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Abstract

Investigating how trophic interactions influence the b-diversity of meta-communities is of para-
mount importance to understanding the processes shaping biodiversity distribution. Here, we
apply a statistical method for inferring the strength of spatial dependencies between pairs of spe-
cies groups. Using simulated community data generated from a multi-trophic model, we showed
that this method can approximate biotic interactions in multi-trophic communities based on
b-diversity patterns across groups. When applied to soil multi-trophic communities along an
elevational gradient in the French Alps, we found that fungi make a major contribution to the
structuring of b-diversity across trophic groups. We also demonstrated that there were strong
spatial dependencies between groups known to interact specifically (e.g. plant-symbiotic fungi,
bacteria-nematodes) and that the influence of environment was less important than previously
reported in the literature. Our method paves the way for a better understanding and mapping of
multi-trophic communities through space and time.
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INTRODUCTION

Understanding the processes that determine the spatial struc-
ture of biodiversity is one of the overarching goals of ecology
(Ricklefs 1987). In particular, the study of b-diversity, the
change in species identities (or species groups) across sampled
locations, sheds light on different ecological, evolutionary and
biogeographic processes (e.g. Graham & Fine 2008; Anderson
et al. 2011). For a given regional species pool, the processes
responsible for b-diversity are usually assumed to be environ-
mental filtering, dispersal limitations and biotic interactions
(HilleRisLambers et al. 2012; Meynard et al. 2013).
Previous studies have sought to analyse b-diversity by teas-

ing apart the effects of environmental filtering from biotic
interactions along environmental gradients on a single group
of species (e.g. Peay et al. 2016 for fungi; reviewed in Hanson
et al. 2012 for bacteria; Mazel et al. 2017 for mammals; Chal-
mandrier et al. 2015 for plants). However, biotic interactions
across groups are also expected to drive the structure and dis-
tribution of biodiversity. For example, plant-pollinator,
trophic (e.g. prey–predator or plant-decomposers) and host-
symbiont (including pathogens, mutualistic and commensal
organisms) interactions strongly impact diversity distribution
and ecosystem functioning (Brose & Hillebrand 2016). These
interactions among groups of species, although not necessarily
species-specific (Walker et al. 2011; Peay et al. 2015), harbour
some degree of specificity due to trait constraints and shared

habitat preferences (e.g. Allesina et al. 2008; Gonzalez-Varo
& Traveset 2016). This spatial interdependence among groups
implies that the b-diversity of a single group is likely to be
contingent to that of the other groups. Hence, studying how
the b-diversity of multiple groups covaries along environmen-
tal gradients should help better understand their spatial distri-
bution and uncover their interactions. In particular, soil
systems provide several examples of coupled biological sys-
tems (Wardle 2006; Bardgett & Wardle 2010); for example
plant-mycorrhiza associations (Smith et al. 2008), direct plant
control on fungal communities (Broeckling et al. 2008), preda-
tor-prey relationships (Hedlund & €Ohrn 2000) or plant-
decomposer relationships (H€attenschwiler et al. 2005). Empiri-
cal evidence suggests that these biological couplings could
indeed produce spatial dependencies between the b-diversity
of the different groups (e.g. plants and fungi or bacterial turn-
over, Zinger et al. 2011; Prober et al. 2015; Geremia et al.
2016; aquatic macro/micro consumers and producers Matias
et al. 2016). However, such studies remain seldom due to diffi-
culties in compiling comprehensive multi-trophic inventories
(but see De Bie et al. 2012; Matias et al. 2016; K�efi et al.
2016). While, amplicon-based DNA analysis of environmental
samples (i.e. environmental DNA, Taberlet et al. 2012; Kress
et al. 2015) holds the promise to unlock this limit by enabling
consistent all-biodiversity environmental surveys in soils (Ted-
ersoo et al. 2016; Zinger et al. 2017) or aquatic environments
(Lima-Mendez et al. 2015), we still critically miss appropriate
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statistical tools to explore these multi-trophic b-diversity pat-
terns while taking into account environmental variation.
Indeed, analysing how the b-diversity of a given trophic

group depends not only on the b-diversity of the other groups
but also on the spatial variation in environmental conditions is
challenging as soon as the number of groups becomes large.
Indeed, many groups will inevitably show multiple correlations
leading to multi-collinearity in the analysis. Path analyses
(Wright 1921; Shipley 2000; Schuldt et al. 2017) are one of the
available tools to deal with this issue. However, they require
assumptions on the overall structure of the network and they
depict hierarchical dependences. Alternatively, probabilistic
graphical models have been designed to account for condi-
tional dependencies among multiple variables (Koller & Fried-
man 2009). For instance, partial correlation networks, a type
of Markov networks, do not require any predefined structure,
has also been used to model species interactions (Harris 2016)
and can be inferred using graphical lasso (Friedman et al.
2007; Mazumder & Hastie 2011). Partial correlation networks
could then be applied to multi-trophic systems in order to pro-
vide a map of dependencies between b-diversities of trophic
groups without any a priori structure.
Here, we propose to document multi-group b-diversity pat-

terns in soil communities using partial correlation networks.
Specifically, we hypothesise that interrelated b-diversity pat-
terns among groups are partly explained by biotic interactions
along abiotic gradients, and that these spatial dependencies
can be detected with the graphical lasso method to infer a
partial correlation network. First, using a simulation model of
multi-trophic communities with several trophic networks, we
show that biotic interactions may indeed produce interrelated
b-diversity patterns (i.e. non-zero partial correlation coeffi-
cients) that can be uncovered using a partial correlation net-
work. Second, we apply the method to an empirical dataset
including bacteria, micro-eukaryotes, meso/macrofauna,
plants and abiotic factors along an elevation gradient in the
French Alps. We jointly explore the co-variation between the
b-diversity of multiple trophic groups to unravel known and
unknown potential biotic interactions, while controlling for
the relative role of the abiotic environment and the b-diversity
of the other groups.

MATERIAL AND METHODS

The method: applying the Graphical lasso to multi-trophic

b-diversity patterns

From species identity to (trophic) groups, and measuring
b-diversity and environmental distances
Species grouping can be defined by known trophic position
(e.g. symbiotic fungi), or by taxonomy (e.g. bacteria) or
function. This step is essential and has to be implemented in
the light of the prior knowledge of the study system (see our
case study for an example). Then, one possible measure of
b-diversity between two local communities, A and B, is the
Jaccard dissimilarity index, defined as one minus the ratio of
the number of species present in both A and B over the num-
ber of species present in either A or B. It equals 0 when A
and B share the same species, and 1 when they do not share

any. We used the R package ‘vegan’ (Oksanen et al. 2015) to
compute the Jaccard dissimilarity matrix for multiple species
groups (see below). Since the Jaccard index is sensitive to
sample size, and since metabarcoding data often produce sam-
ples of heterogeneous sizes (Figs S1, S2), we partitioned the
Jaccard index into the true turnover component and the
nested component (Baselga 2010; the true turnover component
reflects the turnover independently of richness variation while
the nested component is deduced by subtracting true turnover
component to total turnover), using the R package ‘betapart’
(Baselga & Orme 2012). Environmental distances between
pairs of local communities were computed using Euclidean
distances. For the sake of comparison, we also ran the analy-
sis using the Sorensen dissimilarity index and its true turnover
component.

The graphical lasso method
The goal of our approach is to use a network to
parsimoniously represent the partial correlations between the
b-diversity matrix of each group as a function of the others
and the environmental distances. Consequently, a suitable
description of the system consists of using a class of models
that (1) represent the conditional dependencies between ran-
dom variables (here the b-diversity matrices of multiple spe-
cies groups) using partial correlations, while (2) allowing for a
parsimonious representation of the dependencies using a net-
work. While the Lasso approach was created to produce this
type of parsimonious set of variables (Tibshirani 1994), its
multivariate form, the Graphical lasso (Glasso), allows repre-
senting the partial correlations among multiple variables in a
network (here the b-diversity matrix of multiple groups and
the environmental distances, Friedman et al. 2007; Mazumder
& Hastie 2011).
In short, the Glasso uses the empirical variance-covariance

matrix S to estimate a partial correlation matrix that
quantifies the degree of association between pairs of variables
conditional to the other variables. Here a variable is a n 9 n
b-diversity matrix for a given group (n being the number of
plots), or a n 9 n environmental distance matrix. To estimate
the partial correlation matrix in Glasso, the S matrix is
inverted, and its inverse is called the precision matrix P.
Moreover, a penalty term in the likelihood (modulated by a
coefficient k) ensures the sparsity of the matrix P (i.e. P have
many zeros, see Friedman et al. 2007 for mathematical
details). The partial correlation matrix is then computed from
P as follows (eqn 1):

corðyi; yjjyIni;jÞ ¼ � pi; j
pi;ipj; j

ð1Þ

where corðyi; yjjyIni;jÞ represents the partial correlation between
the components i and j of a random variable Y given all the
other components, and pi; j, pi; i, pj; j are the elements of P. The
elements of P consist in partial correlations between the b-
diversity matrices of the different trophic groups and the envi-
ronmental distances. As the precision matrices have been
inverted with the constraint to ensure sparsity, it follows that
the partial correlation matrix is also sparse. This sparse repre-
sentation of the relationships between the b-diversity of multi-
trophic groups and the environmental distances means it can
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be represented using a network. In the Glasso, the number of
coefficients equal to 0 in the partial correlation matrix
depends on the coefficient k. Here, we used the Extended
Bayesian Information Criterion (Foygel & Drton 2010) to
select an optimal k. We used the R package ‘qgraph’ to esti-
mate the partial correlation matrix with graphical lasso (Eps-
kamp & Fried 2016). We expected partial correlations to be
more informative than marginal correlations (Pearson correla-
tions), because they avoid spurious correlations due to con-
founding effects.

Representing conditional dependencies between b-diversity using
a network
We assessed how the b-diversity of each group is influenced
by environmental change and the b-diversity of the other
groups by analysing the degree and the weighted degree of the
correspondent node in the network (using Gephi, Bastian
et al. 2009). The degree of a node in the network is its num-
ber of direct neighbours. If the b-diversity of two groups is
conditionally independent (i.e. has a zero partial correlation
coefficient), they cannot causally influence each other (Mur-
phy 2012). Consequently, the more connected a group is, the
more central it is to structuring the b-diversity of all groups.
The weighted degree represents the total sum of partial corre-
lations in b-diversity between a given group and the groups
that are directly connected to this group. The higher the sum,
the greater the interdependencies with other groups.

Approximating the structure of a simulated trophic network

We then tested whether the Glasso approach was able to
recover known interactions among species groups from local
community b-diversity patterns. We first built a set of simu-
lated data by constructing a regional trophic web (step 1)
from which local multi-trophic communities were sampled
using a stochastic model (step 2). Then, we measured the par-
tial correlation between the b-diversity of each trophic level
(step 3) and tested whether these patterns matched the simu-
lated regional trophic web.
Step 1 – The regional web was assumed to have six trophic

groups and three trophic levels (three basal groups, two inter-
mediate groups and one top group), containing 20 species
each. We assumed some degree of specialisation in the rela-
tionships between trophic levels: each species from the inter-
mediate and top trophic levels had a number of prey equals
to one plus a random number drawn in a Poisson law of
parameter three (Fig. 1a). Thus, each consumer species had
one prey species at least, and on average four prey species.
Once the number of prey species had been drawn for a given
consumer species, prey were drawn randomly from the species
belonging to the lower trophic levels (T4 had preys in T1 and
T2, T5 in T3 and T4 and T6 in T4 and T5)
Step 2 – Based on this regional network, we generated 1000

local multi-trophic communities. Communities were simulated
using a stochastic model of multi-trophic community assembly
inspired by the Trophic Theory of Island Biogeography
(TTIB, Gravel et al. 2011; Massol et al. 2017). The TTIB
assumes bottom-up sequential dependencies (Holt 1997, 2009;
Dunne et al. 2002) with two phases. In phase 1, each species

can colonise a local community if at least one of its prey spe-
cies is present. In phase 2, a species which has lost its last
prey species goes extinct. For the sake of clarity, we assumed
a homogeneous environment. The probability of each basal
species being present in the local community was assumed to
be constant and set to p0 = 0.5. The probability of each con-
sumer species C being present in the local community is related
to the fraction of its prey available through the relation pC = (k/
g)r where g is the diet breadth of C (i.e. the number of potential
prey species), k is the number of its prey species present in the
community and r is a constant that controls the shape of the
relation. In the TTIB, having more prey species present in the
community does not increase the probability of consumer pres-
ence, and the probability of survival is either 0 (when k = 0) or
1 (when k > 0). This corresponds to the case r = 0. For the sim-
ulation, we used r = 1, assuming that pC grows linearly with the
number of prey species present in the community. We also stud-
ied the case r = 1/3 presented in the appendices.
Step 3 – We then computed b-diversity matrices for each

trophic group. We inferred then the partial correlations and
computed the marginal correlations between these b-diversities
using the Glasso method. We thus obtained a distribution of
partial and marginal correlations between pairs of the b-diver-
sity at the different trophic levels. We expected these partial
correlations to be high between trophic groups which interact
directly and low between trophic groups which do not interact.

Analysing multi-trophic patterns in soil ecosystems in the French

Alps

Study site and soil sampling
The study was conducted in the northern French Alps (Arves
Massif, 45.12° N, 6.40° E) along a 977 m elevational gradient
(1748 m to 2725 m a.s.l.) located in a single cow-grazed pas-
ture, above the tree-line. The vegetation at the bottom of the
gradient corresponds mainly to subalpine grasslands, while
alpine meadows with sparse vegetation dominate at high ele-
vation (Chalmandrier et al. 2017). Ten plots were established
at 100 m altitude intervals along the gradient, each of them
composed of two 10 9 10 m2 subplots. All plots were placed
on the same south-facing slope with a similar bedrock type
and land-use to ensure a relatively homogeneous gradient.
Mean annual temperature ranges between 8 °C at the bottom
and 3 °C at the top, while mean annual rainfall is 473 mm
over the period 2000–2012. The soil sampling field campaign
was conducted in September 2012. We collected 21 soil sam-
ples per subplot. More details are presented in Appendix S1.

Molecular analyses
Soil biodiversity was estimated using four DNA markers.
Universal markers such as 18S (amplifying all Eukaryotes,
18S nuclear rDNA) and 16S (amplifying all Bacteria, 16S
rRNA) were used to obtain a general overview of the multi-
trophic composition of the sites. Another two markers focus
on Eukaryota diversity by targeting fungi (ITS1) and vascular
plants (Chloroplast trnL-P6 loop) respectively. Molecular
analysis and data curation are presented in Appendix S1. We
pooled the samples together per subplot in order to obtain a
single community per subplot and converted the data into
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presence-absences. The raw and curated sequencing data as
well as associated data and codes are available on the Dryad
Digital Repository under accession https://doi.org/10.5061/
dryad.5b58400 and the summary statistics are presented in
Table S1. As explained above, we computed b-diversity using
the Jaccard dissimilarity index. Since this index is sensitive to
sequencing depth difference between samples, we also used the
true turnover component of the Jaccard index (Baselga 2010).
The results obtained using the true turnover component of the
Jaccard index are similar to those using the Jaccard index; so,
we only refer to the Jaccard index in the main text, and present
the results of the true turnover component of the Jaccard index
in Appendix S2 (Figs S3–S7, Tables S2–S3). Moreover, we pre-
sent the analysis using the Sorensen dissimilarity index and its
true turnover component in Appendix S3 (Figs S8–S11).

Defining trophic groups of species
We selected a priori groups of soil taxa based on their
distinctive role in the functioning of the soil ecosystem,
namely: plants, fungi, bacteria, oribatid mites, nematodes and

springtails (Bardgett 2005). We included plants since they are
the primary producers and their diversity and identity drive
the functioning and the stability of most terrestrial ecosystems
(Hooper 1997; van der Heijden et al. 1998). We also included
litter feeders that contribute to dead material fragmentation,
in particular oribatid mites and springtails. Oribatid mites
form one of the most abundant groups of arthropods in soil,
(Behan-Pelletier 1999) with up to several hundreds of thou-
sands of individuals per square metre (Norton 1990). Spring-
tails are the most numerous group of hexapods in most
terrestrial ecosystems (Deharveng 2004). We also included a
group of taxa that mineralise the fragmented litter, such as
saprophytic fungi and bacteria (Bardgett 2005). Fungi are
found in different compartments of the soil trophic web so we
classified fungal OTUs into three main functional groups,
namely, symbiotic fungi, saprophytic fungi and pathogenic
fungi using the FUNguild database (Nguyen et al. 2016).
Root associated symbiotic fungi rare found on over 90% of
terrestrial plant families (Wang & Qiu 2006). Moreover, in
arctic and alpine systems, 60–80% of the nitrogen available

(a)
(b)

(c)

(d) (e)

Figure 1 Design and results of the simulation assessing the impact of biotic interactions on the marginal and partial correlation of the b-diversity values of

different trophic groups. (a) the trophic network used for the simulation, composed of six trophic groups and three trophic levels. The indegree of each

node is one plus an integer randomly drawn from a Poisson law of parameter three (except for the basal species). (b) Partial correlation network built

using the median values of the partial correlations (inferred using the graphical lasso) between the b-diversity values of different trophic groups.

(c) Marginal correlation networks built using the median values of the Pearson correlations between the b-diversity values of different trophic groups.

(d) Partial correlation coefficient (inferred using the graphical lasso) between the b-diversity values of two trophic groups as a function of the shortest path

length between these trophic groups. (e) Marginal Pearson correlation coefficient between the b-diversity values of two trophic groups as a function of the

shortest path length between these trophic groups.
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for plants is supplied by mycorrhizal fungi (Bjorbækmo et al.
2010). Bacteria also contribute to this supply by fixing atmo-
spheric nitrogen (Bonfante & Anca 2009; Haq et al. 2014).
Finally, we included a group of predators, here nematodes,
the most abundant belowground multicellular animals (Bard-
gett 2005). Nematode OTUs were divided into bacterivore
nematodes and herbivore/fungivore nematodes using the
NEMAguild database (Nguyen et al. 2016). In summary, the
nine groups included in this study were: plants, symbiotic
fungi, pathogenic fungi, saprophytic fungi, bacterivore nema-
todes, herbi/fungivore nematodes, bacteria, springtails and
oribatid mites. Most of these groups interact via trophic inter-
actions, so that this study case matches the simulations
described above, but not all of them. For the sake of clarity,
we will hereafter refer to them as trophic groups.

Environmental characteristics
Mean annual soil temperature was estimated from field mete-
orological stations placed at the centre of each plot. We also
estimated growing season length and number of frost days
based on daily maps of snow cover at 15 m resolution for
5 years falling between 2000 and 2014 and air temperature
values extracted from the SAFRAN meteorological model
developed by M�et�eo France for the French Alps (Durand
et al. 2009). More methodological details and validation
results for the snow cover model are available in Carlson
et al. (2015). Fine-scale topography and associated parameters
(topographic wetness index and slope) were inferred from air-
borne LIDAR data acquired the year of sampling. Mean soil
pH over the gradient was 5.40 (SD 0.300), whereas mean soil
temperature over the year was 6.06 °C (SD 2.84). The envi-
ronmental distances between subplots were estimated with
Euclidean distances from the first two axes of a principal
component analysis run for all produced (and normalised)
environmental variables (the variance captured by the first
two axes was 34 and 25% respectively, the first axis roughly
represented the climatic conditions, whereas the second axis
was related to the soil conditions, see Appendix S4 (Figs S12–
S14, Table S4) for more details).

RESULTS

Approximating the structure of a simulated trophic network

Our simulations showed that trophic interactions do produce
non-zero marginal and partial correlations between b-diversity
on consecutive trophic levels. Moreover, the Glasso method
detected the conditional dependencies (i.e. an edge in the par-
tial correlation network) between the b-diversity of the differ-
ent trophic groups corresponding to their trophic position in
the network contrary to the marginal correlations (Fig. 1b,c).
The median of both marginal and partial correlation coeffi-
cients between pairs of trophic levels decreased with the short-
est path length between these trophic levels. Nevertheless,
while the median of the marginal correlation coefficients
decreased slowly, the median of the partial correlation coeffi-
cients dropped to values close to 0 once the trophic level dis-
tance was higher than 1 (Fig. 1d,e). Changing the shape of
the relationship linking the probability of presence of a

consumer species with its number of available prey species did
not alter this conclusion (Fig. S15).

b-diversity modelling of empirical soil communities

In the French Alps, the partial correlations estimated between
the b-diversity of each predefined trophic group and environ-
mental distances were all positive (Figs 2, S16, S17, Table S5).
The estimated partial correlation network had 11 nodes (9
trophic groups and 2 environmental variables), was composed
of 34 undirected edges out of 55 possible edges and had a
connectance of 0.618.
Saprophytic fungi were the most influential group in condi-

tioning the b-diversity of the other groups (highest degree
value, 8, and highest weighted degree value, 1.30, Fig. 3).
Plants and oribatid mites also had a strong influence on the
b-diversity of other groups, as did pathogenic and symbiotic
fungi. In contrast, environmental variables had a relatively
small direct impact on the b-diversity of the trophic groups.
The probability of observing a non-null partial correlation

between the b-diversity of a trophic group and the environ-
mental distance was 0.44 (8 edges linking environmental nodes
to the trophic group nodes and 18 potential edges), whereas
the probability of observing a link between the b-diversity of
any two trophic groups was 0.69 (25 edges and 36 potential
edges). Since the variables associated with disconnected nodes
were conditionally independent and that conditionally inde-
pendent variables could not causally influence each other, this
result demonstrates that, in general, environmental variables
had a lower influence on the b-diversity of the trophic groups
than the other trophic groups.

DISCUSSION

In this study, we applied a method for dissecting the joint spa-
tial structure of multiple trophic groups. This method builds on
observed patterns of b-diversity in multiple trophic groups to
infer the conditional dependencies between pairs of groups and
with the environment, in order to pinpoint potential biotic inter-
actions and influential effects of environmental variables on
some specific groups. Simulations confirmed that our method is
able to recover the overall structure of a trophic network using
partial correlations of b-diversity between pairs of groups.
When applied to soil multi-trophic diversity along an eleva-

tion gradient of the French Alps, we were able to quantify the
relative importance of biotic interactions and the environment
in shaping the spatial structure of the meta-communities. Pair-
wise environmental distances displayed a low correlation with
the b-diversity of each group (as measured with the few non-
zero partial correlations). This result implies that the overall
ecological community is primarily driven by biotic interactions
and, to a lower extent, by environmental constraints (but still
important on some groups like springtails or pathogenic
fungi). This result is surprising, given the sharpness of the ele-
vational gradient, and the expected importance of environ-
mental filtering in shaping above and below-ground
communities along elevation gradients (Meynard et al. 2013).
However, many previous studies have focused on intraguild bio-
tic interactions, or on environmental effect only (see Kraft et al.
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2015 for a critical synthesis), and they have ignored the impor-
tance of interguild interactions (e.g. Chalmandrier et al. 2015).
As our climatic and soil properties were sampled at plot

level, they might not have been measured at the appropriate
scale to reflect the fine conditions experienced by below-
ground organisms (Falconer et al. 2015; Baveye et al. 2016;
Matias et al. 2016; Zinger et al. 2017). Further studies should
empirically investigate the b-diversity area relationships of the
different groups (see Barton et al. 2013) and exhibit at which
scale the spatial turnover of the different groups match
together and with the environment (Barber�an et al. 2015; Zin-
ger et al. 2017). Ultimately, this will give an idea of the
appropriate scale of sampling and collecting environmental
information for such multi-trophic analyses.
Finally, we cannot rule out that some important missing envi-

ronmental factors might explain the lower than expected predic-
tive power of environmental distances (e.g. phosphorous for
symbiotic mushrooms, Liu et al. 2012; Camenzind et al. 2014).
Interestingly, focusing on the true turnover, instead of total
turnover, reveals a stronger influence of environmental variation

in structuring the b-diversity of the different trophic groups.
This means that the effects of the other groups are pivotal to
explain the overall turnover and change in species richness
(nestedness component) across space, while environmental vari-
ation is important in driving the pure turnover between groups.
The strong advantage of Graphical lasso over other related

approaches (e.g. Bayesian network, path analyses) is that the
partial correlation network can be inferred without assuming
any a priori structure. This is important when the goal is of
exploring and mapping co-variations between different groups
and when little knowledge of the system is available. As
explained in the introduction, the graphical lasso is expected
to be sensitive to the effect of a missing predictor since the
structure of the partial correlation network may be affected
by the addition of a variable. In our case, we tested to what
extent the addition of an environmental variable impacted the
structure of the partial correlation network. We showed a
moderate impact on the network topology, guaranteeing so
the robustness of the analysis (Appendix S5, Figs S18–S20).
This method does not directly infer the interaction network at

Figure 2 Undirected partial correlation network inferred using the graphical lasso method between the b-diversity of the major trophic groups constituting

soil biodiversity and the environmental distances. Each node represents the b-diversity of a trophic group or an environmental distance. Here, only the

partial correlations above the median value of the non-null partial correlation coefficients (0.106) are shown. The non-filtered network is presented in

Fig. S1. Edge thickness is proportional to the value of the partial correlation coefficient and the partial correlation coefficients are all positive.
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the species level, and the inferred conditional dependencies at
the group level do not imply causality. However, they shed
light on potential interactions and pave the way for more
analyses along identified co-variations.
The approach we proposed here should help interpret a

wide range of multi-trophic biodiversity patterns and yield
new testable hypotheses. For example, in multiple pairs of
trophic groups, we found strong spatial associations which
can be interpreted in light of functional associations. In the
soil, plants are directly affected by symbiotic/pathogenic fungi
and root herbivores, whereas the complex network of detritiv-
orous organisms affects them indirectly (Bardgett 2005;
Wardle et al. 2011). Our method showed that plant b-diversity
was strongly linked to the b-diversities of symbiotic fungi,
pathogenic fungi, oribatid mites and bacterivore nematodes.
While the links with the two groups of fungi most likely
reflect the strong direct associations between these groups and
the vegetation structure, the link with oribatid mites may be
explained by the fact that this group feeds on plant litter
fungi, especially saprophytic fungi (Schneider et al. 2004;
Crowther et al. 2011; Crowther & A’Bear 2012). The graphi-
cal lasso method detected this link showing that changes in
the composition of saprophytic fungi lead to a change in the
oribatid mite assemblages. As expected, the b-diversity of bac-
teria correlated with that of bacterivore nematodes, which
reflects this known trophic interaction (Ettema 1998; Wardle

2006). Moreover, the b-diversity of herbi/fungivore nematodes
correlated with that of symbiotic fungi. The link between the
b-diversity of oribatid mites and springtails might be
explained by mite predation of springtails (Ferguson & Joly
2002). We also highlighted a link between the b-diversity of
oribatid mites and symbiotic fungi. This result suggests that
mite assemblages could be influenced by fungi spatial distribu-
tion through trophic interactions, which have been so far very
poorly documented (Gange & Brown 2003). Interestingly, our
analysis also showed a strong partial correlation (the strongest
partial correlation: 0.365) between the b-diversities of sapro-
phytic fungi and bacteria. Indeed, bacteria can rely on decom-
position products from organic matter, which are provided by
saprophytic fungi fully equipped from an enzymatic point of
view (De Boer et al. 2005; Roman�ı et al. 2006). The relation-
ship uncovered between bacteria and symbiotic fungi could be
attributed to the fact that bacteria can assist mycorrhiza by
colonising the extraradical hyphae or by living in the cyto-
plasm of mycorrhizal fungi (Bonfante & Anca 2009; Haq
et al. 2014). We did not observe direct relationship between
bacteria and plants, probably because we lumped together
bacterial taxa typical from the bulk soil (e.g. acidobacteria)
with those interacting with plants (e.g. N-fixing bacteria or
pathogens). A better functional assignment of bacterial OTUs
would probably help to clarify this identified relationship
likely due to mutualistic bacterial OTUs.
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Figure 3 Properties of the inferred network. The degree (left panel) is the number of neighbours of nodes in a graph (here, the undirected partial

correlation network). It measures the number of variables that are conditionally dependent on the variable associated with this node. The weighted degree

(right panel) is the sum of the partial correlation coefficients attached to the edges adjacent to this node. Dashed lines represent the mean values of degree

and weighted degree.
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CONCLUSIONS

The rise of environmental DNA metabarcoding and the ever-
increasing availability of databases on species co-occurrence
have opened up a new era in quantitative and predictive ecol-
ogy. While comprehensive species lists of taxa are necessary,
they do tell much on how species interact across space and time
and how multi-trophic interactions shape community assem-
bly. The method we proposed here addresses this challenge by
revealing how trophic groups influence each other and respond
to environmental variation. As such, our method is able to
uncover the potential determinants of the compositional turn-
over of species groups from amulti-trophic interaction perspec-
tive. This paves the way for larger applications of this method
to ecological data where comprehensive biodiversity assess-
ments are becoming more and more available and where knowl-
edge of the structure of the system is still limited.
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