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A B S T R A C T

Separating environmental effects from those of interspecific interactions on species distributions has always
been a central objective of community ecology. Despite years of effort in analysing patterns of species co-
occurrences and the developments of sophisticated tools, we are still unable to address this major objective. A
key reason is that the wealth of ecological knowledge is not sufficiently harnessed in current statistical models,
notably the knowledge on interspecific interactions.

Here, we develop ELGRIN, a statistical model that simultaneously combines knowledge on interspecific
interactions (i.e, the metanetwork), environmental data and species occurrences to tease apart their relative
effects on species distributions. Instead of focusing on single effects of pairwise species interactions, which
have little sense in complex communities, ELGRIN contrasts the overall effect of species interactions to that
of the environment.

Using various simulated and empirical data, we demonstrate the suitability of ELGRIN to address the
objectives for various types of interspecific interactions like mutualism, competition and trophic interactions.
We then apply the model on vertebrate trophic networks in the European Alps to map the effect of biotic
interactions on species distributions. We find that altitude, species richness and connectance significantly
impact the overall effect of biotic interactions.

Data on ecological networks are everyday increasing and we believe the time is ripe to mobilise these
data to better understand biodiversity patterns. ELGRIN provides this opportunity to unravel how interspecific
interactions actually influence species distributions.
1. Introduction

Ecologists have always strived to understand the drivers of biodi-
versity patterns with the particular interest to tease apart the effects
of environment and biotic interactions on species distributions and
communities (Ricklefs, 2008; Thuiller et al., 2015; Chase and Leibold,

✩ Open Research statement: ELGRIN is implemented in the function elgrin of the R package econetwork available on the code repository https:
//plmlab.math.cnrs.fr/econetproject/econetwork and at CRAN (https://cran.r-project.org/). The simulation procedure can be reproduced with the Rmarkdown
vignettes available along with this manuscript and on the code repository. The vertebrate data from O’Connor et al. (2020) can be found at https://
datadryad.org/stash/dataset/doi:10.5061/dryad.bcc2fqz79. Climatic data were downloaded from the Worldclim v2 database (http://www.worldclim.org/bioclim)
as described in the Methods, section 2.4. Land cover data were downloaded from Global Land cover v2.2 (http://due.esrin.esa.int/page_globcover.php), net primary
productivity was downloaded from (https://sedac.ciesin.columbia.edu/data/set/hanpp-net-primary-productivity/data-download) and the human footprint index
was downloaded from http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic, searching for the latest version (V2 the time of the
article). Pre-processed data together with analysis scripts are available on the code repository.
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2003; de Candolle, 1855). Species distributions are influenced by the
abiotic environment (e.g. climate or soil properties) because of their
own physiological constraints that allow them or not to sustain viable
populations in specific environmental configurations (Austin, 2002;
Pulliam, 2000). However, the occurrence of a species in a given site
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is also influenced by other species through all sort of interactions that
can be trophic (e.g. a predator needs preys), non-trophic (e.g. plant
species need to be pollinated by insects) or competitive (two species
with the same requirements might exclude each other) (Guisan et al.,
2017; Gravel et al., 2019; Lortie et al., 2004; Soberón and Nakamura,
2009).

Teasing apart the effects of environmental variations and inter-
specific interactions on species distributions and communities from
observed co-occurrence patterns has always been a hot topic in ecology
since the earlier debate between Diamond (1975) and Connor and
Simberloff (1979), to the recent syntheses on the subject (Blanchet
et al., 2020). More than anything, with a few exceptions, and despite re-
cent advances like joint species distribution models (Ovaskainen et al.,
2017) or null model developments (Peres-Neto et al., 2001; Chalman-
drier et al., 2013), the conclusion has been that it is almost impossible
to retrieve and estimate interspecific interactions from observed spatial
patterns of species communities (Zurell et al., 2018; Blanchet et al.,
2020). This conclusion should thus preclude any attempt to disentangle
the relative effects of environment and interspecific interactions. A ma-
jor difficulty of this long-standing issue is that interspecific interactions
could be of any type (i.e. positive, negative, asymmetric) and that
observed patterns average out all these interactions. Observed commu-
nities indeed reflect the overall outcome of interspecific interactions
that is difficult to dissect, especially when analysing pairwise species
spatial associations as it is commonly done (e.g., Tikhonov et al., 2017)
. Yet, this overall outcome might be worth analysing on its own, for
instance to measure the overall strength of interspecific interactions in
a given community and between communities, how it depends on the
co-existing species, and how it varies in space.

Interestingly, so far there have been few attempts to integrate the
wealth of existing knowledge to address this fundamental ecological
issue (Blanchet et al., 2020; Holt, 2020). Indeed, the spatial analy-
sis of biotic interactions is gaining an increased interest with novel
technologies to measure interactions in the field (e.g. camera-traps, gut-
content), open databases (e.g. GLOBI, Mangal) and the developments
of new statistical tools to analyse them (Tylianakis and Morris, 2017;
Pellissier et al., 2018; Ohlmann et al., 2019; Botella et al., 2022).
The combination of expert knowledge, literature, available databases,
and phylogenetic hypotheses has also given rise to large metanetworks
that generalise the regional species-pool of community ecology by
incorporating the potential interactions between species from different
trophic levels along with their functional and phylogenetic character-
istics (Maiorano et al., 2020; Morales-Castilla et al., 2015). Despite a
few attempts (e.g., Staniczenko et al., 2017), information on interaction
networks has been poorly integrated to understand and model biodiver-
sity patterns. We believe that the time is ripe to incorporate network
information into the process of modelling species distributions and
communities. It implies to integrate both biotic and abiotic information
(and their spatial variations) as explanatory factors in statistical models
to weight their relative strength.

In this article, we propose a novel statistical model, called ELGRIN
(in reference to Charles Elton and Joseph Grinnell) that can handle
the effects of both environmental factors and known interspecific in-
teractions (aka a metanetwork) on species distributions. We rely on
Markov random fields (MRF, also called Gibbs distribution, e.g., Bré-
maud, 1999), a family of flexible models that can handle dependencies
between variables using a graph. More specifically, ELGRIN jointly
models the presence and absence of all species in a given area in
function of environmental covariates and the topological structure of
the known metanetwork (Fig. 1 left). It separates the interspecific
interaction effects (Fig. 1 top-right) from those of the environment
(Fig. 1 bottom-right) on species distributions. To our knowledge, EL-
GRIN is the first model whose outputs are the relative strengths of biotic
factors needed on top of abiotic environmental variables to shape the
2

species distributions and their spatial variation (see Latitude/Longitude
in Fig. 1 top-right). It thus provides a convenient way to integrate
network ecology in joint species community modelling.

In this article, we first present the overall modelling framework
and then assess its performances under different scenarios implying
data simulated using three different dynamic models. In other words,
although ELGRIN considers only static observational data (metaweb
and community data), we evaluated the model using simulated data
generated using different dynamic models that involve various underly-
ing processes, including intraspecific competition. We test the ability of
ELGRIN to decipher the relative importance of abiotic and interspecific
interactions in these difficult cases so as to better understand what kind
of signal ELGRIN can or cannot retrieve from the data. Finally, we apply
the model on vertebrate trophic networks in the European Alps as an
empirical study.

2. Material and methods

2.1. Species data and potential interactions

We consider a set of sites or locations indexed by 𝑙 ∈ {1,… , 𝐿},
where we observe the occurrence (presence/absence) of 𝑁 species and
also a set of environmental variables (vector 𝑊𝑙).

For the same set of 𝑁 species, we assume that we know all the pair-
wise interactions between them (e.g. who eats whom), an information
summarised with a graph 𝐺⋆ = (𝑉 ⋆, 𝐸⋆) over the set of nodes 𝑉 ⋆ =
{1,… , 𝑁} and edges 𝐸⋆. This graph, usually called a metanetwork,
summarises a regional pool of both species and interactions and can
be obtained by aggregating local networks at different locations or by
using expert knowledge and literature review (e.g., Cirtwill et al., 2019;
Maiorano et al., 2020). Note that various types of interactions can
be considered here (e.g., trophic, mutualism, competition). However,
while considering various interaction types is technically possible, the
interpretation of results would be difficult because in our framework,
𝐺⋆ records the presence of an interaction and not its type. An ad-
ditional note is that our model, like most species community models
(e.g. Joint species distribution models, ordination techniques) relying
on occurrence data, makes some assumptions about the ecological pro-
cesses structuring species assemblages. In our current implementation
of ELGRIN, we consider that only unimodal responses of species to
environmental gradients and interspecific interactions shape communi-
ties, ignoring other processes such as dispersal limitation or mass effect
for instance. Lastly, note also that our model supposes that the graph
associated to the metanetwork is undirected with no self-loops (see
model specifications below) and thus ignores intraspecific interactions.
Hereafter, we refer to co-present (or co-absent) species, pairs of species
that are connected in the metanetwork and jointly present (or absent,
respectively) at a given location.

2.2. The statistical model of ELGRIN

Model description The aim of ELGRIN model is to factorise the joint
species presence distribution between a Grinnellian part, that con-
sists in a regression on environmental covariables, and an Eltonian
part that quantifies association strengths between species distribution
according to the metanetwork. More formally, we consider a set of
random variables {𝑋𝑙

𝑖}𝑖∈𝑉 ⋆ taking values in {0, 1} and that represent
the presence/absence of species 𝑖 ∈ 𝑉 ⋆ at location 𝑙 ∈ {1,… , 𝐿}.
We rely on a Markov random field (see for instance Brémaud, 1999)
to model the dependencies between species occurrences at location
𝑙. This is a multivariate model that encodes statistical dependencies
between species distribution using a network. In our ELGRIN model,
these dependencies are encoded through the metanetwork 𝐺⋆. For each
location 𝑙 ∈ {1,… , 𝐿}, we thus assume that these random variables

are distributed according to a Gibbs distribution specifying the joint
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Fig. 1. Schematic view of ELGRIN statistical model. Given (a) an interaction metanetwork that summarises known interactions (edges) between species (nodes), (b) species
occurrences data and (c) environmental covariates for a set of sites, ELGRIN model estimates (d) the overall effect of known biotic interactions on species distributions in each
site using two association parameters, and (e) the environmental response of each species along all sites using regression parameters on environmental covariates.
associations between the species occurrence variables {𝑋𝑙
𝑖}𝑖∈𝑉 ⋆ , as

follows:

P({𝑋𝑙
𝑖}𝑖∈𝑉 ⋆ ) = 1

𝑍
exp

(

∑

𝑖∈𝑉 ⋆
[𝑎𝑙 + 𝑎𝑖 +𝑊 ⊺

𝑙 𝑏𝑖 + (𝑊 2
𝑙 )

⊺𝑐𝑖]𝑋𝑙
𝑖 (1a)

+ 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠
∑

(𝑖,𝑗)∈𝐸⋆
𝟏{𝑋𝑙

𝑗 = 𝑋𝑙
𝑖 = 1} (1b)

+ 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠
∑

(𝑖,𝑗)∈𝐸⋆
𝟏{𝑋𝑙

𝑗 = 𝑋𝑙
𝑖 = 0}

)

, (1c)

where 𝟏{𝐴} is the indicator function of event 𝐴 (either co-absence
𝑋𝑙

𝑗 = 𝑋𝑙
𝑖 = 0 or co-presence 𝑋𝑙

𝑗 = 𝑋𝑙
𝑖 = 1), notation 𝑈 ⊺ stands for the

transpose of vector 𝑈 and 𝑍 a normalising constant discussed below.
Some model parameters have an ecological interpretation (Table 1).
The use of 𝑊𝑙 and 𝑊 2

𝑙 (the vector of coordinate-wise squared values
of 𝑊𝑙) allows modelling a quadratic species response to environmental
gradient, following then a bell-shaped relationship as expected under
classical niche theory (Chase and Leibold, 2003).

Sub-Eq. (1a) is the Grinnellian part of ELGRIN, as it represents
some prior probability of species occurrences independently of their
interactions. Parameters 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 capture the response of species 𝑖 to en-
vironment, seen through a vector of environmental covariates 𝑊𝑙. The
intercepts 𝑎𝑖 and 𝑎𝑙 are estimated up to a constant only (see Appendix
S1: Section S.2.1) and may not be interpreted, whereas the vectors 𝑏𝑖, 𝑐𝑖
deal with the species environmental niche, like in a standard species
distribution model (Guisan et al., 2017).

Sub-Eqs. (1b) and (1c) form the Eltonian part of ELGRIN. It con-
siders only interactions (𝑖, 𝑗) ∈ 𝐸⋆, i.e. the edges of the metanet-
work. The 𝛽𝑙 represent the overall influence of the interactions (as en-
coded through 𝐺⋆) on all species presence/absence at location 𝑙. How-
ever, this influence may be different for co-presence and co-absence,
with parameters 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 respectively (see Table 2). When
a 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 is positive, it represents a positive driving force of co-
presence on species distributions. By contrast, a negative value indi-
3

cates that species co-presences are avoided. The same reasoning holds
with 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 for co-absences. Since the interaction parameter 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠
can also be influenced by co-absences between species that are both ab-
sent at location 𝑙 only because of unsuitable environmental conditions,
we introduced a compatibility matrix so that the effect of interactions
is only estimated in the environmental conditions where interacting
species could co-occur (details are given in Appendix S1: Section S.2.2).
Importantly, this compatibility matrix is estimated during the inference
procedure and is not a required input by the user.

Note that we chose the parameters 𝛽𝑙 to be specific to location
𝑙 ∈ {1,… , 𝐿} such that the effect of species interactions can vary across
space. Finally, 𝑍 is a normalising constant that cannot be computed
for combinatorial reasons, although the statistical inference procedure
takes care of it. Full details of the estimation procedure and parameter
identifiability are available in Appendix S1: Section S.3 and Appendix
S1: Section S.2.1, respectively.

Lastly, it is important to note two specificities of the metanetwork
𝐺⋆ in our modelling procedure: it cannot be directed nor contain self-
loops. Indeed, Markov random fields specify conditional dependencies
between random variables {𝑋𝑙

𝑖} in an undirected way, and self-loops
have no meaning in this framework. Our model assumes that these
dependencies are given by the interaction network without consid-
ering the direction of edges. Consequently, this statistical model of
interaction cannot be read in the light of causality. In case of trophic
interactions, it consists in assuming that presence/absence of a predator
and its prey are intertwined, without specifying top-down or bottom-
up control. Moreover, the absence of self-loops prevents from taking
into account intraspecific effects. These effects are simply ignored
by ELGRIN, as they are in any joint species distribution model or
ordination technique (see Appendix S1: Section S.6).

ELGRIN is implemented in C++ for efficiency and is available in the
function elgrin of the R package econetwork available on the code
repository https://plmlab.math.cnrs.fr/econetproject/econetwork and
at CRAN (https://cran.r-project.org/). We assessed the performance of
the method in inferring parameters from data sampled and re-sampled
under the model (see Appendix S1: Section S.4).

https://plmlab.math.cnrs.fr/econetproject/econetwork
https://cran.r-project.org/
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Table 1
Definition of variables and parameters of the Markov random field model ELGRIN.

Variables Ecological interpretation

𝐺⋆ Metanetwork of known interactions (undirected)
𝑉 ⋆ Species (node set) of the metanetwork
𝐸⋆ Interactions (edge set) of the metanetwork
𝑋𝑙

𝑖 Presence/absence of species 𝑖 at location 𝑙
𝑊𝑙 Environmental covariates at location 𝑙

Parameters

𝑎𝑖 Species 𝑖 intercept
𝑎𝑙 Location 𝑙 intercept
𝑏𝑖 , 𝑐𝑖 Environmental (abiotic) parameters of species 𝑖
𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 Co-presence strength (or avoidance when < 0) at location 𝑙
𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 Co-absence strength (or avoidance when < 0) at location 𝑙

Model interpretation In the hypothetical example where 𝐺⋆ is an empty
graph (no edges, none of the species interact), the random variables
{𝑋𝑙

𝑖}𝑖∈𝑉 ⋆ are independent and each species is present with probability
𝑒𝛼𝑖,𝑙∕(1+𝑒𝛼𝑖,𝑙 ) ∈ (0, 1), where 𝛼𝑖,𝑙 = 𝑎𝑙+𝑎𝑖+𝑊

⊺
𝑙 𝑏𝑖+(𝑊

2
𝑙 )

⊺𝑐𝑖. In other words,
𝛼𝑖,𝑙 is the logit of the probability of presence of species 𝑖 at location
𝑙 in the absence of interactions. Assuming that we have included all
important environmental covariates, that there is no other ecological
processes involved, and no model mis-specifications, 𝛼𝑖,𝑙 is analogous
to the fundamental niche parameters of the species (sensu Hutchinson,
1959). It gives the probability of presence of species 𝑖 at location 𝑙 when
only environmental filtering occurs.

In the case of species interactions, 𝐺⋆ is a non empty graph and
the presence/absence information is smoothed across neighbouring
nodes in 𝐺⋆. In Table 2, we detailed the ways both 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and
𝑙,𝑐𝑜−𝑎𝑏𝑠 parameters capture how the metanetwork influences species co-
ccurrences in a given location, notably the co-presence or co-absence
f pairs of interacting species. This table describes expected patterns of
pecies distribution according to the combination of positive, negative
nd zero values for the 𝛽 parameters. More precisely, when species
re known to interact positively (e.g. 𝐺⋆ encodes mutualism) and that
hese interactions, averaged over all species with suitable environ-
ental conditions at location 𝑙, influence their co-occurrences at that

ocation, 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and/or 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 will be estimated as positive. On the
ther hand, in case of negative interactions (e.g. 𝐺⋆ encodes compe-
ition) that influence the co-occurrences at location 𝑙 of species with
avourable environmental conditions, the parameters 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and/or
𝑙,𝑐𝑜−𝑎𝑏𝑠 will be negative, co-presence configurations (or co-absence,
espectively) tend to be avoided, meaning that only one of the two
pecies tends to be present. Given a location with fixed total number of
nteracting co-present (resp. interacting co-absent) species, the larger
he absolute value of 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 (resp. 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠), the stronger the strength
f the interactions.

.3 Exploration on simulated data from complex dynamic processes

To test the ability of ELGRIN to infer the overall biotic and abiotic
ontrols on species distributions, we used three theoretical models,
ifferent from the one underlying ELGRIN, to dynamically simulate
patial community data with 50 species and 400 sites along a single
nvironmental gradient and combined them with multiple different
nteractions scenarios (competition, mutualism, and no interaction).
o do that, we chose species niche optima evenly distributed along a
ingle environmental gradient. The metanetworks were built so that
nteracting species have close niche optima (otherwise they would
ever co-occur). In the mutualistic scenario, we also considered a
ase where species that facilitate each other tend to have an abi-
tic niche that is also not too close (otherwise they would compete).
long this single environmental gradient, niche optima and associated
etanetworks according the interaction scenarios, we used three the-

retical dynamic models (Lotka–Volterra, colonisation–extinction, and
o-existence model aka VirtualCom) to simulate the resulting species
4

c

istribution data. These models have different underlying assump-
ions and processes, which allowed testing ELGRIN under a total of 9
ifferent configurations.

otka–Volterra model The Lotka–Volterra model is one of the foun-
ational models in community ecology (Takeuchi, 1996). This model
imulates communities under both intra- and interspecific interactions,
hile ELGRIN is not able to handle intraspecific interactions (its
etanetwork does not allow for self-loops). Thus we parameterised the

otka–Volterra simulation with intraspecific interactions being negli-
ible in regards to interspecific interactions. That way we generated
pecies community data that meets the type of data and ecological
uestions ELGRIN is designed to tackle (for details, see Appendix S1:
ection S.5.1). Nonetheless, we also explored the converse case to fully
nderstand the limits of ELGRIN (see Appendix S1: Section S.6).

olonisation–extinction model We used an updated version of the
tochastic colonisation–extinction model developed in Ohlmann et al.
2022) to simulate the species community dataset for the three in-
eraction scenarios (for details see Appendix S1: Section S.5.2). The
odel consists in a multivariate Markov chain that converges towards
stationary distribution from which we sampled the species community
ataset.

irtualCom model We used an updated version of the model developed
y Münkemüller and Gallien (2015) to simulate communities whose
omposition is driven simultaneously by biotic and abiotic environmen-
al effects, for the three interaction scenarios (for details see Appendix
1: Section S.5.3). In this model, each community has the same carrying
apacity (i.e. the exact number of individuals in each location).

.4 Application: a case study

We analyse the newly available Tetra-EU 1.0 database, a species-
evel trophic network of European tetrapods (Maiorano et al., 2020)
hat combines all known potential interactions between terrestrial
ammals, birds, reptiles and amphibians occurring in Europe. This
etanetwork is based on data extracted from known interactions,

cientific literature, including published articles, books, and grey lit-
rature (see Maiorano et al., 2020, for a complete description of the
ata and the reference list used to build the metanetwork). As usual
ith such data, this metanetwork does not provide information on

nteraction plasticity or intraspecific interactions. We restricted our
nalyses on the European Alps that show sharp environmental gradients
nd varying trophic web distributions (O’Connor et al., 2020). We
xtracted the species distribution data from Maiorano et al. (2013)
t a 300 m resolution. We upscaled all species ranges maps to a
0 × 10 km equal-size area grid and cropped the distribution data
o the European Alps. Species were considered present on a given
0 × 10 km cell if they were present in at least one of the 300
300 m cells within it. This yielded species distributions maps for

57 breeding birds, 99 mammals, 36 reptiles, and 30 amphibians
ver 2138 locations. Environmental covariates were extracted at the
ame resolution and were selected following previous work on those
ata (Braga et al., 2019). For climate, we used mean annual tempera-
ure, temperature seasonality, temperature annual range, total annual
recipitation and coefficient of variation of precipitation that were all
xtracted from the Worldclim v2 database (http://www.worldclim.org/
ioclim). Using GlobCover (GlobCover V2.2; http://due.esrin.esa.int/
age_globcover.php), we extracted the number of habitats present in a
iven pixel, habitat diversity in a given pixel based on Simpson index
nd habitat evenness as a measure of habitat complexity. Finally, we
dded an index of annual net primary productivity (Global Patterns
n Net Primary Productivity, v1 (1995), http://sedac.ciesin.columbia.
du/data/set/hanpp-net-primary-productivity) and the human foot-
rint index (http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-
uman-footprint-geographic). Since these data were highly correlated,
e used a PCA to retain the three leading vectors as environmental
ovariates (𝑊𝑙) in ELGRIN.

http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://www.worldclim.org/bioclim
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://due.esrin.esa.int/page_globcover.php
http://sedac.ciesin.columbia.edu/data/set/hanpp-net-primary-productivity
http://sedac.ciesin.columbia.edu/data/set/hanpp-net-primary-productivity
http://sedac.ciesin.columbia.edu/data/set/hanpp-net-primary-productivity
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
http://sedac.ciesin.columbia.edu/data/set/wildareas-v2-human-footprint-geographic
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Table 2
Simplified view of the different behaviours of the model in function of the parameters 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠. The graph represents the metanetwork
containing all potential interactions where species can be either present (grey node) or absent (white node) in a given location 𝑙 leading to
different estimated 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠. When 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 ≪ 0 or 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 ≪ 0, interacting species in the metanetwork tend to avoid each other:
whenever one is absent, the other tend to be present and reversely. This situation favours a checkerboard pattern on the metanetwork. Reversely,
whenever 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 ≫ 0 (resp. 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 ≫ 0), there are groups of interacting species that tend to be all present (resp. all absent), inducing sets
of grey (resp. white) neighbour nodes in the metanetwork. Whenever 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 = 0 or 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 = 0, there are sets of interacting species whose
states are independent from one another and thus purely random (the proportions of grey and white nodes are governed by the values of the
parameters in the Grinnellian part of the model).

𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 ≪ 0 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 = 0 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 ≫ 0
(avoided co-presence) (random presence) (favoured co-presence)

𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 ≪ 0
(avoided co-absence)

2 3

6 7 8

1

4 5

1

4 5

6

2 3

7 8

1

3

4 5

7

2

6 8

𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 = 0
(random absence)

2 3

7 8

1
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6

2
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6 7

1

3

4

8

4 5

6 7

1

2 3

8

𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 ≫ 0
(favoured co-absence)

2
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3 Results

3.1 Tests on simulated species community data

Let us first recall that we assessed the performance of the method in
inferring parameters from data sampled and re-sampled under ELGRIN
model (see Appendix S1: Section S.4). We now turn to dynamical
theoretical ecological models.

For the three theoretical models (Lotka–Volterra, colonisation-
extinction and VirtualCom), ELGRIN was correct in identifying the no
interaction scenario, with estimated interaction strengths close to 0
(Figs. 2–4). Similarly, ELGRIN was able to retrieve the negative effects
of interactions in the case of competition as simulated by the three
theoretical models. The 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 parameters were mostly
negative (with much higher absolute values for 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠), capturing
the backbone of the competitive interactions. They indicated that
co-presence and co-absence were avoided (as presented in Table 2 top-
left), leading to some level of competitive exclusion. In the VirtualCom
co-existence model, this phenomenon was clearly the by-product of
the competitive interactions and the carrying capacity in terms of
number of individuals (that explicitly induced exclusion). When pos-
itive interactions come into play (i.e. mutualism), the results should
be contrasted between those obtained for the Lotka–Volterra model,
where ELGRIN does not qualitatively identify the processes at stake and
the two other models (colonisation–extinction and VirtualCom) where
ELGRIN succeeds in identifying them. The Lotka–Volterra simulation
with positive interactions scenario produced species that are essentially
distributed along their respective niches (see Appendix S1: Figure
S.4). As a consequence, this distribution can be simply fitted with the
Grinellian part of the model and ELGRIN estimates the 𝛽s close to
zero (Fig. 2). That means that the same dataset could have been pro-
duced by only abiotic environmental conditions and the actual species
5

distribution does not contain anymore a pattern that ELGRIN would
identify as the trace of the positive interspecific interactions. On the
contrary, in the positive interactions scenario, with both competition–
colonisation and VirtualCom co-existence models, ELGRIN correctly
identified the process at play. The parameters 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠

ere mostly positive. During the simulation steps, the presence of
ne species was then favoured by the presence of another species it
nteracted with, leading to a co-presence phenomena captured by the
ositive 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠. Conversely, the inverse mechanism emerged for co-
bsence, implying that the 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 tended to be positive as revealed
y ELGRIN (Figs. 3, 4). To quantitatively investigate the difference
etween 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 distributions in the three simulations,
e performed Kolmogorov–Smirnov (KS) tests. For each simulation,
e tested whether 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 distributions were significantly

different in the scenarios with interactions (either positive or negative)
from the scenario without interaction. In the three simulations, the tests
correctly identify significant differences between interactions and no
interaction scenarios (see Appendix S1: Table S.1).

3.2 Empirical case study

When fitted to the European vertebrate dataset, ELGRIN’s parame-
ters 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 and 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 were highly correlated (Pearson correlation of
.84, see Appendix S1: Section S.7.1) suggesting that trophic interac-
ions impact both predator/prey co-presence and co-absence. In what
ollows, we therefore mainly dealt with 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠.

We first observed a structured spatial pattern of the effects of
nteractions, with regions of negative or positive 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 (bluish or
eddish colours respectively in Fig. 5). The largest 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values were
ound mainly in the french Alps and in the Eastern zone.

In Fig. 6, we present the values of different variables at each
ocation, according to groups of estimated 𝛽 parameters, where
𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠
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Fig. 2. Distribution of co-presence (𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠) and co-absence (𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠) strengths inferred using ELGRIN on simulated ecological communities using a Lotka–Volterra model with
competition (negative interactions), mutualism (positive interactions) or no interactions.
Fig. 3. Distribution of co-presence (𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠) and co-absence (𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠) strengths inferred using ELGRIN on simulated ecological communities using a colonisation–extinction model
with competition (negative interactions), mutualism (positive interactions) or no interactions.
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the width of each boxplot is proportional to the number of points in
each class. Almost all the highest 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 (> 0.05) were revealed in
ocations below 1600 m of altitude (Fig. 6a, 𝑝-value of the KS test
nferior to 2.2e−16, details given in Appendix S1: Section S.7.2). In these
egions, species richness was generally high (Fig. 6b, 𝑝-value inferior
o 2.2e−16). In the opposite, the higher up, the more likely 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠
as negative (Fig. 6a). This was particularly true above 1600 m in

he central Alps, where almost all the negative 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 were estimated
bluish colours in Fig. 5). Locations with negative 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 have a lower
pecies richness (Fig. 6b). Interestingly, locations with low connectance
ave lower absolute 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values (Fig. 6c, 𝑝-value inferior to 2.2e−16)
ndicating a lower effect of biotic interactions compared to abiotic
ffects in these locations. Here, connectance is the density of the graph
nduced by the metanetwork at location 𝑙, namely its nodes are species
ccurring at location 𝑙 and edges are those from the metanetwork
6

etween those present species. (
Discussion

Deciphering the mechanisms driving spatial patterns of species
istributions and communities is likely one of the most active fields
f ecological research since the early days of biogeography and com-
unity ecology. Still, there was so far no comprehensive statistical

pproach able to make the best of existing knowledge on interspecific
nteractions, species occurrence and environmental data to measure
nd quantify the dual effects of environment and biotic interactions
n species distributions. Our proposed model that relies on Markov
andom fields builds on the ability of graphical models to encode
nd analyse species distribution dependencies using the known species
nteractions. This formalism allows, within the same model, to ac-
ount for both the effects of the environment and the interspecific
nteractions, which reconciles the Grinnellian vision of species niches
i.e. how species respond to the abiotic environment) with its Eltonian
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Fig. 4. Distribution of co-presence (𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠) and co-absence (𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠) strengths inferred using ELGRIN on simulated ecological communities with VirtualCom model, with competition
(negative interactions), mutualism (positive interactions) or no interactions.
Fig. 5. Results of ELGRIN on the European tetrapods case study. Map of estimated 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 (one dot per location). The colour scale indicates the 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values. For the sake of
representation, 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values above 0.15 in absolute value were set to 0.15.
counterpart (i.e. how species respond to the biotic environment). The
mathematical foundations of ELGRIN are strong and its framework is
flexible allowing for useful extensions to handle interaction strength,
sampling effects and plasticity of interactions (see Appendix S1: Section
S.1).

A key element of ELGRIN is its ability to measure the overall
relative effects of interspecific interactions on species distributions with
respect to abiotic environmental conditions, which allows to summarise
all local pairwise interactions in a single measure (i.e. 𝛽𝑙,𝑐𝑜−𝑎𝑏𝑠 or
𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠). This measure can then be mapped, related to spatial layers to
understand how the overall relative effect of interspecific interactions
vary in space and in function of the environment or the ecosystem
types. Importantly, this measure can also be carefully investigated at
a given location in function of the constituent species, trophic groups,
specialists vs generalists, connectance and so on. Interestingly, we can
thus see our 𝛽 estimates as an extended and more meaningful version
7

𝑙

of the famous checkerboard score or C-score (Stone and Roberts, 1990),
which has been used to quantify local interspecific interactions from co-
occurrence pattern (e.g., Boulangeat et al., 2012). The main advantage
of ELGRIN over the C-score is that instead of trying to infer biotic in-
teractions only from co-occurrences (which we know to be notoriously
difficult, nearly impossible), it quantifies, in a conditional way, the
effects of the known interspecific interactions on species communities,
while accounting for the environmental responses of the species. Our
approach is thus not comparable with recent developments on joint
species distribution models (JSDMs) that relate species occurrences to
environmental conditions, and provides a residual covariance matrix
that could be interpreted on the light of missing predictors, mis-
specifications and biotic interactions (Ovaskainen et al., 2017; Zurell
et al., 2018). This matrix represents covariances between model resid-
uals (the left-over from the environmental effects) and actually provides
little information about biotic interactions (Zurell et al., 2018; Poggiato
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Fig. 6. Results of ELGRIN on the European tetrapods case study. Boxplots representing the values of different variables at each location, according to the estimated 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values
(x axis). (a) altitude, (b) species richness, and (c) connectance (density of the graph induced by the metanetwork at location 𝑙) For the sake of representation, 𝛽𝑙,𝑐𝑜−𝑝𝑟𝑒𝑠 values
above 0.15 in absolute value were set to 0.15. Width of the boxplots is proportional to the number of points in each class.
et al., 2021). On the contrary, ELGRIN does not infer any residual
covariance and directly accounts for the known interactions through
the metanetwork. In JSDMs, missing covariates will inevitably lead to
spurious estimates of biotic interactions. In ELGRIN, the parameter 𝑎𝑙
is supposed to capture most of the unexplained information that is
independent of the interspecific interactions. This parameter acts as a
site random effect in mixed models and is expected to filter out the
effects of missing covariates, although some remaining species-specific
effects might still percolate into the 𝛽𝑙 estimates.

In the presentation of ELGRIN and in our case studies, we focused
on a single interaction type at a time (e.g. competition, mutualism or
trophic interaction). When dealing with a single type of interaction,
competition for instance, the modelling is explicit since we clearly
understand the effect that one species can have on another species.
Although it is technically possible to manage a metanetwork composed
of different types of interactions, the interpretation would become
problematic. Different interaction types can have opposite effects, such
as competition (a species excludes other species) and mutualism (a
species facilitates other species) and, since ELGRIN captures an overall
impact of these interactions on the distributions at each location, inter-
preting ELGRIN’s results can be misleading in that case. Additionally, it
is worth noting that since ELGRIN relies on a Markov random field, 𝐺⋆

is undirected. In other words, when the original metanetwork encodes
asymmetric interactions (e.g. predator–prey), they are then converted
in undirected edges that only represent the presence of interactions
(whatever their direction). It is thus critical to keep that in mind when
interpreting the results of ELGRIN, and when merging different types of
interactions together. The same issue happens when hoping to interpret
the residual covariance matrix of JSDM through the lens of biotic
interactions, since the values of the covariance matrix could reflect
any type of interactions between species, that could be asymmetric
or symmetric, or both. Note that we explicitly used a bell-shaped
relationship for modelling species response to environmental gradients.
While it would be possible to modify ELGRIN to incorporate any other
8

parametric relationship, the actual version of ELGRIN would lead to
erroneous conclusions whenever used on data where this assumption is
not satisfied.

More generally, it is important to underline that ELGRIN finds the
most likely scenario under a model associated to underlying assump-
tions. This model represents up to date the most reasonable and simple
model that integrates both interspecific interactions and abiotic factors
in modelling the species distribution. In that sense, it goes beyond
(joint) species distribution models or ordination models by including
explicitly the effect of interspecific interactions. However, the most
likely scenario under this model is not necessarily the real one that
lead to observed data. For instance, ELGRIN was not able to identify
the positive interspecific interactions present in the dynamics of a
Lotka–Volterra model (even when restricting to negligible intraspecific
interactions). Despite being a most widely studied model, the Lotka–
Volterra model still raises important challenges. Indeed, whether the
system reaches a single globally stable equilibrium point is known
only in specific cases (Takeuchi, 1996). Since ELGRIN infers model
interspecific interactions relative effects from the species distributions,
existence of multiple equilibria in the Lotka–Volterra dynamics (de-
pending on the initial conditions that are unknown) could pose serious
identifiability problems. Even in presence of a unique and globally
stable equilibrium point, several parameters or different interaction
types could lead to the same equilibrium and thus same observed
species distributions. This also raises tough identifiability issues. We
hope that the recent developments around Lotka–Volterra model will
help to circumvent those issues (Biroli et al., 2018; Remien et al.,
2021). We could easily simulate species distributions, using models
that include other ecological processes, on which ELGRIN would fail
in recovering the true underlying generation processes. Indeed we
present simulations scenarios beyond the assumptions of the model
(i.e., a Lotka–Volterra model with intraspecific interactions stronger
than interspecific ones, see Appendix S1: Section S.6), where ELGRIN
again uncovered a completely different explanation of the data at
hand. If the data contain the signature of different ecological processes

(including ones not considered by ELGRIN), ELGRIN will not be able
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to infer properly the relative effects of interspecific interactions and
abiotic factors. The question of knowing which ecological processes
could indeed be recovered from species distribution patterns remains
thus debated (e.g. Blanchet et al., 2020). A last note is that ELGRIN only
deals with binary occurrence data rather than abundance or frequency
data. In our simulation design, both the Lotka–Volterra and the Virtual-
Com models produced abundance data that we had to sample to obtain
binary signals, losing information during the process. On the contrary,
ELGRIN performs better on colonisation–extinction simulations, where
the dynamics directly generates binary data. Extending ELGRIN from
the binary setup to the continuous one could improve the inference
by considering more information in the species distribution data but it
remains an important methodological challenge.

In terms of further perspectives, we might wonder whether this
model could be extended for prediction purposes. In principle, it is
possible to draw presence/absence data from the model for different
values of the environment variables. These different values could allow
for predictions in space but also in time. However, something to keep in
mind is that the metanetwork will not vary in the model and will thus
be considered as static and thus representative in space (or in time). If
the metanetwork has not been built with that prediction perspective in
mind, this might be an issue as we will miss interaction rewiring effects
on species distributions. Instead, if the metanetwork is truly a potential
metanetwork that tries to incorporate these potential interactions that
have been observed yet (i.e. Maiorano et al., 2020), it might be in-
teresting to investigate how biotic interactions might further influence
future species distributions in response to environmental changes.
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