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Abstract

Describing how ecological interactions change over space and time and how they are shaped by
environmental conditions is crucial to understand and predict ecosystem trajectories. However, it
requires having an appropriate framework to measure network diversity locally, regionally and
between samples (a-, c- and b-diversity). Here, we propose a unifying framework that builds on
Hill numbers and accounts both for the probabilistic nature of biotic interactions and the abun-
dances of species or groups. We emphasise the importance of analysing network diversity across
different species aggregation levels (e.g. from species to trophic groups) to get a better understand-
ing of network structure. We illustrate our framework with a simulation experiment and an empir-
ical analysis using a global food-web database. We discuss further usages of the framework and
show how it responds to recent calls on comparing ecological networks and analysing their varia-
tion across environmental gradients and time.
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INTRODUCTION

Since the pioneering work of Humboldt (von Humboldt
1805), understanding the patterns of biodiversity across space
and time has been a question central to both biogeography
and community ecology (Gaston 2003). The recent upsurge of
large-scale databases has made possible to produce compre-
hensive syntheses of biodiversity patterns (Belmaker et al.
2012; Mazel et al. 2017) by analysing local assemblages on the
one hand (a-diversity, Hawkins et al. 2003). and composition
turnover between such assemblages on the other (b-diversity,
Mazel et al. 2017). A plethora of diversity indices and unify-
ing frameworks have thus been proposed to partition biodi-
versity into a- and b-diversity components (Whittaker 1960;
Routledge 1979; Ellison 2010; Chao et al. 2014b; Chao &
Chiu 2016). However, not only does biodiversity reflect spe-
cies coexistence but also the trophic and non-trophic interac-
tions that link them to one another (K�efi et al. 2016). The
development of the trophic theory of island biogeography
(Gravel et al. 2011; Massol et al. 2017) has recently paved the
way for a new biogeography synthesis by accounting for
trophic interactions in theoretical predictions of biodiversity
patterns. Similarly, empiricists do not only investigate species
distribution patterns but also analyse how ecological interac-
tions (i.e. ecological networks) vary over space and time (Pel-
lissier et al. 2017; Tylianakis & Morris 2017). To this aim, the
metanetwork concept generalises the regional species-pool of
classic community ecology by adding to this representation of
biodiversity the potential trophic and non-trophic interactions

between species (Dunne 2006: K�efi et al. 2016) at a regional
scale. Thus, in the same way local assemblages are conceptu-
alised as subsets of a regional species pool, local ecological
networks are realisations of a subset of the regional metanet-
work. This opens new perspectives in understanding the pro-
cesses that shape the distribution of biodiversity in space and
time. For instance, mapping, describing and comparing eco-
logical networks along environmental or disturbance gradients
are the first steps of a fascinating era to understand the organ-
isation of life on Earth (Pellissier et al. 2017) and its effects
on ecosystem functioning and associated services (Brose &
Hillebrand 2016). The realisation, the frequency and the inten-
sity of interactions within networks across space and time are
driven by the compositional turnover of species or groups of
species, changes in their abundances, their plasticity or beha-
vioural variations, and finally by the environmental con-
straints on biotic interactions. Any of these variations may
have direct or indirect consequences on ecosystem functioning
(Barnes et al. 2014). Such knowledge would thus help not
only to improve our understanding of multi-trophic assem-
blages and their influence on ecosystem functioning but also
to help build a more robust predictive ecology at the interface
between trophic ecology, community ecology and ecosystem
ecology (Thompson et al. 2012).
There is thus a strong need to develop a framework to

understand the structure and composition of ecological net-
works across spatial and temporal scales and along environ-
mental gradients (Pellissier et al. 2017). To date, such a
framework remains hampered by several issues.
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First, no appropriate diversity measure is available to
describe the diversity of ecological networks, and partition it
into a, b and c components, that would account for both spe-
cies abundances and the probabilistic nature of interactions,
and that would relate to existing frameworks in biogeography
or community ecology (Pellissier et al. 2017). Recent years
have seen a prolific development of frameworks to measure
diversity at both the taxonomic (Jost 2007; Ellison 2010; Chao
& Chiu 2016) and phylogenetic or trait levels (Chao et al.
2014a; Tucker et al. 2016). These indices need to satisfy four
mathematical properties (see Jost 2010): (1) a and b should be
mathematically unrelated; (2) a, b and c should be effective
numbers (this enables to interpret a given measure of diversity
in terms of the diversity of an evenly distributed community
and therefore guarantees the comparability of diversity mea-
sures); (3) c should be completely determined by a and b; (4)
a cannot be larger than c. A fifth additional practical prop-
erty of b-diversity, invariance under shattering (Reeve et al.
2014) assumes that each community represents a portion of
the geographical space. This assumption implies that if a com-
munity is split into two and the abundances of the two result-
ing communities are equal, then the b-diversity of the overall
metacommunity should not change. The framework recently
proposed by Reeve et al. (2014) satisfies each of these funda-
mental properties (only when similarities between species are
not considered) while Jost’s framework satisfies the first four
properties, and the fifth only for some particular cases. These
indices are based on Hill numbers (Hill 1973), which are
derived from R�enyi’s entropy (R�enyi 1961) and have enabled
a generalisation of the well-established diversity measures such
as the Shannon entropy or the Simpson diversity index. An
additional and interesting feature of Hill numbers is the intro-
duction of a viewpoint parameter linked to the weight given to
dominant vs. rare species onto assembly rules (Chalmandrier
et al. 2015). While this framework could potentially be very
useful for ecological networks, it is not yet applicable. So far,
the few network-specific metrics are built on graph theory,
with the aim to summarise the structure of a network through
a single quantity (Poisot et al. 2012, 2016; Pellissier et al.
2017) – but none of them satisfy the five requirements listed
above, nor are they able to manipulate species abundances or
the probability of a given interaction occurring.
Second, diversity metrics depend on the way individuals are

aggregated into larger groups (e.g. species, guilds, functional
groups). In trophic networks, species can be aggregated based
on their equivalent roles. Indeed, species richness or taxonomic
turnover do not reveal much on how assemblages are truly
structured in terms of resource exploitation, niche partitioning
and co-existence mechanisms (Thompson et al. 2012), whereas
functional or trophic groups enable to encapsulate more of the
underlying ecological processes. In this respect, insights from
graph theory (Luczkovich et al. 2003) and random models of
networks (Group model, Allesina & Pascual 2009 or stochastic
block model, Newman & Leicht 2007) have helped to mathemat-
ically formalise equivalence relationships between species using
the topology of the ecological network alone. However, aggre-
gating species in trophic or functional groups is often challeng-
ing (e.g. choosing an optimal number of groups) and there is no
way of knowing whether a given grouping will provide a better

understanding of the diversity pattern than others. To address
this issue, we believe it is necessary to describe and analyze pat-
terns at different levels of species aggregation, as is now done in
community phylogenetic analyses (Chalmandrier et al. 2015;
Graham et al. 2018). In fact, analyses of ecological networks
diversity (a, b, c) should be carried out along a profile of species
aggregation levels, ranging from characterising all species (their
abundances, the abundance of their links and their probability
of interactions, hereafter named the microscopic scale), to vari-
ous species aggregation levels (hereafter coined the mesoscopic
scale) until the macroscopic scale, represented by the single value
of connectance (the probability of interaction between any two
species). This multi-scale approach should provide novel insights
to understand the processes that shape ecological networks. To
overcome these limitations, we introduce a novel framework
that allows measuring a, b, and c diversities of ecological net-
works and combines Hill numbers (Hill 1973; Jost 2006; Chao &
Chiu 2016) with different species aggregation levels. First, we
build on the existing mathematical frameworks to derive new
indices for ecological network diversity, which we partition into
a, b, and c components. We then demonstrate that existing net-
work diversity indices (Bersier et al. 2002; Poisot et al. 2012,
2016) are particular cases of the proposed unified framework.
We further extend our framework so it can be used across multi-
ple levels of species aggregation. We then apply this framework
to an intercontinental data set of stream water trophic networks
(Thompson & Townsend 2003) and show that the drivers of the
dissimlarity of ecological networks vary with the level of species
aggregation. We finally provide an implementation of the frame-
work in the R package econetwork available on CRAN (https://
cran.r-project.org), guidelines for the interpretation of the
results, and recommendations for the analyses of networks
across space and time.

DIVERSITY FOR A SINGLE NETWORK

For the sake of simplicity, we first introduce the formalism
behind our new indices with a single trophic network. We
then generalise the framework to the case of a metanetwork,
and provide the details and mathematical proofs in the
Supporting Information.

A probabilistic model of interaction networks

We propose a generic model of ecological networks that con-
siders both species abundances and the probabilities of inter-
action between species. It is an extension of the probabilistic
network model (Poisot et al. 2016) with the additional prop-
erty that it accounts for species abundances.
We consider a given region that contains individuals belong-

ing to n different species with relative abundances
p ¼ ðp1; . . .; pnÞ. pq represents the probability of picking an
individual of species q. We also assume that the probability of
interaction between two individuals of species q and l follows
a Bernoulli law of parameter pql. This allows to account for
the potential variability on the realisation of an interaction
event at the individual level (Albert et al. 2010; Gonzalez-
Varo & Traveset 2016). We also assume that all interactions
occur independently. We represent this regional model using a
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weighted network G, with pq the relative abundance of the
node Vq, and pql the weight of the link ðVq; VlÞ (Π is the adja-
cency matrix of G, see Table 1). The probability of picking a
link that connects two individuals of species q and l is thus:

Lql ¼ Prði ! j; i 2 q; j 2 lÞ ð1Þ
Lql ¼ pqlpqpl ð2Þ
where

pql ¼ Prði ! jji 2 q; j 2 lÞ ð3Þ
If this model represents the most complete case of a single net-
work (abundances on nodes and weights on links), simpler cases
can easily be derived by omitting the weights on links (i.e. for
binary networks, pql is either 0 or 1) or the abundances of nodes
(i.e. assuming evenly distributed species abundances).

Navigating across species aggregation levels

We initially described the probabilistic network model at a spe-
cies level. However, species can have similar positions, roles
(e.g. Eltonian niche, Elton 1927) or functions (Lindeman 1942;
Lavorel & Garnier 2002; Luck et al. 2012), leading to inflated
or deflated estimates with respect to functional diversity. It is
thus crucial to represent and analyze the diversity of ecological
networks at different aggregation levels, by grouping species
into larger and more relevant entities. Here, we propose to use
mathematical methods that group nodes using the topology of
the ecological network without any prior knowledge (see Sup-
porting Information for a brief review of these methods).
Assuming that we have established Q groups ðC1; . . .;CQÞ

from the previous network (Q ≤ n), we can represent the net-
work at a coarser resolution (Fig. 1, mesoscopic scale), called
the image network (Luczkovich et al. 2003; Allesina & Pas-
cual 2009). The new set of nodes is ~V ¼ ð ~V1; . . .; ~VQÞ and
each node is assigned a weight ~pq that corresponds to the
abundance of the group q.

~pq ¼
X
k2Cq

pk ð4Þ

Similarly, each link of the image network is assigned a weight
~pql that corresponds to the probability of interaction between
individuals from classes Cq and Cl.

~pql ¼

P
k2Cq;k02Cl

pkk0pkpk0P
k2Cq

pk
P
k02Cl

pk0
ð5Þ

The link abundances between individuals of classes q and l,
~Lql thus equates to:

~Lql ¼
X

k2Cq;k02Cl

pkk0pkpk0 ð6Þ

We thus define the scale of the image network considered as:

s ¼ Q

n
ð7Þ

If s = 1, the network is considered at a microscopic scale (the
image network corresponds to the original one). If s ¼ 1

n,
the network is considered at a macroscopic scale. In this case,
the image network is then made of a single node (with

Table 1 Notations, name of the different indices and ranges of values

Object Name Total margin

p Vector of relative group

abundances

P
1� q�Q pq ¼ 1

L Matrix of link abundances
P

1� q;l�Q Lql ¼ C

Π Matrix of link probabilities

(adjacency matrix of the

weighted network)

P
1� q;l�Q pql

P Matrix of group abundances of

groups (metanetwork case)

PQ
q¼1

PK
k¼1 Pqk ¼ K

L Tensor of links abundances

(metanetwork case)

PQ
q;l¼1

PK
k¼1 Lqlk ¼ PK

k¼1 Ck

Π Tensor of link probabilities

(metanetwork case)

PQ
q;l¼1

PK
k¼1 pqlk

Diversity

index Name & interpretation Range

a-diversity Ag
P Overall a-diversity in group

abundances

Average diversity in group

abundances across local networks

1 � Ag
P � Q

Ag
L Overall a-diversity in link

abundances

Average diversity in link

abundances across local networks

1 � Ag
P � NL

Ag
P Overall a-diversity in link

probabilities

Average diversity in link

probabilities across local network

1 � Ag
P � NL

c-diversity Gg
P c-diversity in group abundances

Diversity in group abundances of

the metanetwork

1 � Gg
P � Q

Gg
L c-diversity in link abundances

Diversity in link abundances of the

metanetwork

1 � Gg
L � NL

Gg
P c-diversity in link probabilities

Diversity in link probabilities of

the metanetwork

1 � Gg
P � NL

b-diversity Bg
P b-diversity of group abundances

Effective numbers of distinct

communities of groups

1 � Bg
P � K

Bg
L b-diversity of link abundances

Effective numbers of distinct

networks

1 � Bg
L � K

Bg
P b-diversity of link probabilities

Effective numbers of distinct

networks (with abundances

rescaled at evenly distributed

values)

1 � Bg
P � K

dissimilarity dgP Dissimilarity of group abundances

Effective average proportion of

shared groups

0 � dgP � 1

dgL Dissimilarity of link abundances

Effective average proportion of

shared links

0 � dgL � 1

dgP Dissimilarity of link probabilities

Effective average proportion of

shared links (with abundances

rescaled at evenly distributed

values)

0 � dgP � 1

Notes. C is the connectance of the considered network, Q is the number

of groups of the considered metanetwork and NL its number of different

links and Ck is the connectance of the local network k.
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abundance 1, the sum of species relative abundances) and a
single link. The weight of this link represents the probability
that any two nodes of the original networks are connected
and is, consequently, the connectance of the original network.

C ¼
X

1� q;l� n

pqlpqpl ð8Þ

If 1
n \ s\ 1, the network is considered at a mesoscopic scale.

Measuring diversity at different species aggregation levels

For a community vector p ¼ ðp1; . . .; pQÞ, the Hill number of
order g is defined as:

DgðpÞ ¼
XQ
i¼1

pgi

 ! 1
1�g

;g� 0;g 6¼ 1 ð9Þ

This number ranges between 1 and Q (Table 1), and translates
into an effective number of groups (which can be species or
group of species i.e., we define diversity indices on the image
network while keeping the notations of the original one for
the sake of simplicity). A Hill measure of D hence means that
the system holds a diversity equivalent to a system made of D
equally distributed groups. g is considered as a viewpoint
parameter that modulates the weight given to group abun-
dances. When g = 0, all groups equally contribute to the

index and D0 is the richness of groups. For g = 1, eqn 8 is
not defined but it converges towards the exponential of the
Shannon entropy :

D1ðpÞ ¼ lim
g!1

DgðpÞ ¼ exp
XQ
i¼1

�pilog pi

 !
ð10Þ

We propose to extend the use of Hill numbers to compute the
diversity in link abundances and the diversity in link probabil-
ities between groups. More precisely, we measure the entropy
of the random variable associated to the experience: ‘A link is
drawn uniformly in the network, what is the label of this link
(the label is defined by the identity of the two groups that are
connected by the link)’. Assuming that L is the matrix of link
abundances, the diversity in link abundances is:

DgðLÞ ¼
X

1� q;l�Q

Lql

C

� �g
 ! 1

1�g

ð11Þ

where C ¼ P
1� q;l�Q Lql. Similarly, assuming that Π is the

adjacency matrix of the image graph, the diversity in link
probabilities is defined as:

DgðPÞ ¼
X

1� q;l�Q

pql
pþþ

� �g
 ! 1

1�g

ð12Þ

where pþþ ¼ P
1� q;l�Q pql.

Figure 1 Navigating through species aggregation levels. From the original weighted network to image networks at mesoscopic and macroscopic scales, with

the formulas giving the group abundances and link probabilities of the image networks.
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DgðPÞ is unrelated to DgðpÞ (sensu Chao & Chiu 2016),
since the value of one of this measure does not constrain the
value of the other. When g = 0, it measures the number of
links of the image network. When g ? 1, it converges
towards the exponential of the Shannon entropy of the proba-
bility of links (Bersier et al. 2002)
Both group abundances and the interaction probabilities

determine the range of values of DgðLÞ which are therefore
related. These last two indices translate into an effective num-
bers of links, either weighted ðDgðLÞ) or not (DgðPÞ) by the
group abundances. Note that (DgðPÞ) could be used in stud-
ies where groups have different relative abundances, but these
are not important in the analysis.

DIVERSITY FOR A METANETWORK

Measuring a-, b- and c-diversity at different species aggregation

levels

Mirroring the single network case, we propose to analyze the
diversity of the metanetwork and its local realisations through
different species aggregation levels. Importantly, we assume
that any grouping is defined on the metanetwork. We thus
define a-, b- and c-diversity measures on the set of local net-
works and on the metanetwork at different species aggregation
levels. We measure the diversity of group abundances, link
abundances and link probabilities using Hill numbers. We
extend the framework presented in Chao & Chiu 2016 since it
satisfies the first four properties listed in the introduction and
elegantly link the variance and decomposition perspective on
b-diversity (see Chao & Chiu 2016 for details). For the sake of
simplicity, we present the case g ? 1 (and therefore omit the
exponent in the indices). The general case is presented in Sup-
porting Information, together with our framework as an exten-
sion of Jost’s and Reeve’s framework and the mathematical
links between the existing network diversity indices and the
proposed unified framework. The proposed indices can be
applied in several subcases (Fig. 2). We use the same proba-
bilistic network model as presented before. The metanetwork
is thus a weighted network, divided in K local networks (see
Table 1 for notations and total margins).

a-diversity

For each local network, the a diversity is computed using Hill
numbers (for g ? 1, it converges towards Shannon entropy).
The overall a-diversity of groups across local networks is:

AP ¼ exp
XQ
q¼1

XK
k¼1

� Pqk

Pþþ
log

Pqk

Pþþ

� �
� logðKÞ

 !
ð13Þ

where Pþþ ¼ P
1� k�K

P
1� q�Q

Pqk.

This is the mean equivalent number of groups across local
networks. Similarly, the overall a-diversities in link abun-
dances and link probabilities are equal to:

AL ¼ exp
XQ
q;l¼1

XK
k¼1

� Lqlk

Lþþþ
log

Lqlk

Lþþþ

� �
� logðKÞ

 !
ð14Þ

where Lþþþ ¼ P
1� k�K

P
1� q;l�Q Lqlk.

AP ¼ exp
XQ
q;l¼1

XK
k¼1

� pqlk
pþþþ

log
pqlk
pþþþ

� �
� logðKÞ

 !
ð15Þ

where Pþþþ ¼ P
1� k�K

P
1� q;l�Q pqlk.

c-diversity

The c-diversity of group abundances is defined as:

GP ¼ exp
XQ
q¼1

� Pqþ
Pþþ

log
Pqþ
Pþþ

� � !
ð16Þ

where Pqþ ¼ P
1� k�K Pqk. This corresponds to the equiva-

lent number of groups in the metanetwork. The c-diversity of
the link abundances is defined as:

GL ¼ exp
XQ
q;l¼1

� Lqlþ
Lþþþ

log
Lqlþ
Lþþþ

� � !
ð17Þ

where Lqlþ ¼ P
1� k�K

Lqlk.

This corresponds to the equivalent number of links in the
metanetwork. The c-diversity in link probabilities is defined as:

GP ¼ exp
XQ
q;l¼1

� pqlþ
pþþþ

log
pqlþ
pþþþ

� � !
ð18Þ

where Pqlþ ¼ P
1� k�K

pqlk. This corresponds to the equivalent

number of links in a network that contains the same probabil-
ities of links as in the metanetwork, but where the relative
abundances of groups are arbitrarily considered evenly dis-
tributed.

b-diversity and dissimilarity measures

The overall b-diversity can be calculated in group abundances,
link abundances and link probabilities. The b-diversity in
groups abundance is equal to:

BP ¼ GP

AP
ð19Þ

This is the effective number of equally large and completely
distinct communities of groups. It represents how many com-
pletely distinct communities of groups are present in the set of
networks. The b-diversity in link abundances is equal to:

BL ¼ GL

AL
ð20Þ

This is the effective number of equally large and completely
distinct networks i.e., the number of networks made of dis-
tinct links across the considered region. The b-diversity in link
probabilities is equal to:

BP ¼ GP

AP
ð21Þ

This translates to an effective number of equally large and
completely distinct networks where group abundances would
have arbitrarily been considered equal.
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Overlap measures can be built from b-diversity to obtain
dissimilarity measures (Jost 2007, 2010; Chao & Chiu 2016).
A class of parameterised Sorensen’s based dissimilarity mea-
sures can be defined as non-linear transformation of b-diver-
sity. When g = 1, it equals to the Horn dissimilarity index
(the general case is presented in Supporting Information).

dP ¼ logðGPÞ � logðAPÞ
logK

ð22Þ

dL ¼ logðGLÞ � logðALÞ
logK

ð23Þ

dP ¼ logðGPÞ � logðAPÞ
logK

ð24Þ

These measures quantify the effective average proportion of
shared groups/links/probability of links across networks and
range between 0 and 1.
The framework is implemented in the R package econetwork

available on CRAN (https://www.cran.r-project.org).

APPLICATION TO A CASE STUDY: WHEN THE

AGGREGATION LEVEL REVERSES THE ASSESSMENT

OF THE DRIVERS OF NETWORK DISSIMILARITY

Here, we re-analysed a data set used in Thompson & Town-
send (2003). Using groups built a priori with three trophic
levels, the authors concluded that stream water networks sur-
rounded by pine or tussock grassland in New Zealand differ

in their structure at a mesoscopic level. They attributed this
change of structure to differences of energy supply in the two
systems. We proposed to extend this analysis to the entire
dataset [ten stream water trophic networks sampled in the
United States of America (USA hereafter) and New Zealand
surrounded either by pines or not (Table 1)] using our novel
framework together with trophic groups built using the topol-
ogy of the metanetwork (Allesina & Pascual 2009; Gauzens
et al. 2015). We hypothesised that at a species level, geo-
graphic location should have a major impact on network dis-
similarity due to the different biogeographical histories of the
two continents (e.g. dispersal limitation that leads to small
species overlap, different life history traits due to different
environmental constraints), whereas at a trophic group level,
vegetation should have much more impact due to energy sup-
ply provided by the riparian vegetation (e.g. vegetation types
select for certain groups of species and network structure,
which is not discernible at a species level).
The data set consists of ten stream water trophic networks

sampled in the USA and New Zealand (Thompson & Town-
send 2003, https://www.nceas.ucsb.edu/interactionweb/resourc
es.html#predator_prey, Fig. S1). The riparian vegetation of
the American networks is a native species of pine, Pinus stro-
bus. Two of the New Zealand networks are surrounded by
planted pines, Pinus radiata (Table 2). All other networks in
New Zealand are surrounded by bush and tussock. The net-
works contain species of algae, invertebrates and fishes. We

(a) (b)

(c) (d)

Figure 2 The metanetwork and the local realised networks in different cases: (a) binary network, unweighted links and without node abundances, (b) node

abundances but absence of links, (c) weights on links but no node abundances and (d) weights and links and node abundances. The different indices to

measure a-, b- and c-diversity are associated to each particular case and presented more generally in Table 1.
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kept only the largest connected component of the metanet-
work (Fig. S2). It contains 532 species and has a connectance
value of 0.01.
To work at the mesoscale, we first determined the most rele-

vant trophic groups using the stochastic block model imple-
mented in the R package ‘mixer’ (Daudin et al. 2008). The
optimal number of groups, 14, was identified using an infor-
mation criterion (for simplicity we only used the optimal num-
ber of groups, but could have navigated through a wider
range of aggregation levels). Therefore, the scale used to anal-
yse the mesoscopic network dissimilarity is 14/532. We there-
after computed the dissimilarity matrices of link and group
abundances at the microscopic and mesoscopic scales (using
pairwise dgL at two different aggregation levels) and the dissim-
ilarity matrix of groups (using pairwise dgP at two different
aggregation levels) along a profile of weights attributed to

abundant groups or links by varying the values of g. We then
assessed the influence of the riparian vegetation (presence/ab-
sence of pine trees) and the location (USA or New Zealand)
on the four dissimilarity matrices per value of g using ANO-
SIM (Clarke 1993) for both covariates (location and riparian
vegetation) along the range of g values. (Fig. 3).
These analyses revealed that at a microscopic scale, the pair-

wise dissimilarities of both group and link abundances (dgP and
dgL) are best explained by the geographic location. At the meso-
scopic scale, however, the riparian vegetation was the variable
that best explains both the dissimilarity of group and link abun-
dances for medium to high values of g (g > 0.35 for the groups
dissimilarity and g > 0.15 for the links dissimilarity).
Since New Zealand and the USA have drastically different

biogeographical histories, they have very few species in com-
mon (New Zealand and USA streams share, for example,
almost no invertebrate species, Thompson & Townsend 2003).
Consequently, the location is indeed expected to be a more
powerful explanatory variable of the species dissimilarity (i.e.
dgP at a microscpic scale). Moreover, given that species turn-
over is partially responsible for the links turnover (i.e dgL at a
microscpic scale), the latter is also expected to be predomi-
nantly explained by the location. Studying dgP and dgL at a
mesoscopic scale allows to look beyond species turnover, and
accounts for the role of the riparian vegetation in diversity,
both for the group abundances and the link abundances.
Importantly, riparian vegetation best explains group and link
dissimilarities for medium to high values of g. So, the abun-
dances of the largest trophic groups and the links between
these groups are shaped by the riparian vegetation whereas

Table 2 The set of trophic networks and the covariates (adapted from

Thompson & Townsend 2003)

Location Site Vegetation

Maine (USA) Troy Pinus strobus

Maine (USA) Martins Pinus strobus

North Carolina (USA) Herlzler Pinus strobus

North Carolina (USA) Cooper Pinus strobus

New Zealand Venlaw Pinus radiata

New Zealand Berwick Pinus radiata

New Zealand North col Native bush

New Zealand Powder Native bush

New Zealand Trib C Tussock

New Zealand Sutton Tussock

(a) (b)

(c) (d)

Figure 3 Assessing the drivers of dissimilarity in group abundances and link abundances at different species aggregation levels. Relative importance

(ANOSIM statistic) of the location vs. the riparian vegetation regarding the (a) microscopic pairwise dissimilarity in groups abundances (dgP at a

microscopic scale) (b) microscopic pairwise b-diversity in link abundances (dgL at a microscopic scale) (c) mesoscopic pairwise dissimilairty in group

abundances (dgP at a mesoscopic scale) (d). mesoscopic pairwise dissimilarity in link abundances (dgL at a mesoscopic scale) across a range of g values (i.e

the viewpoint parameter controlling the weight given to entities (group abundances or link abundances) in the measure of the dissimilarity).
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their presence (i.e. while omitting their abundances) is
explained by the location.

DISCUSSION

Diversity indices aim to describe and quantify the structure of
ecological communities across space and time. There is cur-
rently a paradigm shift in the representation of a community,
from a species assemblage to an interaction network (Thomp-
son et al. 2012; Pellissier et al. 2017; Tylianakis & Morris
2017). While deciding which species belong to a community is
made easier using a network representation of biodiversity
(since a community is no more than a connected network),
measuring and partitioning the diversity of these interaction
networks is much more complex (Poisot et al. 2016; Pellissier
et al. 2017). Diversity indices using Hill numbers provide a
robust framework when ignoring interactions, as it gradually
takes into account species abundances and satisfies theoretical
properties. To be generic enough and to embrace the complex-
ity of natural systems, these indices should take into account
species abundances and the probabilistic nature of biotic
interactions, while unifying the existing diversity frameworks.
Moreover, they should be able to measure diversity at differ-
ent species aggregation levels, so as to not inflate diversity
indices or overestimate link turnover. In this paper, we
defined a set of diversity indices that address each of these

requirements. The proposed framework is a generalisation of
the Hill numbers to measure a-, b- and c-diversity in link
abundances and link probabilities. By doing so, we have
extended the existing indices of network diversity (e.g. Poisot
et al. 2012), while benefiting from key properties of Hill num-
bers. In other words, using this single framework on a single
data set would enable one to not only investigate traditional
relationships between species richness and energy as well as
understand the compositional turnover across space, but also
explore further by deciphering how variations in species abun-
dance, probability of interactions and environmental gradients
influence ecological networks.
The proposed framework is based on a probabilistic model

of networks where parameters are species abundances and
probabilities of interaction between species or groups of spe-
cies. Consequently, it represents interactions as a random
event rather than a deterministic event, thus assuming a plas-
ticity of interactions at an individual level. While this consti-
tutes an appealing representation from a theoretical
standpoint, empirical datasets of interaction networks are
often binary and lack abundance estimates. Binary networks
constitute particular cases of our framework, that then con-
nect with existing frameworks (Poisot et al. 2012). Our frame-
work can also be applied to any weighted network (i.e.
network containing interaction strength) even if the weights
do not strictly represent a probability of interaction. The

(a)

(b)

(c)

(d)

Figure 4 Reconciling two perspectives in ecological network analyses. Here, we represent the key questions, seminal studies and underlying hypotheses

usually considered in studies of ecological networks, and our specific indices for investigating them. (a) Studying the structure of a local network. (b)

Studying the structure of a network where species have been aggregated in meaningful groups (trophic groups in the case of trophic networks). (c)

Studying how networks vary in space and time. (d) Studying how networks change in space and time at various aggregation levels (trophic groups in the

case of trophic networks). (meso) means the diversity indices are computed at a mesoscopic scale.

© 2019 John Wiley & Sons Ltd/CNRS

744 M. Ohlmann et al. Method



viewpoint parameter g can then be used to modulate the
weight given to interaction strength when assessing network
diversity. The proposed diversity indices are based on Hill
numbers that satisfy properties regarding group abundances
but also link abundances. This is a fundamental condition to
describe adequately network diversity over space and time
and to build a robust spatial network ecology.
Additionally, our framework allows to compute diversity

indices at different species aggregation levels (Fig. 4). In this
paper, we have focused on methods that aggregate species based
on the topology of the metanetwork (regular equivalence and
stochastic block modelling). These methods aim to form trophic
groups (Gauzens et al. 2015) and, in the general case, reduce
the complexity of the network (i.e. the number of nodes) while
preserving the overall structure. Grouping species using ecologi-
cal and expert knowledge and computing diversity indices is
possible using the developed framework. In this latter case,
however, there is no guarantee that the structure of the image
network will reflect the structure of the original network (Alle-
sina & Pascual 2009; Gauzens et al. 2015; Leger et al. 2015).
Whatever the clustering method used, the image network

can be viewed as a map at a coarser resolution than the origi-
nal species network. A map which, depending on the method
used, summarises faithfully the structure of the original net-
work. Importantly, it changes the assessment of link turnover.
Indeed, what appears as link turnover at a species level could
disappear at a group level, provided that the species consid-
ered belong to the same group. In other words, network
diversity patterns depend on the aggregation level we choose
to study the network. This introduces a new notion of scale in
the analysis of ecological networks and adds to the spatial
and temporal scale used to describe network biogeographic
patterns (Fig. 4). Studies aiming to describe network biogeog-
raphy have so far mostly described macroscopic (i.e. con-
nectance, Thompson & Townsend 2003) or microscopic (link
turnover at a species level, Poisot et al. 2012, 2016; Carstensen
et al. 2014; CaraDonna et al. 2017) scale patterns and occa-
sionally mesoscopic scale using a priori groups based on the
trophic level concept (Thompson & Townsend 2003). Statisti-
cal methods, such as the stochastic block model and regular
equivalence, allow to select an optimal number of groups to
cluster the nodes of a network, thus defining an appropriate
scale to study network diversity when no ecological knowl-
edge is available for the species described in the network. As
shown by the case study, network diversity can be shaped by
different ecological processes depending on the aggregation
level considered, in the same way that species diversity is
shaped by different processes depending on the spatial and
aggregation level considered (M€unkem€uller et al. 2014). This
encourages to study network diversity at micro-, macroscopic
scale and along a profile of mesoscopic scales (i.e. by changing
gradually the number of groups of the image network) to
study the processes that govern network structure across
space. Indeed, given that some empirical evidence suggests
that network structure might be random at a species level
(CaraDonna et al. 2017), one purpose of aggregating species
into equivalent groups is to investigate beyond the stochastic
plasticity of biotic interactions. For example, the simulation
(Supporting Information) suggests a stochastic plasticity at a

species level but not at a group level since the image network
is fixed at a given point of the ecological gradient. We
hypothesise that, in the real world, there is an aggregation
level below which stochastic processes drive the patterns of
network diversity, and above which deterministic processes
(i.e. ecological processes) are the main drivers. This hypothesis
mirrors the use of the concept of emergent groups of organ-
isms to assess the contribution of niche and neutral theory to
community assembly (H�erault 2007).
Moreover, since ecological networks are now built using a

wide spectrum of organisms, especially microorganisms with
the advent of Next Generation Sequencing (Bohan et al.
2017) where the notion of species is hard to handle, using
indices that allow to understand network diversity through
different species aggregation levels will allow overcoming
issues in the definition of the biological entity.
We thus believe that this unified framework should now

pave the way for a better understanding of the spatial and
temporal structure of biodiversity while considering biotic
interactions. Indeed, it reconciles two perspectives on ecologi-
cal networks analysis while building the associated indices.
On the one hand, the study of how ecological processes
shape an isolated network (Fig. 4a) and how meaningful
groups can be derived from the topology of an ecological
network (Fig. 4b), and on the other hand how networks
vary across space and time (Fig. 4c). Importantly, it allows
testing key ecological hypotheses on the processes shaping
the spatial and temporal variation of ecological networks
(case study, Fig. 3), by varying different aspects of the net-
works (Fig. 4d). Consequently, it should foster the emer-
gence of spatial network ecology and allow the comparison,
analysis and partitioning of multiple ecological networks,
from the local community to the global metacommunity they
are a part of, while considering various definitions of the
organisms involved.
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