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Abstract
Aim: More than ever, ecologists seek to understand how species are distributed and 
have assembled into communities using the “filtering framework”. This framework 
is based on the hypothesis that local assemblages result from a series of abiotic and 
biotic filters applied to regional species pools and that these filters leave predictable 
signals in observed diversity patterns. In theory, statistical comparisons of expected 
and observed patterns enable data-driven tests of assembly processes. However, so 
far this framework has fallen short in delivering generalizable conclusions, challeng-
ing whether (and how) diversity patterns can be used to characterize and understand 
underlying assembly processes better.
Methods: By synthesizing the previously raised critiques and suggested solutions in 
a comprehensive way, we identify 10 pitfalls that can lead to flawed interpretations 
of α-diversity patterns, summarize solutions developed to circumvent these pitfalls 
and provide general guidelines.
Results: We find that most issues arise from an overly simplistic view of potential 
processes that influence diversity patterns, which is often motivated by practical 
constraints on study design, focal scale and methodology. We outline solutions for 
each pitfall, such as methods spanning over spatial, environmental or phylogenetic 
scales, and suggest guidelines for best scientific practices in community ecology. 
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1  | INTRODUC TION

The diversity of ecological communities is increasingly compro-
mised by ongoing global changes (Pereira, Navarro, & Martins, 
2012). Mitigation of these threats requires an understand-
ing of the distribution of diversity along geographical, abiotic 
and biotic gradients and the underlying assembly processes 
(HilleRisLambers, Adler, Harpole, Levine, & Mayfield, 2012; 
Lavergne, Mouquet, Thuiller, & Ronce, 2010). A focal question is 
whether abiotic constraints or biotic interactions drive the taxo-
nomic and trait structure of communities. In community ecology, 
this question has been addressed historically by experiments, 
with the limitation that these methods are typically constrained 
to small scales and few species. Thus, to study community as-
sembly at large spatial scales, ecologists have assembled increas-
ingly large community datasets spanning broad spatial extents 
with both trait and phylogenetic information (Diaz et al., 2016; 
Kunstler et al., 2016; see Figure 1a,b). Trait diversity describes the 
within-community variation of species’ characteristics relevant 
for their performance, whereas phylogenetic diversity describes 
the evolutionary history. Combining data on distribution, traits 
and phylogeny in a meaningful way holds promise for a revolution 
in community ecology by opening the door to large-scale analy-
ses of assembly processes (McGill, Enquist, Weiher, & Westoby, 
2006; Webb, Ackerly, McPeek, & Donoghue, 2002). The idea is to 
harness the information on species niches contained in phyloge-
netic and trait data. For example, under the assumption that a set 
of traits represents species’ niches well, we could move from a 
simple species-based description of communities towards a func-
tional characterization, using community-weighted mean traits as 
an estimate of the community niche optimum and trait diversity 
as an estimate of species niche overlap (Kraft, Valencia, & Ackerly, 
2008; Violle et al., 2007).

In practice, this idea has mostly been implemented through 
the filtering framework (Diamond, 1975; Keddy, 1992) that builds 
on the assumption that both abiotic (e.g., climate or land use) and 
biotic factors (e.g., competition) define carrying capacities and/
or growth rates of species, and thus, influence their occurrences 
and abundances (Figure 1d). The abiotic conditions define the 

environmental filters selecting species from a regional species 
pool, originally shaped by biogeographical history (Carstensen, 
Lessard, Holt, Krabbe Borregaard, & Rahbek, 2013), into the local 
species pool containing all species adapted to the local conditions. 
Then, biotic interactions influence which species from the local 
pool can eventually coexist in the community (Chesson, 2000; 
Shmida & Ellner, 1984). This deterministic view assumes that dif-
ferent ecological filters should lead to distinct and predictable pat-
terns in diversity and composition. Comparison of these expected 
patterns with observed diversity across abiotic and biotic gradi-
ents should then allow deduction of the underlying community 
assembly processes, thus, moving large-scale community ecology 
from a purely descriptive discipline to a more process-based un-
derstanding (Leibold et al., 2004; Morin, Fahse, Scherer-Lorenzen, 
& Bugmann, 2011; Vellend, 2010).

Relatively early on, studies that began to apply the framework 
used trait diversity patterns (e.g., including behavioural, life-history, 
morphological and physiological traits; Violle et al., 2007) and phy-
logenetic relatedness (Webb et al., 2002) to account for similarities 
in species niches. In doing so, the assumption is that measured traits 
are relevant for assembly processes (Mayfield, Boni, & Ackerly, 
2009) and that closely related species in the phylogeny are eco-
logically more similar than distantly related ones (Burns & Strauss, 
2011). Trait–phylogeny relationships different from these assump-
tions would lead to different relationships between niche similarity 
and phylogenetic relatedness patterns (Webb et al., 2002). To infer 
assembly processes, observed patterns of trait and phylogenetic 
diversity within a community (i.e., α-diversity) are commonly com-
pared with null expectations (i.e., patterns under random assembly; 
Figure 1c). Low trait or phylogenetic α-diversity is assumed to indi-
cate ecological processes that foster the co-occurrence of species 
with similar niches, such as environmental filtering (Figure 1b, com-
munity A; see also Supporting Information Appendix S1). Conversely, 
high trait or phylogenetic α-diversity can reveal ecological processes 
that result in limiting similarity, such as competition attributable 
to niche overlap (Figure 1b, community B; see also Supporting 
Information Appendix S1; MacArthur & Levins, 1967).

An increasingly large number of studies apply the filtering frame-
work (see Supporting Information Appendix S2). However, first 

Among key future challenges are the integration of mechanistic modelling and multi-
trophic interactions.
Main conclusions: Our conclusion is that the filtering framework still holds promise, 
but only if researchers successfully navigate major pitfalls, foster the integration of 
mechanistic modelling and multi-trophic interactions and directly account for uncer-
tainty in their conclusions.

K E Y W O R D S

clustering, community processes, convergence, divergence, overdispersion, phylogenetic 
diversity, simulation model, trait diversity
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reviews and meta-analyses of empirical (Emerson & Gillespie, 2008; 
Götzenberger et al., 2012; HilleRisLambers et al., 2012; Vamosi, 
Heard, Vamosi, & Webb, 2009) and simulation (Gallien, Carboni, 
& Münkemüller, 2014; Miller, Farine, & Trisos, 2017; Münkemüller 
et al., 2012) experiments have strongly dampened the enthusiasm, 
because they demonstrate that no simple general conclusion can 
be drawn from the sole observation of trait and phylogenetic diver-
sity patterns. One prominent example is the ongoing debate on the 
role of competition. Although the filtering framework often fails to 
pinpoint signals of competition, theoretical and empirical research 
underscores its importance even at broad scales (for a detailed dis-
cussion, see Supporting Information Appendix S3). Seemingly, we 
are not much further forward than 20 years ago, when Lawton con-
cluded that community ecology was a “mess” (Lawton, 2000). The 
lingering question is why the filtering framework does not provide 
general results despite being built on strong ecological theories 
(Chesson, 2000; Leibold et al., 2004).

Here, we address this question by pinpointing the major pit-
falls linked to the different steps of the standard filtering approach 
(Figure 1). Although many of the limitations of this framework have 
already been pointed out in previous reviews with various foci and 
levels of detail, and sometimes also in combination with possible 
solutions (e.g., Gerhold, Cahill, Winter, Bartish, & Prinzing, 2015; 
Lopez et al., 2016; Pontarp, Brännström, & Petchey, 2019), an overar-
ching synthesis and a set of general guidelines for correctly applying 
the filtering framework is still lacking. Building on existing work, we 
provide a new comprehensive and structured overview of the dif-
ferent pitfalls and the solutions that have been developed (Table 1). 
We use the ongoing debate on the ecological importance of biotic 
interactions at large scales as an exemplary showcase (Supporting 
Information Appendix S3). Based on the integration of reviewed 
work, we then suggest step-by-step guidelines for correctly apply-
ing the filtering framework that should result in better interpretable 
results in community ecology.

F I G U R E  1   Conceptual representation of the steps of the classical ecological filtering framework and related 10 common pitfalls (P1–
P10; cf. left table and red points in the figure): (a) identifying research question(s) and study design, including focal organism-level, spatial 
and temporal scales (potential P1); (b) sampling data, specifically the choice of traits and/or phylogeny (P2); (c) choice of methodological 
approaches, including diversity indices, null models, species pools and statistical tests (P3–P5); and (d) drawing conclusions on the potential 
underlying processes, an approach with inherent problems (P6 and P7) but specific limitations in the face of complex biotic interactions (P8) 
and influential background factors (P9 and P10) [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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TA B L E  1   Six solutions to pitfalls, with examples from the literature

Solution

Pitfall

(P1) Scale 
choices not 
important

(P2) Trait and 
phylogenetic 
diversity 
approximate 
niche overlap

(P3) 
Diversity 
index is 
irrelevant

(P4) Species 
pool is 
obvious

(P5) 
Randomization 
is obvious

(P6) One 
pattern = one 
process

(P7) One 
process 
dominates

(P8) One type 
of interaction

(P9) Ignore 
dispersal and 
history

(P10) 
Equilibrium 
assumption

(S1) Consider alternative scales of analysis ✓✓           

Sample at different spatial and taxonomic 
scalesa 

          

Account for temporal (e.g., seasonal) dynamics 
in sampling designb 

          

Simulate a variation of spatial and taxonomic 
scales with adapted null modelsc 

          

Across environmental gradients and variationd            

(S2) Measure more dynamic responses ✓           

Demographic rates as response variableb            

Set up experimentsb            

Invasive species as “natural experiments”e            

Sample time seriesf            

(S3) Consider different biodiversity aspects 
and indices ✓✓

          

Traits need to be chosen and grouped 
adequatelyg 

          

Integrate trait and phylogenetic diversityh            

Weight species by their abundancesi            

Incorporate intraspecific variabilityi            

Compare richness, regularity and divergencej            

Different indices for testing symmetric versus 
hierarchical competitionk 

          

(S4) Consider alternative species pools and 
randomizations ✓✓

          

Use more ecologically based species poolsl            

Partition diversity across evolutionary periodsm            

Choose appropriate randomization algorithmsn            

(S5) Validate and test the approaches applied ✓           

Undertake robustness analyses to identify 
mismatches between testso 

          

(Continues)
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TA B L E  1   (Continued)

Solution

Pitfall

(P1) Scale 
choices not 
important

(P2) Trait and 
phylogenetic 
diversity 
approximate 
niche overlap

(P3) 
Diversity 
index is 
irrelevant

(P4) Species 
pool is 
obvious

(P5) 
Randomization 
is obvious

(P6) One 
pattern = one 
process

(P7) One 
process 
dominates

(P8) One type 
of interaction

(P9) Ignore 
dispersal and 
history

(P10) 
Equilibrium 
assumption

Apply virtual ecologist approach, with tests of 
analyses using simulated datap 

          

Account for uncertainty in phylogeniesq            

(S6) Model multiple processes jointly ✓           

Indirectly, with regressions, by accounting for 
nonlinear responsesr 

          

Estimating relative importance of envronm-
ental filtering, competition and dispersals 

          

Explicitly account for allopatric speciation, 
colonization and local extinctiont 

          

Mechanistic models with inverse 
parameterization based on diversity patternsu 

          

Note: In green the pitfall they directly address, in blue the pitfalls that they can indirectly help to solve. Ticks indicate the extent of development of the solutions.
aCavender-Bares et al. (2006). 
bConti et al. (2018). 
cMünkemüller et al. (2014). 
dBryant et al. (2008). 
eCarboni et al. (2016). 
fCampbell and Mandrak (2017). 
gLeps et al. (2006). 
hCadotte et al. (2013). 
iChalmandrier et al. (2015). 
jRaevel et al. (2012). 
kKunstler et al. (2012). 
lLessard et al. (2016). 
mPavoine, Love and Bonsall (2009). 
nHardy (2008). 
oAiba et al. (2013). 
pMünkemüller et al. (2012). 
qMolina-Venegas and Roquet (2014). 
rGallien et al. (2014). 
sVan der Plas et al. (2015). 
tPigot and Etienne (2015). 
uPontarp, Brännström, et al. (2019). 
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2  | COMMON PITFALL S

Application of the filtering framework requires: (a) choosing the study 
design with focal spatial, environmental and organism-level scales; (b) 
collecting information; and (c) choosing methodological approaches 
relevant to the research question. Finally, (d) conclusions are drawn 
from the results while accounting for study limitations. In the follow-
ing, we review 10 different pitfalls lying in wait along these steps.

2.1 | Study design

The key aim of studies applying the filtering framework is to identify 
non-random processes in observed diversity patterns. One of the most 
discussed cases of non-random diversity patterns that exist despite 
the evident absence of directional environmental or biotic filters are 
neutral dynamics. Neutral theory suggests that many of the diversity 
patterns observed in nature may result from purely stochastic demo-
graphic processes that emerge from strong competition and dispersal 
limitation of functionally equivalent species, and thus, without any di-
rectional filter (Boucher, Thuiller, Davies, & Lavergne, 2014; Hubbell, 
2001; Münkemüller et al., 2012). However, whether neutral dynamics 
lead to non-random diversity patterns depends on the focal scale of a 
study, and this is also true for directional assembly processes. It is thus 
a pitfall to assume that [pitfall (P) 1] spatial, environmental and organ-
ism-level scale choices have no influence on study results (Figure 1).

(P1) Certain processes may never be detected if we choose an in-
appropriate scale. First, ignoring large-scale factors, such as climate 
gradients, dispersal barriers, historical contingencies and evolution-
ary history, can mask the outcomes of small-scale processes, such as 
local abiotic filters and competition (Cardinale et al., 2013; Cavender-
Bares, Keen, & Miles, 2006; Swenson, Enquist, Pither, Thompson, & 
Zimmerman, 2006; Vamosi et al., 2009). Second, ignoring small-scale 
factors, such as intraspecific variation in trait values (Albert et al., 
2012; Siefert et al., 2015) and the fine-scale spatial arrangement 
of individuals (Diekmann, Law & Metz, 2000), can lead to the un-
derlying processes being overlooked because their effects may not 
scale up to large-scale diversity patterns (Araujo & Rozenfeld, 2014; 
Thuiller et al., 2010; Turcotte & Levine, 2016). For example, it has 
been shown that trait plasticity increases niche differences in com-
munities and thereby stabilizes coexistence and promotes diversity 
(Pérez-Ramos, Matías, Gómez-Aparicio, & Godoy, 2019). This biotic 
filtering mechanism would remain unnoticed when relying solely on 
the mean traits of species. Third, ignoring small-scale environmen-
tal variation within the community and study site may lead to high 
diversity in low-resolution studies and can then easily be misinter-
preted as a signal of limiting similarity (Price et al., 2017).

2.2 | Collecting information

Trait and phylogenetic diversity are often used as proxies for niche 
overlap, but this common practice is often challenged (Cadotte, 

Albert, & Walker, 2013; Gerhold et al., 2015; Li, Ives, & Waller, 2017). 
It is thus a pitfall to assume that (P2) trait and phylogenetic diversity 
are always good proxies for species niche overlap (Figure 1).

(P2) A first set of questions with regard to trait diversity is 
whether we are able to identify and measure the traits of ecological 
relevance for each (Funk et al., 2017; McGill et al., 2006), whether 
traits are linked closely enough to species niches (D'Andrea, Ostling, 
& O'Dwyer James, 2018) and whether we can avoid irrelevant traits 
that might confound the patterns and lead us to spurious conclu-
sions (Kraft, Godoy, & Levine, 2015). This task is facilitated by former 
work (e.g., Leps, de Bello, Lavorel, & Berman, 2006) and some more 
recent advancements. For some clades and ecological processes, 
guidelines for the identification of relevant traits and database stan-
dards are now available (Diaz et al., 2016; Gravel, Albouy, & Thuiller, 
2016; Luck, Lavorel, McIntyre, & Lumb, 2012; Schneider et al., 2019), 
open-access databases are improving (Kattge et al., 2011; Wilman 
et al., 2014), and trait syndromes (i.e., observed covariations in traits) 
can help to reduce trait space to a few relevant dimensions (Diaz 
et al., 2016; Wright et al., 2004). However, in many aspects, trait 
science still remains incomplete (Yang, Cao, & Swenson, 2018): (a) 
frameworks to link traits and niche dimensions are still under de-
velopment for most clades (e.g., for fungi; Crowther et al., 2014); (b) 
even in well-studied clades, some traits are better studied than oth-
ers (e.g., plant leaf traits over root traits; Funk et al., 2017); (c) it is not 
obvious at what level traits need to be measured (individual or pop-
ulation; Albert et al., 2012); and (d) the relative importance of traits 
can change over the life cycle (Kunstler et al., 2016). Another ques-
tion is whether it is more informative to analyse each trait separately 
or in combination. The main argument for the former is that different 
traits may drive different processes and that analyses should thus 
be process and trait specific (Bernard-Verdier et al., 2012; Gross 
et al., 2013; Spasojevic, Copeland, & Suding, 2014). On the contrary, 
ecological niches are multidimensional and, consequently, multi-trait 
diversity is more likely to capture niche overlap between species 
across multiple niche dimensions (Kraft et al., 2015). Moreover, traits 
are correlated as a result of physiological trade-offs. Ignoring these 
trade-offs may lead to spurious conclusions (Wüest, Münkemüller, 
Lavergne, Pollock, & Thuiller, 2018). However, recent work shows 
that at least some community patterns are robust to the negligence 
of a relevant niche axis (D'Andrea et al., 2018).

The use of phylogenetic diversity in the filtering approach re-
quires the assumption that phylogenetic relatedness is a good proxy 
for overlap in the multidimensional niche space (Anacker & Strauss, 
2016; Burns & Strauss, 2011). However, phylogeny does not always 
represent relationships of traits that are relevant for species’ niches 
(Blomberg, Garland, & Ives, 2003; Saito, Cianciaruso, Siqueira, 
Fonseca-Gessner, & Pavoine, 2016), and the phylogenetic signal of 
relevant traits should be tested, rather than assumed. Nonethless, 
this poses severe methodological problems (as discussed in detail by 
Gerhold et al., 2015). Moreover, relevant traits for this test are often 
not available, and if they are available it is not evident how they 
should be combined to represent species “niches” and how strong 
the signal should be (Mason & Pavoine, 2013). Most importantly, 
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if all niche-relevant traits were known and available, phylogenetic 
proxies would not be needed.

2.3 | Methodological approach

It has been demonstrated that different methodological choices can 
give different answers (Münkemüller et al., 2014; Perronne, Munoz, 
Borgya, Reboud, & Gaba, 2017). Thus, pitfalls 3, 4 and 5 are to as-
sume that (P3) all supposedly similar diversity indices give the same 
results and that the construction of (P4) adequate species pools and 
(P5) randomization algorithms for testing deviations from expecta-
tions is obvious and straightforward (Figure 1).

(P3) A common pitfall is to assume that different diversity indices 
can be used interchangeably. Although some diversity indices are in-
deed highly redundant, others quantify different aspects of diversity 
(Mouchet, Villéger, Mason, & Mouillot, 2010; Tucker et al., 2017). 
Changing the diversity index can thus change or even invert the ob-
served pattern of diversity (Chalmandrier, Münkemüller, Lavergne, 
& Thuiller, 2015; Mazel et al., 2016; Perronne et al., 2017). Indices 
can differ in whether they account for: (a) species abundances or not 
(Chao, Chiu, & Jost, 2010; Hill, 1973; Leinster & Cobbold, 2012); (b) 
intraspecific variability or not (Pavoine & Izsak, 2014; Violle et al., 
2012); (c) different phylogenetic (e.g., species, family versus order 
level) or functional scales (e.g., species versus functional groups); 
and (d) different dimensions of the structure of assemblages, such 
as richness, divergence and regularity (Tucker et al., 2017; Villeger 
& Mouillot, 2008). Although classification schemes for available di-
versity metrics can be of help in the choice of an appropriate index 
(Pausas & Verdu, 2010; Pavoine, Vela, Gachet, de Bélair, & Bonsall, 
2011; Tucker et al., 2017), it is not always evident which index is the 
most appropriate for a specific research question.

(P4) The species pool is generally defined as the set of all spe-
cies existing in a given region that could colonize a focal community 
(Srivastava, 1999), but other definitions exist (Cornell & Harrison, 
2014). In practice, the species pool is often the list of species in the 
studied dataset, which is often the result of practical constraints 
rather than ecological hypotheses. However, ideally, it should be 
defined based on the focal filtering process that the study sets out 
to test. Thus, it should include all species that would be selected in 
the community both with the focal process (filtering) and without it 
(randomly) but should not include any additional species resulting 
from another process not of interest. The choice of the species pool 
affects the null hypothesis associated with the null model and, con-
sequently, can change the results of the analyses (Lessard, Belmaker, 
Myers, Chase, & Rahbek, 2012; Pigot & Etienne, 2015). For exam-
ple, competition can be overlooked when it results in the complete 
exclusion of species from the pool (“dark diversity”; Pärtel, Szava-
Kovats, & Zobel, 2011). In addition, the spatial extent at which the 
species pool is defined changes the detectability of certain assembly 
rules. Typically, signals of competition are prone to be overwritten by 
strong environmental filtering, when the study area includes steep 
environmental gradients (Willis et al., 2010). Importantly, not only 

species richness but also trait diversity in the species pool influences 
patterns of diversity in local communities (Patrick & Brown, 2018).

(P5) The randomization scheme used to create a null distribution 
of diversity values also has a critical impact on the outcome of the 
analysis (Gotelli, 2000; Miller et al., 2017). Randomization breaks 
down patterns in the data that are caused by ecological processes. 
Ideally, a chosen randomization algorithm would break down only 
the patterns that are supposed to be generated by the process(es) 
of interest. However, algorithms often randomize several patterns at 
the same time, including those that are not of interest, and thus, test 
several null hypotheses simultaneously. A significant result indicates 
only that at least one of the null hypotheses can be rejected, but 
we do not know which one. For example, a high signal of phyloge-
netic α-diversity obtained from a null model randomizing the sites 
can indicate competition but also that the abundance distribution in 
the phylogenetic tree is non-random (testing implicitly another null 
hypothesis; Hardy, 2008). Thus, the interpretation of a non-random 
pattern is not always straightforward. This problem of non-specific 
randomization algorithms has launched the development of more 
constraining algorithms (Hardy, 2008; Miller et al., 2017), often at 
the expense of statistical power.

2.4 | Drawing conclusions

The most basic shortcoming of the filtering approach is inherent to 
most observational studies in ecology; it is impossible to deduce 
a process from an observed pattern in the strict sense. However, 
given the complexity of nature, ecological research often uses pat-
tern observations to formulate hypotheses or to conclude that a 
pattern is in (dis)agreement with hypothesized processes. The three 
major related pitfalls are to assume: (P6) that one pattern can emerge 
only from one single process; (P7) that one major process dominates 
the observed pattern; and (P8) that biotic interactions are simple 
(Figure 1).

(P6) Traditionally, clustered diversity patterns (i.e., coexisting 
species being in phylogenetic and trait space more similar than ex-
pected by chance) have been attributed to an environmental filter 
(Figure 1). However, competitive hierarchies can produce a similar 
pattern (Ågren & Fagerström, 1984; Kunstler et al., 2016; Mayfield 
& Levine, 2010; Supporting Information Appendix S1). Conversely, 
symmetric niche competition is assumed to produce overdispersed 
diversity (i.e., coexisting species being in phylogenetic and trait 
space more distant than expected by chance), but facilitation can 
also produce overdispersed diversity patterns (McIntire & Fajardo, 
2014; Valiente-Banuet & Verdu, 2007; Supporting Information 
Appendix S1).

(P7) When multiple processes interplay, the interpretation of 
biodiversity patterns can be misleading (Spasojevic & Suding, 2012). 
This problem occurs not only when multiple processes act jointly 
on the same species but also if different processes drive differ-
ent groups of species in the community (e.g., rare versus common 
species; Maire et al., 2012). For example, signals of environmental 
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filtering are often stronger than those of competition, and thus, 
competition can easily be overlooked as an important driver of as-
sembly (e.g., the overall diversity pattern is clustered, whereas envi-
ronmentally binned sub-tests would reveal overdispersed diversity 
patterns; Chalmandrier et al., 2013; Gallien et al., 2014).

(P8) Ignoring the complex nature of biotic interactions and as-
suming that the only relevant biotic filter is symmetric competition 
is another common pitfall. After Mayfield and Levine (2010) high-
lighted that large parts of coexistence theory were commonly ig-
nored, more and more contributions have developed expectations 
for diversity patterns structured by biotic interactions other than 
symmetric niche competition (Adler, Fajardo, Kleinhesselink, & 
Kraft, 2013; HilleRisLambers et al., 2012; Supporting Information 
Appendix S1). For example, for hierarchical competition, clustering 
of species in trait or phylogenetic space could emerge from compe-
tition for one limiting resource, because only species with adapted 
traits for this resource will survive (e.g., when species compete for 
light, only tall species will survive; Mayfield & Levine, 2010). In con-
trast, overdispersion is expected to emerge from competition for 
multiple resources when the respective adaptive traits are different 
for the different resources (Scheffer & van Nes, 2006). Contrasting 
diversity patterns are also expected to depend on the type of fa-
cilitative interactions that take place in a community (Supporting 
Information Appendix S1). For example, if species facilitate each 
other symmetrically via the same mechanism (e.g., flowers of sim-
ilar colour attract common pollinators; mutualism), species with 
similar traits should coexist, leading to trait clustering. However, 
if one “benefactor” species facilitates others with different life 
strategies (e.g., commensalism), species with different traits could 
coexist, resulting in overdispersion or random patterns (Gallien, 
Zurell, & Zimmermann, 2018; Valiente-Banuet & Verdu, 2007). 
Furthermore, complex indirect interactions, such as multispecies 
indirect facilitation and intransitive competition (competition as 
in the rock–paper–scissors game, without competitive hierarchies; 
Gilpin, 1975; May & Leonard, 1975), may also be important drivers of 
community structure (Allesina & Levine, 2011; Vandermeer, 2011). 
For these interactions, it may be impossible to generate clear expec-
tations for emerging diversity patterns, especially when multispe-
cies coexistence processes are not the mere sum of their pairwise 
interaction outcomes (Barabas, Michalska-Smith, & Allesina, 2016; 
Gallien, 2017; but see Maynard et al., 2017). Moreover, multi-trophic 
biotic interactions have so far been largely ignored (Grilli, Barabas, 
Michalska-Smith, & Allesina, 2017). There are a few first example 
studies investigating bipartite interaction networks (Ibanez, Arène, 
& Lavergne, 2016; Van der Plas, Anderson, & Olff, 2012). However, 
the great challenge lies in extrapolating concepts of niche match-
ing, associated trait and phylogenetic diversity patterns and cascad-
ing feedbacks from bipartite to multi-trophic communities (Levine, 
Bascompte, Adler, & Allesina, 2017).

Beyond these pitfalls inherent to the investigated processes, 
there are further pitfalls associated with unrelated processes but 
influential to the studied patterns, and thus, to the final conclu-
sions. A common misconception of the filtering framework is that 

we can test for a selection of ecological assembly processes while 
ignoring background factors. In reality, biogeography, evolution and 
ecological processes influence species distributions jointly (Warren, 
Cardillo, Rosauer, & Bolnick, 2014). Common pitfalls are to assume 
that (P9) dispersal and historical contingencies can be ignored and 
that (P10) communities are at equilibrium (Figure 1).

(P9) Although they can shape the richness and functional trait 
diversity of regional species pools (see also P4), diversification and 
historical contingencies are commonly ignored in community ecol-
ogy studies (Warren et al., 2014). These processes are often thought 
to act at regional rather than local scales (i.e., driving the evolution of 
regional species pools), but long-standing evidence shows that this 
simplistic dichotomy of different processes acting exclusively at par-
ticular scales is fraught with exceptions in the real world (Johnson & 
Stinchcombe, 2007). Regional species pools and the processes that 
led to their establishment can sometimes be more important for local 
community composition than assembly processes (Chalmandrier, 
Albouy & Pellissier, 2017; Lawing, Eronen, Blois, Graham, & Polly, 
2017; Ricklefs, 1987). In some cases, both evolutionary and eco-
logical processes occur at the same local community scale (Pollock, 
Bayly, & Vesk, 2015). This problem is complicated even more by the 
fact that some ecological and biogeographical processes can create 
the same taxonomic or phylogenetic patterns. For example, from 
the standpoint of community ecology, “phylogenetic dispersion” in a 
clade can be interpreted as a sign of competitive exclusion, whereas 
from a biogeographical perspective, this same pattern can be inter-
preted as allopatric speciation (Warren et al., 2014).

(P10) The fundamental assumption that communities are at equi-
librium underlies most efforts to understand community assembly 
(Gerhold et al., 2015). However, in the era of the Anthropocene, 
many observed communities are already exposed to changing envi-
ronmental conditions and/or the invasion of alien species, and thus, 
represent a transient phase. In a transient phase, rapid changes in 
abiotic and biotic conditions can lead species to fill their potential 
range incompletely or to occur in unsuitable habitats (Ackerly, 2003). 
Thus, in these transient communities the current diversity patterns 
may not reflect ongoing assembly processes well, but instead re-
flect responses to past conditions (Chang & HilleRisLambers, 2016; 
Mittelbach & Schemske, 2015). For example, a recent study shows 
that climatic legacies can explain a relevant part of the variation in 
current community assembly (Delgado-Baquerizo et al., 2018).

3  | SOLUTIONS

By now it is well acknowledged that the filtering approach alone will 
not bring the hoped-for revolution in large-scale community ecology 
(Ricklefs, 2008; see also discussion on the importance of competi-
tion at large spatial scales as a showcase in Supporting Information 
Appendix S3). Here, we first review proposed solutions organized 
along the different steps commonly used in the filtering framework 
(comparable to the pitfall section) and point out how each of these 
solutions can solve (or partly solve) the different pitfalls (Table 1). 
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Next, we highlight new methods, theoretical advances and newly 
available data that could prove their utility for community assembly 
questions.

3.1 | Study design

We have seen that the filtering approach requires a number of 
choices and that each of these choices can affect (or even invert) 
the results (Münkemüller et al., 2014). It is, therefore, especially im-
portant that, at the beginning of a study, the general research ques-
tion is translated into specific hypotheses and testable predictions 
(Figure 2). Based on these, the study design can be developed.

The scale dependence of assembly processes was recognized 
early on, with most studies focusing on the effects of spatial scales 
(Carboni et al., 2013; Kraft & Ackerly, 2010), fewer on the level of de-
scription of organisms (e.g., functional group versus species versus 
individual level) or different life stages (Conti et al., 2018) and very 
few on temporal scales (Chang & HilleRisLambers, 2016). To deal 
with scale dependence, studies have compared diversity patterns 
across different scales to test separately for signals of small- ver-
sus large-scale processes [solution (S) 1; Table 1]. A straightfor-
ward approach is a sampling design across different spatial grains 
and extents, levels of description of organisms and temporal scales 
(Cavender-Bares et al., 2006; Weithoff, Rocha, & Gaedke, 2015), in-
cluding space-for-time substitutions (Bhaskar, Dawson, & Balvanera, 
2014). Sampling and studying diversity patterns across several 
scales (using either a multiscale sampling design or a posteriori data 

aggregation approaches) is an obvious solution when scale choices 
are important but not easy to make (P1), for example when influ-
ential background factors are also scale dependent (e.g., dispersal, 
P9). This approach can also help to disentangle processes that create 
similar patterns at one scale but contrasting patterns at others (P6 
and P8) and to identify the interplay of processes that act at differ-
ent scales (P7). For example, for trait diversity of plant communities 
there is some evidence for the dominance of competitive interac-
tions at fine spatial scales and prevalent environmental filtering at 
coarser scales (Carboni et al., 2013; Cavender-Bares et al., 2006).

Applying the filtering approach to dynamic response variables 
(S2; Table 1), such as demographic rates, is a well-known solution 
for several pitfalls but mostly hampered by data availability. Instead 
of asking, “Do species occur more often with similar or different 
species?”, we ask, “Do species perform better with similar or differ-
ent species in the neighbourhood?”, thereby relating the measured 
performance of focal individuals to their trait and phylogenetic (dis)
similarity with their neighbours. At larger spatial scales, this has been 
tested in systems where time series of species performance are avail-
able, such as long-term forest plots (Kunstler et al., 2012), or in sys-
tems that provide natural experiments, such as invaded communities 
(Carboni et al., 2016). More recently, researchers have set up exper-
iments to test for the link between community assembly and trait or 
phylogenetic diversity patterns (Conti et al., 2018; Fayle, Eggleton, 
Manica, Yusah, & Foster, 2015). Experimental manipulation of the 
environmental and biotic factors that drive assembly filters allows 
the control of a number of influential background factors (P9 and 
P10) and scale dependencies (P1). In such experiments, individual 

F I G U R E  2   Conceptual representation of the ongoing scientific process of generating knowledge and general theories with the ecological 
filtering framework. The process often starts with an experience or undirected observation (e.g., “plants in alpine meadows are often smaller 
than in sub-alpine meadows”) that leads to further reflection about ecologically interesting questions (e.g., “why are plants smaller?”), 
related hypotheses (e.g., “plants might be smaller owing to environmental constraints”) and testable predictions (e.g., “plant height of alpine 
species is a non-random selection from the mountain plant species pool”). To test these hypotheses, we suggest an interplay of studies using 
observations, experiments, virtual ecologist approaches (to test the logic of process–pattern–predictions and methodological approaches) 
and/or parameterized mechanistic models to refine, alter, expand and reject the hypotheses on ecological assembly processes. Each of 
the cycles can repeat many times until a hypothesis becomes so well supported that it advances community ecology as a cornerstone of a 
more general theory (inspired by the figure, “The scientific method as an ongoing process”, developed by Theodore Garland, University of 
California, 2015)
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success is not approximated by a single presence or abundance mea-
sure, but is captured via demographic rates at different stages (Conti 
et al., 2018; Li et al., 2015). Performance is often more responsive 
to ecological drivers than survival and might thus be more suited 
to measure responses in non-equilibrium situations. Moreover, long 
time series can reveal insights into community assembly and provide 
solutions for non-equilibrium situations (P9 and P10). For example, 
time series can be used to estimate the relative importance of envi-
ronmental filtering, historical legacies and new biotic interactions in 
the species composition of a community in the face of past, current 
and future climates (Blonder et al., 2015). They can also be used to 
gain a better understanding of the turnover of processes during suc-
cession (Letten, Keith, & Tozer, 2014).

3.2 | Collection of information

Given that numerous pitfalls can bias results when focusing solely 
on one partial aspect of biodiversity (e.g., P2 and P3), community 
ecologists started early on to consider complementary facets of di-
versity (S3; Table 1), by comparing diversity indices between phylo-
genetic scales and at different levels of trait similarity, for example, 
close to the root versus tips in a trait-based tree (Graham, Storch, 
& Machac, 2018; Swenson et al., 2012), between richness, regular-
ity and divergence components (Raevel, Violle, & Munoz, 2012), and 
by varying the importance of species abundances (Chalmandrier 
et al., 2015; Götzenberger et al., 2016) and intraspecific variability 
(Chalmandrier, Münkemüller, et al., 2017; Pavoine & Izsak, 2014). 
Guidelines for choosing the right trait and phylogenetic information 
come from studies from related fields. For example, studies apply-
ing the concept of trait syndromes and accounting for several traits 
simultaneously can aid the choice of trait combinations (Diaz et al., 
2016). However, because different traits drive different processes, 
there is now reasonable consensus that analysis of multiple traits 
separately can uncover important signals in the data that would have 
remained undetected if all traits had been analysed together (Saito 
et al., 2016). Moreover, complementing trait diversity indices with 
community-weighted mean (CWM) traits can provide information 
about differences in functional strategies between communities, 
and thus, can allow the teasing apart of drivers that leave the same 
signal in trait diversity. For example, although both environmen-
tal filtering for infertile soils and hierarchical competition for light 
should result in clustering (Supporting Information Appendix S1), the 
former should select for slow-growing, small species, whereas the 
latter should select for fast-growing, taller species (Kunstler et al., 
2012).

For phylogeny-based analyses, approaches that account for the 
uncertainty of the phylogeny (Rangel et al., 2015) and the uncer-
tainty concerning the underlying trait evolution process (Gerhold 
et al., 2015) can aid in more correct interpretation of phylogenetic 
pattern analyses. Ultimately, because trait and phylogenetic infor-
mation might not provide equivalent information on species niches 
(P2), considering them jointly probably represents the most sensible 

course of action. For example, one may complement phylogenetic 
measures with trait information (de Bello et al., 2017; Gianuca et al., 
2017; Lopez et al., 2016; Pavoine & Bonsall, 2011) or integrate trait 
and phylogenetic information in a single measure in order to con-
verge as close as possible to the multidimensional niche (Cadotte 
et al., 2013). In sum, moving forward from traditional single-metric 
analyses, a combination of different trait and phylogenetic metrics 
can help to disentangle processes and to detect multiple interact-
ing processes, including different modes of competition (P6–P8) and 
ecological versus evolutionary processes (P9; Weinstein et al., 2014).

3.3 | Methodological approach

In our description of P4 and P5, we highlighted that the choice of 
species pools and randomization schemes can influence the out-
comes of an analysis decisively (Ulrich & Gotelli, 2013). Often, differ-
ent choices are (more or less) implicitly linked to different ecological 
hypotheses (Gotelli & Ulrich, 2012). Thus, by explicitly linking each 
ecological hypothesis with the correct combination of species pool 
and randomization, we can develop a set of tests for disentangling 
different ecological scenarios (S4; Table 1). This approach offers a 
direct solution to the methodological pitfalls (P3–P5) and can help 
to circumvent the challenge of disentangling patterns and processes 
by providing multiple-pattern comparisons (P6 and P7). For exam-
ple, depending on the ecological hypothesis to be tested, it can be 
important to account explicitly for the dynamic nature of the spe-
cies pool, recognizing that it is shaped by metacommunity dynam-
ics in addition to speciation, extinction and dispersal (Mittelbach & 
Schemske, 2015). Indeed, Lessard et al. (2016) have demonstrated 
that the implementation of several process-based species pools, 
that is, species pools that already account for selected processes, 
and thus, can be used to test for the remaining candidates, allows 
the identification of otherwise hidden filters of biotic interactions. 
Manipulations of the species pools can also be used to simulate 
cross-scale sampling instead of investing the time and money to 
sample across different scales (Chalmandrier et al., 2013). For ex-
ample, aggregating communities or cutting out smaller study areas 
can create ranges of spatial scales, whereas aggregating species or 
transforming phylogenies can create ranges of different levels of de-
scription of organisms (Münkemüller et al., 2014). Following similar 
logic, it is also possible to build reduced functional species pools al-
ready accounting for environmental and dispersal limitation filters 
at broader scales that can then be used to test simultaneously act-
ing processes at the community scale (de Bello et al., 2012). In ad-
dition, manipulations of the randomization algorithm can be used to 
account for dispersal limitations by down-weighting species that do 
not occur in the larger surroundings (P9) and improve the detection 
of biotic interactions by down-weighting species for which the local 
environment is not suitable (Chalmandrier et al., 2013; Peres-Neto, 
Olden, & Jackson, 2001).

More recently, community ecologists started to validate their 
methods and models with the “virtual ecologist” approach, whereby 
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simulated data are used to mimic real species and how they are “vir-
tually” observed and analysed (Zurell et al., 2010). This validation 
allows testing of the reliability and power of metrics, species pool 
and randomization choices (Botta-Dukat & Czucz, 2016; Miller et al., 
2017; Münkemüller et al., 2012). Additionally, it allows investiga-
tion of how interacting processes and constraints (including biotic 
interactions, scale dependence, trait choices and confounding back-
ground factors) influence results of the filtering framework (Trisos, 
Petchey, & Tobias, 2014). Thus, this approach does not provide di-
rect solutions for any pitfall, but, when using appropriate simulation 
models, it is a powerful tool to develop further or test the filtering 
approach and to interpret observed signals carefully in diversity data 
(S5; Table 1). The limitation of this approach inherently depends on 
the quality of the simulated data, and its conclusions are restricted 
to cases that are comparable to these virtual data (for more detail, 
see Zurell et al., 2010).

To avoid P7 (assuming that one process dominates the pat-
terns), more and more approaches are being developed to model 
multiple processes jointly instead of testing for a single, dominant 
process (S6; Table 1). The range of approaches is large. Some are 
simple extensions of the original filtering framework. For instance, 
it is possible to account simultaneously for environmental filter-
ing and symmetric competition by relying on the (strong) assump-
tion that this should lead to a pattern, where species are not too 
similar (i.e., owing to competitive exclusion) and not too dissimilar 
(owing to environmental filtering) to each other at the same time, 
and by testing for this pattern (e.g., with a quadratic term in a re-
gression model; Gallien et al., 2014). Another possibility is to build 
elaborate null models that allow the inclusion of multiple ecological 
and evolutionary processes (see also S3). Van der Plas et al. (2015) 
introduced static, stepwise algorithms of community assembly that 
simulate processes such as dispersal, environmental filtering or com-
petition and allow the estimation of their relative importance. Pigot 
and Etienne (2015) developed a dynamic null model of assembly that 
allows the estimation of the effect of allopatric speciation, coloniza-
tion and local extinction. Ultimately, the idea is to build more mech-
anistic, dynamic models of community assembly (Connolly, Keith, 
Colwell, & Rahbek, 2017; Pontarp, Brännström, et al., 2019) that are 
general enough to include and contrast different ecological theories 
and processes and can be parameterized inversely with a selection 
of complementary diversity patterns (Cabral, Valente, & Hartig, 
2017). The logic of this inverse parameterization, in simple terms, is 
to run the model across the relevant parameter space, to compare 
simulated patterns with observed patterns using appropriate sum-
mary statistics and to choose the parameter combinations that lead 
to the best match between simulated and observed patterns (Grimm 
et al., 2005; Hartig, Calabrese, Reineking, Wiegand, & Huth, 2011). 
A coherent and efficient statistical method for this inverse parame-
terization of complex ecological and evolutionary models is approx-
imate Bayesian computation (Csilléry, Blum, Gaggiotti, & François, 
2010). Interpretation of the identified best parameter values allows 
quantification of the relative influence of the different ecological, 
biogeographical and evolutionary processes (Pontarp, Bunnefeld, 

et al., 2019). Very importantly, the parameterized model could also 
be used to account for transient dynamics (P10) and to make predic-
tions, so far largely unattained aims in large-scale community ecol-
ogy. Examples of such mechanistic models exist already (Cazelles, 
Mouquet, Mouillot, & Gravel, 2016; Kalyuzhny, Kadmon, & Shnerb, 
2015; Lohier, Jabot, Weigelt, Schmid, & Deffuant, 2016), but many 
processes and process combinations are still understudied in this 
young research field (Cabral et al., 2017). Interestingly, the devel-
opment and application of such mechanistic models in community 
ecology will benefit greatly from the solutions outlined here (S1–S4) 
because these provide a range of partly independent diversity pat-
terns (e.g., trait versus phylogenetic patterns, abundance weighted 
patterns, small versus large-scale patterns), an indispensable requi-
site for inverse parameterization (Grimm et al., 1996). Although this 
approach of jointly modelling different processes of assembly is very 
promising, substantial challenges remain (Cabral et al., 2017); for ex-
ample, calibration and validation are data hungry, computationally 
demanding and require strong expert knowledge.

3.4 | Drawing conclusions

Observational approaches, including the filtering framework, were 
never meant to provide final answers to questions about ecologi-
cal mechanisms and processes but to feed an ongoing scientific pro-
cess of generating knowledge and general theories (Garland, 2015). 
Observational studies are supposed to help refine, alter, expand and 
test hypotheses and to inform further observations, experiments and 
mechanistic models (see Figure 2). In a single observational study, it 
is typically not possible to sample all the necessary data or to apply 
all the above outlined solutions. For very complex filters (e.g., com-
plex biotic interactions that differ for different species pairs), there 
might not exist solutions at all. This is not a problem per se as long 
as these limitations are considered in the conclusions drawn from 
results. Ultimately, a combination of studies using observations, ex-
periments and mechanistic models with different strengths and limi-
tations will advance our understanding of ecological processes and 
their importance in realistic versus laboratory environments.

3.5 | Future developments and challenges

New methods, theoretical advances and newly available data offer 
opportunities, but also pose challenges to the study of community 
assembly. Their application for inferring assembly rules from diver-
sity patterns has only started. Although broad-scale testing remains 
to be undertaken, we highlight here general ideas and the potential 
benefits to community assembly research in each of these areas:

1. One strong, and certainly in most cases wrong, assumption 
of the filtering approach is that all species interact with each 
other (and based on the same underlying processes). Species 
distribution modelling techniques that allow the estimation of 
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the covariation of species while modelling their response to 
abiotic variables may help to relax this assumption [e.g., joint 
species distribution models (JSDMs); Clark, Gelfand, Woodall, 
& Zhu, 2014; Pollock et al., 2014]. The estimated residual co-
variance matrices in JSDMs can result from model misspec-
ification, influential but hidden abiotic variables, but could 
potentially also result from biotic interactions, and thus, be 
a signal of assembly rules (Ovaskainen et al., 2017; Tikhonov, 
Abrego, Dunson, & Ovaskainen, 2017; Zurell, Pollock Laura, & 
Thuiller, 2018). To gain a better understanding of the ecolog-
ical meaning of these residual covariance matrices, one could 
test them using simulated data (Zurell et al., 2018) or one 
could link empirically estimated covariance matrices to trait 
and/or phylogenetic diversity patterns, assuming that a strong 
correlation would indicate ecological meaning. However, given 
that they rely on correlation matrices, these approaches can 
focus only on testing for symmetric interactions, which greatly 
limits their application for inferring interactions.

2. Recent advances in multi-trophic network theory have highlighted 
the links of trait (Albouy et al., 2011; Crea, Ali, & Rader, 2016) 
and phylogenetic relationships (Aizen et al., 2016; Peralta, 2016) 
with biotic interactions in the networks. Specific interactions are 
linked to specific trait combinations, and thus, to trait and phy-
logenetic diversity patterns. For example, it has been shown for 
plant–insect interaction networks that certain traits define sets 
of potentially interacting species and define clear patterns of 
clustering on the phylogenies of plants and insects (Ibanez et al., 
2016). For food webs, Morlon, Kefi, and Martinez (2014) have 
suggested and applied a new framework to estimate the strength 
of filters of “trophic environment” versus food-mediated inter-
specific competition in community assembly. The framework 
uses trophic similarities, measured via shared predators or prey, 
and null models. In a similar approach, for multi-trophic tropical 
fish communities, it was recently highlighted that traits linked to 
feeding strategies or trophic level (with measurement based on 
stable isotope ratios) played an important role in community as-
sembly and, accordingly, left significant signals in trait diversity 
(Fitzgerald, Winemiller, Sabaj, & Sousa, 2017). Advances in this 
direction open the door for moving from single-trophic to multi-
trophic community assembly (Gravel et al., 2016). Ultimately, the 
integration of complementary information on species differences 
from traits, phylogenies and interaction networks promises a 
better understanding of community assembly in space and time 
(Morlon et al., 2014).

3. Finally, new types of data are rapidly becoming available. One ex-
ample is amplicon-based DNA analysis of environmental samples 
(i.e., metabarcoding data, environmental DNA; Creer et al., 2016; 
Taberlet et al., 2012). These data provide new information on the 
potential presence of organisms for calculation of diversity pat-
terns (Calderón-Sanou, Münkemüller, Boyer, Zinger, & Thuiller, 
2020; Martinez-Almoyna et al., 2019). Combined with data-
bases or expert knowledge on functional traits, phylogenies or 
trophic meta-webs (containing information on all predator–prey 

interactions in a regional pool of present taxa), these diversity 
patterns permit better approximation of niche overlap in commu-
nities. The great advantage is the coverage of almost all prokary-
ote and eukaryote species present in a sample (or taxonomic units 
with lower resolution, depending on the reference libraries) and 
the integration over time (e.g., species are not missed simply be-
cause they were not visible at the sampling time). Although prom-
ising, environmental DNA data also brings new uncertainty with 
respect to traditional surveys, such as amplification errors, DNA 
degradation and contamination and barcode assignation (Taberlet 
et al., 2012), because reference databanks of DNA sequences 
that can be used to identify taxonomic units are still incomplete 
and impede the traditional use of diversity indices based on spe-
cies concepts (Coissac et al., 2015). However, methodological 
advances in this area will help to address earlier limitations (e.g., 
data limitation for pollination networks; Pornon, Andalo, Burrus, 
& Escaravage, 2017; Calderón-Sanou et al., 2020) and allow the 
study of entirely new types of ecosystems (e.g., by combining 
soil metabarcoding with information from trait databases, one 
can study the interplay of fungi and bacteria with nematodes 
and plants; Anslan, Bahram, & Tedersoo, 2016; Tedersoo et al., 
2016). Another promising new type of data comes from transcrip-
tomic and meta-transcriptomic approaches (Gotelli, Ellison, & 
Ballif, 2012; Wang, Kong, Li, & Xie, 2016). These high-throughput 
methods allow the identification of proteins or genes being pro-
duced by individuals or entire communities at the time of sam-
pling (e.g., environmental proteomics). The patterns of differential 
protein production and expression provide a direct assessment 
of physiological responses to abiotic and biotic stimuli, and thus, 
to the use of niches by individuals or communities. The diversity 
of expressed functions could help to provide insights into assem-
bly processes that are much more tightly linked to physiological 
responses than the standard trait diversity measures, which are 
often based on “soft” traits (i.e., few easily measurable features). 
For example, a recent community-wide transcriptomic analysis 
has supported the Janzen–Connell hypothesis by demonstrat-
ing that growth rates and survival of individual trees were higher 
when the neighbourhood consisted of trees with dissimilar (rather 
than similar) defense genes (Zambrano et al., 2017). However, 
even more than with metabarcoding, this approach adds uncer-
tainty with respect to traditional surveys that are linked to sam-
pling, laboratory work and interpretation of results (Wang et al., 
2016).

4  | GUIDELINES

Based on our critical synthesis of pitfalls and available solutions 
(Table 1), we suggest consideration of the following steps when ap-
plying the filtering framework:

1. Translate research question(s) into specific hypotheses and test-
able predictions. The expected patterns in support of each 
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hypothesis must be identified a priori, and each hypothesis 
should be tested against each of these predetermined patterns 
(Figure 2; S4).

2. Assemble all data necessary to answer the research question 
(across scales and diversity facets) but not more (S1 and S3). 
Importantly, use existing naturalist knowledge to decide on eco-
logically relevant traits. Inclusion of extraneous species or irrel-
evant traits or conducting the analysis at an inappropriate scale 
can obscure or distort any signal in the diversity patterns.

3. Measure dynamic response variables in a spatially explicit context 
and consider complementing this with targeted experiments if the 
research question and setting allow for it (S2). This seems espe-
cially important when focusing on biotic interactions or studying 
communities that are far from equilibrium.

4. Select the diversity metrics most appropriate to the question of 
interest based on the conceptual framework and existing natural-
ist knowledge (S3).

5. Choose species pools and randomization techniques such that 
null models break only the pattern to be tested and not additional 
patterns (S4). If this is not possible, use a combination of tests that 
together allow an unbiased answer to the research question. Test 
the sensibleness of this methodological choice and interpret ac-
cordingly (S5).

6. If possible, test for the reliability and power of the chosen ap-
proach with simulated data (S5).

7. Test whether signals identified as significant are congruent across 
the relevant patterns identified a priori for each research hypoth-
esis and always interpret them together (Figure 2; S6).

8. If your research question is complex (e.g., implies a multitude of 
processes or is linked to evolutionary history), it may be necessary 
to build and parameterize a mechanistic simulation model that 
embraces the underlying complexity and allows disentanglement 
of the different drivers (S6).

9. Remember that study of the causal processes in the strict sense 
always requires an experiment and, accordingly, report results of 
pattern analyses with the necessary care (Figure 2).

5  | CONCLUSION

If we are to exploit the filtering framework fully for a better un-
derstanding of community assembly, we need to: (a) ensure that 
we rely on the solutions provided for most of the known pitfalls 
(Table 1) and follow the guidelines suggested here for good sci-
entific practice; (b) improve current solutions that begin to ac-
commodate multiple confounding processes, more complex biotic 
interaction types and different spatial scales; and (c) integrate the 
rapidly accumulating types of new data (e.g., environmental me-
tabarcoding) that represent more diverse and so far largely un-
known communities (e.g., soil microbes) across an ever-increasing 
spatial scope. Adaptation of the filtering approach to circumvent 
traditional pitfalls, account for uncertainty and accommodate new 
data, all while retaining core fundamental ideas, holds promise to 

improve our understanding of the ever-widening definition of the 
ecological community significantly.
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