinds of simulations. Only 26% (for A2) and 15% (for
B2) of the sites experiencing species extinction according

to NB simulations are also predicted to experience
species extinctions with the PB simulations (Table 2).

This result is not surprising as the mean proportion of
extinctions is higher in NB predictions, and one

potential explanation may be that the sites where the
PB model predicted species extinctions are on average a

subsample of the niche-based predicted extinctions sites
(Fig. 1). However only 62% (for A2) and 45% (for B2) of

the sites experiencing species extinction according to PB
simulations are also predicted to experience species
extinction with the NB simulations (Table 2). Thus the

sites experiencing species extinctions clearly differ
according to the kind of model (Fig. 1 and Appendix
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B). We have also calculated the percentage of overlap in

predicted extinctions between the two kinds of simula-

tions in each group. It appears that the overlap is weak

for the group 1 (21.9% 6 6.4% [mean 6 SE]) and larger

for two other groups, although still lower than 50%

(48.3% 6 1.8%).

Colonizations and migration limitation.—The propor-

tion of predicted newly suitable habitats is larger with

the NB predictions, especially under scenario A2 (Table

1). However, for both kinds of simulations, the

colonization is strongly limited by migration (Table 1,

Fig. 1). In NB simulations, species may reach on average

FIG. 1. Comparisons between species probability of presence in 2100 with species probability of presence in 2000 made with
process-based (PB) and an ensemble of niche-based (NB) models for four species: Acer saccharum (PB, a1–b1; NB, a2–b2); Fraxinus
americana (PB, c1–d1; NB, c2–d2); Quercus bicolor (PB, e1–f1; NB, e2–f2); Sassafras albidum (PB, g1–h1; NB, g2–h2). The right
figure in each pair represents the results based on the Intergovernmental Panel on Climate Change (IPCC) scenario A2, and the left
represents the results based on the IPCC scenario B2. Explanations for the climate scenarios A2 and B2 can be found in Methods:
Climate data.
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;35% of their newly suitable habitats under scenario A2

and 42% under scenario B2. These percentages are even

weaker for PB simulations: on average species are

predicted to colonize only 23% of the newly suitable

habitats under scenario A2 and 24% under scenario B2.

DISCUSSION

There is considerable recent interest in the issue of

consistency in predictions from different modeling

approaches to questions of plant distribution under

future climate regimes. A number of recent studies using

several different projections of niche-based models

(Araujo et al. 2006, Hartley et al. 2006, Araujo and

New 2007, Thuiller 2007) have shown the value of

ensemble forecasting of range shifts under climate

change. Hijmans and Graham (2006) further considered

comparisons of qualitatively different modeling ap-

proaches, in particular comparing predictions from a

climatic envelope model and a mechanistic model for

crop species in the Americas. Their extension of the

discussion to substantially different modeling approach-

es is an important advance, but their unvalidated

submodels were fairly simplistic and applied to con-

trolled agricultural environments where competitive

interactions are minimal. In recent years, NB models

have predicted that the geographic realization of the

climatic niche will be shifted polewards and toward

higher elevation for many species (e.g., Thomas et al.

2004). To extend these initial inquiries we undertook a

comprehensive comparison of simulations for distribu-

tions of forest tree species using both process-based and

niche-based models for the next century. Our study is

essentially a proof of concept comparison made using a

single PB model and a NB modeling framework

designed to illustrate the importance of combining

outputs from complementary modeling approaches.

Although focused on a modest number of tree species,

our comparison of the predictions from the PB model

Phenofit with those from an ensemble of NB models has

shown that alarming predictions about extinctions due

to climate change should be tempered despite the fact

that species may have trouble tracking their climatic

niche because of migration constraints. We elaborate

these points in the following discussion.

Similar predicted trends across models

From a qualitative point of view, both PB and NB

models predict that tree species’ ranges will be shifted

polewards, and for most species, this shift will be

strongly constrained by dispersal ability, while local

extinctions will occur in the south of the species range.

For both kinds of models, we observed an interesting

FIG. 2. Log(percentage of extinction) from the process-based (PB) prediction (y-axis) vs. log(percentage of extinction) from the
niche-based (NB) prediction (x-axis) for the 15 species, shown separately for the Intergovernmental Panel on Climate Change
(IPCC) scenarios A2 (circles and regular type) and B2 (triangles and italic type). Species abbreviations are: Ai, Acer saccharinum;
As, Acer saccharum; Ae, Aesculus glabra; Co, Carya ovata; Fa, Fraxinus americana; Fn, Fraxinus nigra; Jn, Juglans nigra; Ov,
Ostrya virginiana; Pd, Populus deltoides; Pt, Populus tremuloides; Qb, Quercus bicolor; Qm, Quercus macrocarpa; Sn, Salix nigra; Sa,
Sassafras albidum; Ua, Ulmus americana. Explanations for the climate scenarios A2 and B2 can be found in Methods: Climate data.
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broad trend among the tested species: species with an

early phenology and light seeds (e.g., Salix nigra, Ulmus

americana, Populus deltoides, Populus tremuloides) ex-

hibit less risk of extinction, while species with later

phenology and heavier seeds (e.g., Quercus bicolor,

Carya ovata, Acer saccharum) have a greater risk (Fig.

2). Furthermore the number of sites where a given

species is predicted to go extinct in 2100 in both

simulations is negatively correlated to the species range

size (r ¼�0.44 for A2 and r ¼�0.42 for B2, Pearson’s

correlations, log-transformed data). Thus the species-

specific ‘‘common sensitivity’’ to extinction (i.e., regard-

ing the two kinds of models) appears to be stronger for

narrowly distributed species.

Differences between predictions

from the two types of models

From a quantitative point of view, our results show

clearly that predictions, made for the same set of species

and using the same raw data, can differ according to the

kind of model used. Although the results are very

species-specific, two general patterns emerged. First, the

ensemble of niche-based models tended to predict a

higher level of extinction in comparison with the

process-based model. The only species showing an

opposite trend is Fraxinus nigra, a species among the

most sensitive to frost in the latitudinal range we

studied. Second, the NB predictions also showed a

greater proportion of colonized sites compared to the

PB model. What might underlie these different simula-

tion outcomes?

First, the two kinds of models do not rely on the same

assumptions. The NB models all simulate the distribu-

tion of a species from distributional data in nature that

represent the realized niche (Hutchinson 1957, Pulliam

2000) for the species. Phenofit, on the other hand,

predicts a distribution using only data on ecophysiolog-

ical responses to abiotic variables that determine the

fundamental niche of species. A previous study has

shown that at the continental scale, the ‘‘potential

distribution’’ (i.e., the geographic area defined by the

fundamental niche) seems to accurately fit the observed

distribution for most of the species studied here (Morin

et al. 2007). We can suppose that a climatic envelope

based on the realized niche imposes greater constraints

for a species under climate change than a model based

TABLE 2. Species-specific percentages of pixels experiencing species’ extinction in the niche-based
(NB) and the process-based (PB) simulations, under the climate scenarios A2 and B2.

Species r

A2 B2

%NB %PB %NB %PB

Group 1

Acer saccharinum 1 13.2 79.7 4.8 100.0
Acer saccharum 1 1.3 100.0 1.1 24.0
Carya ovata 1 22.8 71.8 20.8 34.9
Juglans nigra 1 5.3 94.4 0.0 0.0
Ostrya virginiana 1 7.8 16.3 4.6 8.4
Populus deltoides 10 10.6 51.9 7.0 42.1
Populus tremuloides 10 0.5 100.0 0.7 100.0
Quercus bicolor 1 31.3 100.0 33.1 94.8
Quercus macrocarpa 1 31.0 61.5 11.8 27.9
Ulmus americana 4 3.4 86.7 3.8 46.4

Mean 12.7 76.2 8.8 47.9
SE 3.7 8.5 3.3 11.9

Group 2

Fraxinus americana 1 68.1 12.8 12.1 16.8
Fraxinus nigra 1 96.0 56.3 93.5 44.4

Mean 82.0 34.5 52.8 30.6
SE 14.0 21.7 40.7 13.8

Group 3

Aesculus glabra 1 40.8 26.0 16.2 53.3
Salix nigra 5 0.0 0.0 0.0 0.0
Sassafras albidum 1 57.2 66.9 16.5 85.0

Mean 32.7 31.0 10.9 46.1
SE 17.0 19.5 5.4 24.8

Notes: Species-specific percentage of pixels experiencing species extinction in 2100 by the NB
model that are also predicted to experience species’ extinction by the PB model (%NB) and species-
specific percentage of pixels experiencing species’ extinction in 2100 by the PB model that are also
predicted to experience species’ extinction by the NB model (%PB) are shown. For instance, for
Acer saccharinum, under scenario A2, 13% of the pixels experiencing species extinction in 2100 by
the NB simulation are also predicted to experience species extinction by the PB simulation, while
79% of the pixels experiencing species extinction in 2100 by the PB simulation are also predicted to
experience species extinction by the NB simulation. Groups are as in Table 1. Explanations for the
climate scenarios A2 and B2 can be found in Methods: Climate data.
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on the fundamental niche, although there is no clear

evidence to that effect. Second, we might argue that

ecophysiological control systems respond to climatic

interannual variations to generate observed year-to-year

phenological variation. The NB models are built on

generalized climate–distribution correlations and cannot

take account of variation due to the day-to-day

progression in meteorological conditions from year to

year (Hampe 2004, Randin et al. 2006). In contrast, a PB

model such as Phenofit is designed specifically to

quantify these effects by describing several processes

controlling phenology as nonlinear functions of daily

temperature progressions. This sort of interannual

variation in phenology is especially important in

adaptive traits triggered by climate (Rathcke and Lacey

1985) and may be crucial in determining individual

responses to climate change (Jump and Penuelas 2005).

However, although NB models predict a more drastic

level of extinction, the predictions from the two types of

models can be considered complementary because the

models rely on different assumptions. We can consider

their predictions independent, although carried out for

the same climatic scenarios. When the model predictions

converge, the reliability of the predictions is greater. For

example, we expect that a site (pixel) predicted to

experience species extinction in 2100 in both simulations

can be considered a very sensitive zone for the

considered species. Such comparisons between the

predictions of models built using different approaches

provide an effective way to compensate for prediction

uncertainties (Beaumont et al. 2007).

Migration

The predictions of both kinds of models raised

migration as a crucial issue (see Thuiller et al. 2008a

for a review). This result was observed as we used

‘‘optimistic’’ migration rates, i.e., upper limit of migra-

tion rates estimated by paleoecological studies (Huntley

and Birks 1983). Even if potential migration rates are

actually higher than the ones in our simulations, realized

migration rates may also be limited by habitat fragmen-

tation caused by human activities (Honnay et al. 2002,

Travis 2003). In coming decades colonizing individuals

will have to colonize both fragmented and established

forests (i.e., high competition levels), which was not the

case during the recolonization phase at the end of the

last glaciation period, and this may slow migration

northwards. On the other hand, recent studies in

invasion ecology have shown that propagule pressure

and residence time are crucial parameters determining

spread rate (Lockwood et al. 2005, Richardson and

Pysek 2006, Wilson et al. 2007), which implies that direct

human intervention in dispersal through seeding or

transplanting of stock could increase the effective rates

of range expansion.

The predicted range shifts from models in the last 15

years are so great that many authors have questioned

whether species will be able to migrate fast enough to

track their climatic niche (Malcolm et al. 2002, Higgins

et al. 2003, Midgley et al. 2007), but a precise estimate of

the time lag between climate shift and species range shift

has rarely been assessed (but see Dullinger et al. 2004).

At the continental scale, very few predictions have been

made incorporating migration rates, and these studies

were only performed using NB models (Iverson et al.

2004, Broennimann et al. 2006, Midgley et al. 2006).

Iverson et al. (2004) predicted limited realized range

shifts of species due to migration limitations and that

very long but rare distance migration events are not

sufficient to rescue migration. The next step toward

better predictions in models of species range under

climate change is to take migration processes explicitly

into account (Neilson et al. 2005, Midgley et al. 2007,

Thuiller et al. 2008a). This will require downscaling the

spatial structure of models, an effort that has been

begun at a landscape/regional scale using simple,

process-based rules for seed dispersal and seedling

establishment (Scheller and Mladenoff 2005). There

are encouraging signs that it will be possible to refine

continental-scale predictions to local spatial scale by

coupling different models (Midgley et al. 2007, Thuiller

et al. 2008a).

Toward a hybrid cross-scaling model

The need for ‘‘hybrid’’ models has been invoked to

better assess the fate of propagules at the leading edge of

species distributions under climate change (Midgley et

al. 2007). Trying to achieve a compromise between

realism and accuracy, these models basically incorporate

different submodels working at different spatial scales

(Thuiller et al. 2008a). Previous attempts mostly relied

on the prediction of presence according to growth

functions (Smith et al. 2001, Lischke et al. 2006). The

fact that Phenofit deals with the fundamental niche

while NB models deal with the realized niche highlights

their possible complementarity and opens a new way to

build a hybrid model. Similar approaches mixing PFT

model predictions with species bioclimatic envelopes

have been attempted (Koca et al. 2006). Like other

hybrid projects, a crucial problem in obtaining reliable

predictions at finer spatial scales is the modeling of

migration and recruitment (see Thuiller et al. 2008a).

Current advances provide encouraging developments in

this regard through Bayesian approaches (Wikle 2003)

and through the increasing understanding of long-

distance dispersal processes (Nathan 2006).

CONCLUSION

Despite the increasing number of articles assessing the

impacts of climate change on species distributions over

the last 10 years, there have been very few quantitative

comparisons between the two tools of choice: niche-

based and process-based models. Besides the inherent

differences between the concepts, philosophies, and

main results of the two approaches, this quantitative

comparison revealed several key points. (1) Process-
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based models, focusing largely on the modeling of

fundamental niches, are less pessimistic than niche-

based models, which focus on the realized niche of the

species and are thus an incomplete representation of the

true physiological limits. (2) Using both approaches in

concert, each with its own caveats and advantages, is

crucial to achieve robust predictions. In the future, more

efforts should be made to compare different approaches,

an exciting challenge that can yield more reliable

predictions about the fates of species. (3) Alarming

predictions about extinction rates should probably be

tempered, at least in the short term (the next decades),

for long-lived dominant species. (4) Migration is the key

driver of the survival of species in particular regions. A

crucial challenge is thus to deal with migration spatially

and mechanistically, which requires building more

complex hybrid models.
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APPENDIX A

Description of the model Phenofit (Ecological Archives E090-085-A1).

APPENDIX B

Comparisons between species probability of presence in 2100 with species probability of presence in 2000 made with process-
based (PB) and an ensemble of niche-based (NB) models for the 11 other species (Ecological Archives E090-085-A2).
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