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Abstract22

We develop a spatially realistic model of mutualistic metacommunities that exploits the joint struc-23

ture of spatial and interaction networks. Assuming that all species have the same colonisation24

and extinction parameters, this model exhibits a sharp transition between stable non-null equilib-25

rium states and a global extinction state. This behaviour allows defining a threshold on coloni-26

sation/extinction parameters for the long-term metacommunity persistence. This threshold, the27

’metacommunity capacity’, extends the metapopulation capacity concept and can be calculated28

from the spatial and interaction networks without needing to simulate the whole dynamics. In29

several applications we illustrate how the joint structure of the spatial and the interaction net-30

works affects metacommunity capacity. It results that a weakly modular spatial network and a31

power-law degree distribution of the interaction network provide the most favourable configuration32

for the long-term persistence of a mutualistic metacommunity. Our model that encodes several33

explicit ecological assumptions should pave the way for a larger exploration of spatially realistic34

metacommunity models involving multiple interaction types.35
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1 Introduction36

A fundamental goal of predictive ecology is to forecast the dynamics of interacting species in a given37

region (Thuiller et al. 2013, Mouquet et al. 2015). Reaching such a goal has direct implications38

for biodiversity management and conservation and to anticipate or mitigate the effects of habitat39

destruction and global change on biodiversity.40

Metapopulation models have long been used to characterise the dynamics of populations that41

can colonise, persist or go extinct in a given landscape configuration (Hanski & Ovaskainen 2003).42

This configuration is often summarised by a spatial network of suitable patches (Dale & Fortin43

2010; Hagen et al. 2012) that best represents habitat patchiness in both natural and human-altered44

ecosystems (Haddad et al. 2015). Levins (1969) devised a seminal model of species occupancy i.e.,45

the probability of presence of species populations across a landscape. In this model, a mean-field,46

deterministic differential equation model represented the population dynamics in fully connected47

patches, so that equilibrium occupancy depended on both a colonisation and an extinction pa-48

rameter. More than 30 years later, Etienne & Nagelkerke (2002) proposed a stochastic analogue49

of Levins’ model and studied the links between the properties of the two models. Two sources50

of spatial heterogeneity can be embedded in metapopulation models: the heterogeneity on coloni-51

sation/extinction parameters among species (functional connectivity) and on the spatial network52

structure (structural connectivity) (Tischendorf & Fahrig 2000). The impact of structural con-53

nectivity on stationary occupancy (e.g., Gilarranz & Bascompte 2012) underlines the influence of54

fragmentation on metapopulation persistence (Fahrig 2003, Fletcher Jr et al. 2018). Subsequent55

deterministic, spatially realistic models acknowledged variation of connectivity among nodes, and56

allowed quantifying analytically the viability of a metapopulation that depends on the mere struc-57

tural properties of the spatial network (Ovaskainen & Hanski 2001, Hanski & Ovaskainen 2003).58

The viability is defined through the metapopulation capacity, i.e., a threshold on colonisation and59

extinction parameters above which the metapopulation can survive. This threshold is thus of prime60

importance in biological conservation (Groffman et al. 2006).61

However, populations of a species are likely to interact with many other species within habitat62
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patches. These interactions should also affect the spatial coexistence of multiple metapopulations63

and their respective capacities (Thuiller et al. 2013). Metacommunity models are designed to assess64

the joint dynamics of multiple species in a habitat network (Leibold et al. 2004). While the structure65

of interaction networks is known to strongly influence biodiversity dynamics (Sole & Bascompte66

2007), most existing deterministic metacommunity models generally focused on global competition67

and competition-colonisation trade-off in fully connected patches (Tilman et al. 1997, Calcagno et al.68

2006), or sometimes in evenly connected patches (e.g., lattice Amarasekare et al. 2004, Mouquet69

et al. 2011). Models focusing on other interaction types (e.g. facilitation, mutualistic and trophic)70

were developed for species-poor communities, homogeneous or lattice space (i.e. for few species71

Nee et al. 1997, Gravel & Massol 2020, homogeneous space Astegiano et al. 2015, lattice space Kéfi72

et al. 2007), preventing the study of complex networks and further generalisations.73

Yet, stochastic models of interactions where species are either present or absent can encode74

mechanisms through specific rules, like having at least one prey to survive in the Trophic Theory75

of Island Biogeography (Gravel et al. 2011, Massol et al. 2017), or through increasing probability of76

presence depending on prey availability (Cazelles et al. 2016, Auclair et al. 2017). The latter model77

belongs to graphical models, a class of statistical models that represents conditional dependencies78

between species distributions using graphs. Using network-based metrics, these models can encode79

several mechanisms in terms of conditional probabilities of presence (Staniczenko et al. 2017).80

Nevertheless, these approaches still ignore the spatial structure of the environment.81

So far, theoretical studies on the dynamics of metacommunities within a spatially explicit en-82

vironment and with biotic interactions have rarely considered how the dynamics jointly depend on83

graph properties of both interaction and spatial networks (e.g., Amarasekare et al. 2004, but see84

Zhang et al. 2021), trophic interactions (Pillai et al. 2010, Brechtel et al. 2018, Gross et al. 202085

but see Wang et al. 2021) or mutualistic interactions on a lattice (Filotas et al. 2010, Sardanyés86

et al. 2019). These models often elude the question of existence of a non-null equilibrium, and87

the metacommunity persistence is often assessed through tedious dynamic simulations or using88

strong approximations (Wang et al. 2021). If this approach provides points in the parameter space89

where the metacommunity persists, it neither maps regions of this space leading to persistence,90
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nor it demonstrates the existence of critical thresholds acting on metacommunity persistence as in91

metapopulation theory.92

Interestingly, thresholds between local community persistence and extinction have already been93

identified in the case of positive interactions (Callaway 1997, Kéfi et al. 2016). For instance,94

mutualistic interactions play a major role in natural systems by conditioning coexistence (Valdovinos95

2019). Thébault & Fontaine (2010) showed that mutualistic networks generally have a nested96

architecture favouring persistence, and empirical surveys evidenced a truncated power-law of degree97

distribution (Bascompte & Jordano 2006, Vázquez et al. 2009, Bascompte 2009). Kéfi et al. 200798

studied a metacommunity model with facilitation on a lattice space. However, no network-based99

model of spatially realistic, mutualistic metacommunities has been proposed so far. Such model100

should allow to test the joint impact of the structure of the spatial and interaction networks on the101

viability of a metacommunity and, potentially, allow to exhibit thresholds acting at the mutualistic102

metacommunity level. It should also reconcile the ongoing debate on the impact of the structure of103

the spatial network on metapopulations (Fletcher Jr et al. 2018).104

In this paper, we explicitly model mutualistic interactions in an heterogeneous space using105

dynamic Bayesian networks (Auclair et al. 2017). We derive then a deterministic approximation106

and exhibit a threshold in metacommunity persistence assuming that all species have the same107

colonisation and extinction parameters. It defines an abrupt transition between stable coexistence108

and global metacommunity extinction. Our approach extends the computation of metapopula-109

tion capacity sensu Ovaskainen & Hanski to the case of mutualistic metacommunities with specific110

assumptions on colonisation and extinction functions. Using numerical methods, we show how111

metacommunity capacity relies on the structure of both mutualistic and spatial networks. Impor-112

tantly, specific submodels can be derived to encode key ecological assumptions on extinction and113

colonisation. For these different ecological assumptions, we represent how spatial proximity of sites114

and mutualistic interactions modulate colonisation and/or extinction probability, and we compute115

metacommunity capacities. We finally explore the relationship between the degrees of the nodes of116

both spatial and interaction networks and species’ occupancy at equilibrium. This allows extracting117

ecological relevant quantities on species among the sites (e.g., mean occupancy) or in sites among118
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species (e.g., species diversity, interaction network diversity). We thus quantify how metacommu-119

nity capacity is shaped by the joint structure of spatial and interaction networks.120

121

2 Stochastic models of metacommunity dynamics using dy-122

namic Bayesian networks123

We first present a formalism that unifies stochastic spatially realistic metapopulation models and124

mainland-island models of biotic interactions in discrete time using Dynamic Bayesian Networks125

(DBNs). DBNs describe dependencies between random variables at different time steps through126

a bipartite directed graph, and represent stochastic models in which parameters are networks127

(Lähdesmäki & Shmulevich 2008, Koller & Friedman 2009). The network represents the influ-128

ences between species distributions between two time steps. Once the structure of causal influences129

is fixed, several distributions can be associated to a given network structure through different pa-130

rameterisations. These parameterisations represent interaction mechanisms that describe the effect131

of neighbour species or sites on the probability of presence of a given species at time t+ 1. See Ap-132

pendix for a more precise introduction on dynamic Bayesian networks and proof of the convergence133

of the different models.134

The heterogeneous space is represented by a spatial network Gs = (Vs, Es), where Vs is the set of135

spatial vertices and Es the set of spatial edges (linking unordered pairs of vertices). We assume that136

this network is undirected and connected, i.e., considering two nodes u and v of Gs, there is always137

a path from u to v. Biotic interactions in the metacommunity are represented by an interaction138

network Gb = (Vb, Eb), with Vb its set of vertices and Eb its set of edges, which we also assume139

undirected and connected. We note n = |Vs| and m = |Vb| (see Table 1 for notations).140

141
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Object Name
Gs Spatial network (n nodes)
Gb Interaction network (m nodes)
G0

s Spatial network where edges have been deleted (n nodes)
G0

b Interaction network where edges have been deleted (m nodes)
Gs,b = Gs�Gb Cartesian product of the spatial and biotic interaction networks (n ∗m nodes)

As Adjacency matrix of the spatial network
Ab Adjacency matrix of the biotic interaction network

As,b = As ⊗ Im + In ⊗Ab Adjacency matrix of the Cartesian product network)
Gc Colonisation network (n ∗m nodes)
Ge Extinction network (n ∗m nodes)
Ac Adjacency matrix of the colonisation network
Ae Adjacency matrix of the extinction network
λM Metacommunity persistence capacity
λI Metacommunity invasion capacity
Λs Dominant eigenvalue of the adjacency matrix of the spatial network
Λb Dominant eigenvalue of the adjacency matrix of the biotic interaction network

Λs,b = Λs + Λb Dominant eigenvalue of the adjacency matrix of the Cartesian product network

Table 1: Notations

2.1 Spatially realistic metapopulation model142

We start by defining, using DBNs, a spatially realistic metapopulation model where populations143

of a single species colonise the spatial network Gs. Let Xt
i be a random variable associated to the144

presence of a population in a site i (i.e. the node vi of Gs) at time t (1 ≤ i ≤ n, t ∈ N∗, where145

N∗ is the set of positive integers). We depict the dependency structure between the Xt
i using a146

DBN built from Gs (Fig. 1a). Defining the neighbours of vi in Gs as Ns(i), the parents of Xt+1
i in147

the DBN are {Xt
i ,X

t
Ns(i)}. This means that the presence of a population at time t+ 1 is causally148

influenced by the presence of a population at time t in site i and in sites adjacent to i. In this first149

model, no other variables or species influence the presence of a population in site i at time t + 1.150

Through conditional probabilities, the parameterisation encodes the way the presence or absence151

of a population in adjacent sites modulates the probability of presence of a population in the focal152

site. Here, we chose the same parameterisation as in Gilarranz & Bascompte 2012.153

P(Xt+1
i = 1|Xt

i ,X
t
Ns(i)) = (1− (1− c)

∑
k∈Ns(i) X

t
k)(1−Xt

i ) + (1− e)Xt
i (1)
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where c and e are the respective colonisation (0 < c < 1) and extinction (0 < e < 1) parameters. In154

Eq. 1, the probability of presence grows with the number of occupied adjacent sites. Specifically,155

the probability that node i includes a population at time t + 1 is 1 − e if it had one at time t,156

while the probability that node i is colonised between time t and time t + 1 is equal to 1 minus157

the probability that all occupied neighbouring sites do not colonise node i, which happens with158

probability 1− c independently for each of these nodes.159

160

2.2 A mainland-island model with biotic interactions161

In this section, we present, using DBNs, a mainland-island model of species community where dif-162

ferent species colonise an island without any spatial structure but with a biotic interaction network163

Gb.164

Let Xt
j be the random variable associated to the presence of population of species j on the island. A165

DBN representing the dependency structure is built from Gb (Fig. 1a). Here, the DBN represents166

the network of species interactions as interactions affect colonisation and extinction probabilities167

on the island. Defining as NGb
(j) the neighbours of vj in Gb , the parents of X

(t+1)
j in the DBN are168

{Xt
j ,X

t
NGb

(j)}, meaning that the presence of species vj and species that interact with vj at time t169

on the island, causally influences the presence of species vj at time t+ 1. Importantly, there is no170

other variables influencing the presence of a species vj at time t+ 1. We chose a parameterisation171

similar to Auclair et al. 2017:172

P(Xt+1
j = 1|Xt

j ,X
t
NGb

(j)) = c(1−Xt
j) + (1− e(1−

∑
k∈NGb

(j)X
t
k

1 + degGb
(j)

))Xt
j (2)

where degGb
(j) is the degree of j in Gb. The probability of extinction (defined by Eq. 2) belongs173

to ]0, 1[ (Appendix). Although the dependency between species occurrences can encode any kind174

of interactions, we here focus on the mutualistic case by imposing an extinction function. In this175

case, the probability of extinction of a given species decreases with the number of species present176

that interact with the focal species.177
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178

2.3 Spatially realistic models of mutualistic metacommunities179

Integrating the models from Section 2.1 and 2.2, we built a spatially explicit metacommunity model.180

In this model, several species, interacting through Gb, are colonising the spatial network Gs. The181

colonisation and extinction probabilities of population of a given species in a site are affected by182

the presence of interacting species in the same site and presence of population of focal species in183

neighbour sites. To do so, we used the Cartesian product of graphs that builds a network from Gb184

and Gs (Imrich & Klavzar 2000).185

Definition 1. The Cartesian product of Gs and Gb, Gs,b = Gs�Gb is the graph in which the set of186

nodes is Vs Vb. A node of this graph is identified by a pair of nodes of Gs and Gb. Moreover, there187

is an edge between (us, ub) and (vs, vb) if (us = vs and (ub, vb) ∈ Eb) or (ub = vb and (us, vs) ∈ Es).188

The first condition corresponds to the case where the two species are present at the same location189

and interact with one another; the second condition, to the case where only one species is considered190

and the two locations are linked by a spatial edge.191

The adjacency matrix, As,b, of Gs,b is192

As,b = As ⊗ Im + In ⊗Ab (3)

where Im and In denotes the identity matrices of dimension m and n and ⊗ denotes the Kronecker193

product of two matrices.194

Let Xt
ij be the random variable associated to the presence of a population of species j in site i195

at time t. The dependency structure between the Xt
ij is depicted using a DBN that is built from196

Gs,b (Fig. 1a). Defining as N(i, j) the neighbours of (vi, vj) in Gs,b, the parents of Xt+1
ij in the197

DBN are {Xt
ij ,X

t
N(i,j)}. This means that the presence of a population of species j in site i at time198

t + 1 is causally influenced by the presence of population of the same species in adjacent sites at199

time t and by the presence of populations of species that interact with j in the same site.200

At this stage, it is crucial to define several submodels that formalise key ecological assumptions in201
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(a) The different models

Model Network Dynamic bayesian network

Metapopulation
model

spatial network

a b c

Xt
a Xt

b Xt
c

Xt+1
a Xt+1

b Xt+1
c

Mainland-island
model

interaction network

A B

Xt
A Xt

B

Xt+1
A Xt+1

B

Metacommunity
model

product network

aA

aB

bA

bB

cA

cB

Xt
aA Xt

aB Xt
bA Xt

bB Xt
cA Xt

cB

Xt+1
aA Xt+1

aB Xt+1
bA Xt+1

bB Xt+1
cA Xt+1

cB

(b) A temporal dynamic

a b c

B

A

B

a b c

B

A

B

A

t t+ 1

aA

aB

bA

bB

cA

cB

aA

aB

bA

bB

cA

cB

Figure 1: (a) Metapopulation model, mainland-island interaction model and metacommunity model.
The second column represents the network associated to each model (spatial, interaction and prod-
uct network). The third column represents the dynamic Bayesian network associated to each model
that represents the causal influences of variables (presence of populations of a given species, species
on the island, species in sites) at t on variables at t+ 1
(b) Simulating a dynamic in the combined effect model between two time steps. The nodes of the
product network are either empty or occupied (grey: occupied, white: empty). For the sake of
simplicity, the model here is turned deterministic (c = 1, e = 1). To colonise a new node of the
product network, species A and B must be both present in the same site and can colonise adjacent
site only. The population of species B originally present in site c goes extinct since it does not
co-occur with A at t whereas species A and B that co-occur in site a colonise the site b.
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the product graph, using either the spatial network or the biotic interaction network to modulate202

colonisation and extinction probability.203

Let G0
s be the network that has the same set of nodes as Gs but an empty set of edges, and let204

G0
b be the network that has the same set of nodes as Gb but an empty set of edges. We introduce205

then the colonisation network Gc (Ac is its adjacency matrix) and the extinction network Ge (Ae206

is its adjacency matrix). These networks modulate the colonisation and extinction probability in207

the different submodels. We build two submodels from a given product graph (Fig. 2) :208

• a Levins type submodel, where both the spatial and biotic interaction networks modulate the209

colonisation probability (Gc = Gs�Gb), while the extinction probability is constant (Ge =210

G0
s�G0

b)211

• a combined effect submodel, where both the spatial and the biotic interaction networks modu-212

late the colonisation probability (Gc = Gs�Gb), and the biotic interaction network modulates213

the extinction probability (Ge = G0
s�Gb)214

For the two submodels, the conditional probabilities of colonisation and non-extinction are expressed215

as:216

P(Xt+1
ij = 1|Xt

ij = 0,
∑

(k,l)∈NGc (i,j)

Xt
kl) = ε+ (1− ε)

[
1− (1− c)

∑
(k,l)∈NGc

(i,j) X
t
kl

]
(4)

217

P(Xt+1
ij = 1|Xt

ij = 1,
∑

(k,l)∈NGe (i,j)

Xt
kl) = 1− e

(
1−

∑
(k,l)∈NGe (i,j)X

t
kl

1 + degGe
((i, j))

)
(5)

where ε ∈]0; 1[ is a constant that guarantees the convergence of the model. This constant allows218

colonisation from an external source, analogous to nodal self-infection in the epidemiology literature219

(Van Mieghem & Cator 2012). The proposed metacommunity model is analogous to the open Levins220

model, that better fits with data than the classic Levins model (Laroche et al. 2018). degGe
((i, j))221

is the degree of (vi, vj) in Ge, and NGc(i, j) (resp. NGe(i, j)) denotes the neighbours of (vi, vj) in222

Gc (resp. Ge). Fig. 1b shows a simplistic dynamics in the combined effect model. Computing the223

stationary distribution is also intractable in the general case (since transition matrix is of dimension224

2nm), but, it is however possible to simulate the dynamics of the metacommunity as Gilarranz &225
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Bascompte (2012) did for metapopulation model. The code to sample in the stochastic model is226

available on the gitlab repository (https://gitlab.com/marcohlmann/metacommunity_theory).227

3 The nm-intertwined model228

Since studying the stochastic model of Section 2.3 is intractable in the general case, we propose to229

study deterministic models that approximate the stochastic models, referred to as the intertwined230

model in the epidemiology literature (Van Mieghem 2011). We extended the spatially realistic231

Levins model to a metacommunity model based on the product of spatial and interaction network232

(Ovaskainen & Hanski 2001). The approximation is derived from Van Mieghem (2011) and Bianconi233

(2018). The aim is to study the dynamics of mean occupancy of each species j in each site i, i.e.234

pij(t) = E(Xt
ij) = P(Xt

ij = 1) where E(.) denotes the expected value. For all i and j:235

pij(t+1) = E((1−Xt
ij)(ε+(1−ε)(1−(1−c)

∑
(k,l)∈NGc

(i,j) X
t
kl)))+E((1−e(1−e)

∑
(k,l)∈NGe

(i,j) X
t
kl)Xt

ij)

(6)

Eq. 6 leads to a hierarchy of equations that cannot be solved (i.e. we need to consider E(Xt
1,1, ..., X

t
m,n)236

to find a solution to the system). In order to get moment closure, we assume that site occupancies237

are independent. More precisely, for any sequence of indices n(1), n′(1); ..., n(r), n′(r′) :238

E(Xt
n(1),n′(1), ..., X

t
n(r),n′(r′)) ' E(Xt

n(1),n′(1))...E(Xt
n(r),n′(r′)) (7)

After some algebra, introducing a new single index v for the nodes of the product network and239

assuming that c << 1,e << 1 and ε << c (see Appendix), it follows :240

pv(t+ 1)− pv(t) = Cv(p(t))(1− pv(t)))− Ev(p(t))(pv(t)) (8)

where Cv(p(t)) = c
∑

u[Ac]v,upu(t) and Ev(p(t)) = e(1 −
∑

u[Ae]v,upu(t)/Mu) with Mu = 1 +241

degGe
(u)242
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This rewrites:243

p(t + 1)− p(t) = c(Acp(t))� (1− p(t))− e(1− (De + Inm)−1Aep(t))� p(t) (9)

where � denotes the element-wise product, De denotes the in-degree matrix of Ge and Inm denotes244

the identity matrix of dimension nm.245

Eq. 8 is analogous to master equation of Ovaskainen & Hanski (2001). Now, to assess the viability246

of a given mutualistic metacommunity, we need to determine the equilibrium states and evaluate247

their local stability in function of c and e parameters.248

3.1 Metapopulation capacity249

In these spatially realistic metapopulation models, equilibrium state is either stable coexistence (all250

sites have non-null occupancy) or global extinction (all patches have null occupancy). Metapopula-251

tion capacities have thus been derived to assess both the persistence and the stability of metapopula-252

tions at equilibrium (Hanski & Ovaskainen 2000, Ovaskainen & Hanski 2001). The metapopulation253

persistence capacity λM is a threshold between coexistence and global extinction (depending on254

the colonisation and extinction parameters), computable from the spatial network. Importantly,255

in spatially realistic metapopulation models, as soon as a population is present in a site, it can256

colonise gradually the entire spatial network.257

More formally, in the metapopulation case, Gb is made of a single node, (m = 1) and we assume258

that Gs is undirected and connected. We have:259

∀t ∈ N∗, p(t) ∈ Ω = {x ∈ Rn,∀i, 0 ≤ xi ≤ 1} (10)

with the following assumptions on the colonisation functions (per site i), Ci(.), and extinction260

functions, Ei(.):261

14



• there is no external source of migrants262

Ci(0) = 0 (11)

• the occupied sites make a positive contribution to the colonisation function of an empty site263

∀p ∈ Ω = {x ∈ Rn,∀i, 0 < xi < 1}, Ci(p) > 0 (12)

264 
∂Ci

∂pj
(p) ≥ 0 for i 6= j

∂Ci

∂pi
(p) = 0

(13)

• there is no mainland population, extinction rates are positive and, eventually, reduced by the265

presence of local populations266

∀p ∈ Ω, Ei(p) > 0 (14)


∂Ei

∂pj
≤ 0 for i 6= j

∂Ei

∂pi
= 0

(15)

• Colonisation and extinction functions are smooth functions267

Ci ∈ C1(Ω) (16)

268

Ei ∈ C1(Ω) (17)

Let:269

gi(p) =
eCi(p)

cEi(p)
(18)
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The model is also assumed to be irreducible. Let J be the matrix of dimension n× n so that:270

271

Jij =


1 if ∂gi

∂pj
(p) > 0,p ∈ Ω

0 otherwise
(19)

We say that the model is irreducible if J is irreducible, i.e., the graph that has J as adjacency272

matrix is strongly connected.273

In the case of the spatially realistic Levins model :274

• Ci(p) = c(Asp)i275

• E(p) = e276

where As is the adjacency matrix of the spatial network. Then,277

gi(p) = (Asp)i (20)

and the model is irreducible since As is irreducible.278

The metapopulation invasion capacity, λI , is defined as the dominant eigenvalue of the Jacobian279

matrix of g evaluated in p = 0. It measures the stability of the equilibrium p = 0 that is the ability280

of a single population to invade the spatial network.281

282

Definition 2. The metapopulation persistence capacity, λM , is defined as:

λM = sup
p∈Ω

h(p)

where

h(p) = min
i
hi(p)

and

hi(p) = gi(p)
1− pi
pi
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We now present a weak version of the main theorem of Ovaskainen & Hanski (2001).283

Theorem 1. (Ovaskainen & Hanski) The deterministic metapopulation model has a non-trivial284

non-negative equilibrium state if and only if the threshold condition λM > e
c (if all the components285

of g are concave) or λM ≥ e
c (otherwise) is satisfied. Moreover, if the threshold condition is286

satisfied, the non-trivial non-negative equilibrium state is unique if all components of g are concave287

and equilibria are ordered otherwise.288

λM is a threshold on the colonisation/extinction parameters that allows the metapopulation289

to persist. Importantly, if the metapopulation persists, the equilibrium points are interior (they290

belong to Ω), meaning that all occupancies are strictly positive.291

Moreover, if all the components of g are concave (it is the case for the spatially realistic Levins292

model), we have:293

λM = λI = Λs (21)

where Λs is the dominant eigenvalue of As. If one component (or more) of g is not concave, then294

λI < λM295

3.2 Extension to mutualistic metacommunity capacity296

In order to extend the metapopulation concept to metacommunity concept, we first consider a297

case with no interaction. Assuming that all species have the same colonisation and extinction298

parameters, since they also share the same spatial network, they have then the same metapopulation299

capacity even if their have independent dynamics. However, in this case, we cannot define a300

metacommunity capacity since the different metapopulations have independent dynamics: if a301

species is initially absent from the metacommunity, it will never colonise it. In this section, we show302

that adding mutualistic interactions to the metacommunity tangle the dynamics of the different303

metapopulations and allows defining a single threshold controlling the extinction of the entire304

metacommunity. Importantly, we show that this metacommunity capacity is higher than individual305

metapopulation capacities.306
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3.2.1 The mutualistic metacommunity concept307

We extend metapopulation capacities from Section 3.1 to mutualistic metacommunity capacities in308

the dynamical system defined by Eq. 9, using the product of the spatial network and the biotic309

interaction network and specific assumptions on colonisation and extinction functions. Importantly,310

in our spatially realistic mutualistic metacommunity model, as soon as a population of a given311

species is present in a site, it can colonise gradually the entire spatial network and populations of312

partner species will also colonise the spatial network thanks to this focal species. As a consequence,313

the proposed mutualistic metacommunity model presents a sharp transition between coexistence (all314

species have non-null occupancy in all sites) and global extinction (all species have null occupancy315

in all sites).316

For this model, the state space is: Ω = {x ∈ Rn∗m,∀v ∈ {1, ..., n ∗m} 0 < xv < 1}317

We have:318

Cv(p(t)) = c
∑
u

[Ac]v,upu(t) (22)

and319

Ev(p(t)) = e(1−
∑
u

[Ae]v,upu(t)/Mu)) (23)

In order to apply theorem 1 to the product network, we first verify assumptions on colonisation and320

extinction functions (notice that index v represents a combination of a site and a species index).321

• there is no external source of migrants322

Cv(0) = 0 (24)

Notice that this assumption is only verified at order 1323

• species occupying sites make a positive contribution to the colonisation function of an empty324

site325

∀p ∈ Ω, Cv(p) > 0 (25)
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326 
∂Cv

∂pu
(p) ≥ 0 foru 6= v

∂Cv

∂pv
(p) = 0

(26)

Importantly, in both Levins type and combined effect model, since Gc = Gs�Gb, an empty327

site can be colonised by a given species if this species is present in neighbor sites or if species328

that interact with the focal species are present in this site. By doing so, even if a species is329

initially absent from the metacommunity, it can colonise it thanks to partner species.330

• there is no mainland population, extinction rates are positive and reduced by the presence of331

others species332

∀p ∈ Ω, Ev(p) > 0 (27)
333 

∂Ei

∂pj
≤ 0 for i 6= j

∂Ei

∂pi
= 0

(28)

Notice that, due to this assumption, we stick to the modelling of mutualistic metacommunity.334

• Colonisation and extinction are smooth functions335

Cv ∈ C1(Ω) (29)

336

Ev ∈ C1(Ω) (30)

Additionally:337

Proposition 1. The Levins type model and the combined effect model are irreducible on Ω338

See proof in Appendix.339

We then define metacommunity invasion capacity as the dominant eigenvalue of the jacobian matrix340

of g evaluated in p = 0.341

342
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Definition 3. The mutualistic metacommunity persistence capacity, λM , is defined as:

λM = sup
p∈Ω

h(p)

where

h(p) = min
v
hv(p)

and

hv(p) = gv(p)
1− pv
pv

By applying theorem 1, a non-trivial equilibrium that the dynamical system has a non trivial343

equilibrium if and only if λM > e
c . λM is then a threshold on the colonisation/extinction parame-344

ters that allows the mutualistic metacommunity to persist. Importantly, a non-trivial equilibrium345

point is interior (it belongs to Ω), so each species in each site has a positive abundance at equilibirum.346

347

Proposition 2. For the Levins type model, λM = λI = Λs + Λb348

The Levins type model is actually the spatially realistic metapopulation model with Gc =349

Gs�Gb as spatial network (the extinction is constant equals to e). The dominant eigenvalue, Λc,350

of Ac is Λs + Λb. Consequently, for the Levins type submodel:351

λM = λI = Λs + Λb (31)

For the combined effect model, λI = Λs + Λb (see Appendix for proof). Notice that in the Levins352

type model, both the biotic interaction and the spatial networks play interchangeable roles.353

3.2.2 Computation of metacommunity capacity for the combined effect model354

For the combined effect model, we computed the metacommunity capacity λM using Appendix355

D of Ovaskainen & Hanski 2001 and simulating annealing. We propose an implementation in R356

and Python available at: https://gitlab.com/marcohlmann/metacommunity_theory. Only the357
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The spatial and the biotic network modulate the colonisation probability.
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on the probability of presence of a species.

Gc = Gs�Gb
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b
λI = λM = Λs + Λb
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The different sites and species acts independently
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Figure 2: Top: Map of the different models, submodels and their parameters. Bottom: The
four submodels associated to mutualistic metacommunity models, their assumptions, colonisa-
tion/extinction networks and metacommunity capacities

metapopulation or the metacommunity persistence capacity is really the focus for assessing viability.358

For the sake of simplicity, we will thus use metacommunity capacity as metacommunity persistence359

capacity in the rest of the text (unless specified otherwise)360

4 Applications361

4.1 Illustration362

To illustrate the metacommunity capacity concept, we built a toy model (Fig. 3). We used a circu-363

lar spatial network with 4 nodes (Fig. 3a) and a star shaped interaction network made of 4 nodes364

(Fig. 3b), which could represent a plant species and its mutualistic mycorrhizal fungi species. The365

Cartesian product is built from the spatial and the interaction networks (Fig. 3c). For the illustra-366

tion, we derived the Levins type submodel dynamics. In this case, both metacommunity invasion367

capacity λI and persistence capacity λM are equal to the dominant eigenvalue of the product of368

the networks (3.73). λM defines the feasibility domain that is the portion of space where all species369
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have a non-null occupancy (see Song et al. (2018)) (Fig. 3d). We showed two possible outcomes of370

species occupancy dynamics (Fig. 3). One had a combination of colonisation and extinction values371

allowing metacommunity persistence, while the other had values outside the feasibility domain and372

yielded metacommunity extinction. Occupancies of persisting species converge toward two different373

values due to symmetries in the product network. Despite its simplicity, this toy model shows374

that we can predict the outcome of mutualistic metacommunity dynamics for any location of the375

parameter space, depending on the metacommunity capacity.376

4.2 Structures of spatial and mutualistic interaction network jointly shape377

the metacommunity capacity378

We applied our model to investigate how the structure of the spatial and interaction networks shape379

the metacommunity capacity of a bipartite mutualistic system. To simulate landscape fragmenta-380

tion, we sampled two types of spatial networks while keeping constant the expected number of edges.381

We generated random spatial networks with 10 nodes in either Erdős-Renyi graphs (all edges are382

independent and identically distributed, with connectance C = 0.25) or modular graphs using a383

block model (C = 0.25, more details in Appendix). We only kept connected spatial networks and384

used 15 replicates for each type of spatial network. Concerning the mutualistic network, we sampled385

two types of bipartite networks while keeping constant the number of edges. We generated random386

interaction networks with 14 nodes and 16 edges in either Erdős-Renyi graphs or networks with387

degree distribution shaped as a power-law of scaling parameter equals to 2. We used the function388

sample_fitness_pl implemented in the R package igraph (Csardi & Nepusz 2006). We only kept389

connected interaction networks and used 15 replicates per type of interaction network. We then390

computed the colonisation and extinction networks for each combination of spatial and interaction391

networks, so generating 4 ∗ 4 ∗ 15 = 900 different networks in total. This number of replicates was392

large enough to generate robust results (see Appendix). We first computed the metacommunity393

capacities for each combination of spatial and interaction networks to assess the viability range of394

the metapopulations. Then, we choose c and e parameters so that the mutualistic metacommunity395

persists and compared the stochastic model with its nm-intertwined deterministic approximation.396
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Figure 3: Toy model built from (a) a circular spatial network, (b) a star-shaped interaction network
giving (c) the product network. The product network defines (d) the persistence and extinction
domain. (e) Two trajectories sampled in and outside the persistence domain leading to persistence
or extinction of the metacommunity
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We also studied how species occupancy at equilibrium and aggregated quantities build from these397

occupancies (mean occupancy, species diversity) depend on node characteristics of both networks398

in the deterministic model.399

4.2.1 Computing metacommunity capacities400

We computed the metacommunity capacity λM for the Levins type and combined effect submodels401

with the four combinations of networks structure (Fig. 4, Fig. S3). Despite known concerns on402

the ability to fit power-laws on small networks (Clauset et al. 2009, Stumpf & Porter 2012), we403

were able to statistically distinguish estimation of metacommunity capacity for almost all sampled404

combinations of structures (cf. Appendix). For both the Levins type and combined effect submodel,405

the metacommunity capacity decreased when the spatial network was modular and when the degree406

distribution was not a power-law. In this case, the modularity of the spatial network had a stronger407

impact on the metacommunity capacity than the structure of the mutualistic interaction network.408

Metacommunity capacity values were similar for the combined effect and Levins type model.409

4.2.2 Comparison between the stochastic model and the nm-intertwined model410

We compared the output of the stochastic metacommunity models with the nm-intertwined model411

for a given network combination with colonisation and extinction parameters chosen so that the412

metacommunity persist. We set c = e = 0.05, ε = 0.0005 and used a spatial network with modularity413

of 0.36 and a mutualistic network with a degree distribution sampled in a power-law with parameter414

2. We sampled 1000 trajectories on 1500 time steps in the Levins type and the combined effect415

model and compared the mean stationary local occupancies and total occupancy with the prediction416

of the nm-intertwined model. For the combined effect model, the nm-intertwined model provides417

a accurate approximation of total occupancy (sum of occupancies of all species in all sites) at418

equilibrium (Fig. 5a). The deterministic model also provides a reasonible approximation of local419

occupancies (occupancy of each species in each site) compared to the mean values computed from420

the stationary distribution built from the stochastic simulations (Fig. 5b). We show this comparison421

for the Levins type model in Appendix (Fig. S4). Both the total occupancy and local occupancies422
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network (Erdős-Renyi/Modular) and the structure of the interaction network (Erdős-Renyi/Power
law) for the combined effect model

are higher at equilibrium with the combined effect model compared to the Levins type model.423

4.2.3 A focus on species occupancies at equilibrium for a given network combination424

Using the same parameters than the previous section, we simulated metacommunity dynamics and425

studied how the occupancy at equilibrium of each node of the product network depends on its426

degree for the combined effect model (see Appendix for the Levins type model). Additionally, we427

studied the mean occupancy of species across sites, plus species and link diversity in each site.428

We represented the occupancy of the nodes of the product network (that is the colonisation429
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Figure 5: Comparison between the stochastic metacommunity model and the nm-intertwined model
for the combined effect model. (a) Comparison of the mean total occupancy dynamics averaged
over 1000 replicates (solid line, the standard deviation is represented in grey) with the prediction of
the equilibrium by the nm-intertwined model (dashed line) (b) Comparison of the mean local oc-
cupancies in the stationary distribution of the stochastic metacommunity model with the predicted
values by the nm-intertwined model

network in this combined effect model) in function of their degree (Fig. 6). The occupancy of430

the nodes of the product network (indexed by a species and a site) increased with the degree431

of the nodes. Moreover, in this submodel, at a fixed node degree of the product network, the432

occupancy decreased with the ratio of the degree of the site over the degree of the node of the433

product network. This means that nodes of the product network that combined a generalist species434

with a low-connected site have a higher occupancy at equilibrium compared to nodes that combined435

a specialist species with a highly connected site. We observed the same patterns for the Levins436

type model with lower occupancies (Appendix). From the occupancies at equilibrium, we then437
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computed, species α-diversities in each site using the framework developed in (Ohlmann et al.,438

2019) with η = 2 (Fig. 6). We observed a positive relationship between species α-diversity and the439

degree of the nodes of the spatial network (Fig. 6). Mirroring the analysis on the spatial network,440

we represented the mean occupancy among the sites (Fig. 6) and observed a positive relationship441

between mean occupancy of a species and its degree in the biotic interaction network. For the442

Levins type model, we observed similar patterns except lower occupancies and mean occupancies443

per species (Fig. S5).444

5 Discussion445

In this paper, we proposed a stochastic spatially explicit model of mutualistic metacommunities446

that depends on the structure of spatial and biotic interaction networks, using Dynamic Bayesian447

Networks and graph products. Our stochastic model is built by integrating a metapopulation and448

a mainland-island interaction model (where species colonise an island influenced by a known meta-449

network). Spatial and interaction networks can modulate colonisation and extinction probabilities450

depending on the mechanisms that are encoded in the model. We proposed two sub-models but451

we encourage the implementation of other parameterisations or even interaction type since the452

stochastic model is highly flexible. The proposed mainland-island model is analogous to the trophic453

theory of island biogeography (TTIB, Gravel et al. 2011, Massol et al. 2017). However, in the TTIB,454

the interaction network must be a directed acyclic graph contrary to our mainland-island model455

where any network, even empty, can be used. The TTIB represents trophic interaction as energy456

flow from basal to non-basal species at a given time step whereas our stochastic interaction model457

represents population dynamics between two time steps, allowing feedback loops. The downside of458

this flexibility is the complexity and high-dimensionality of our stochastic model. However, network459

symmetries can be used to perform exact dimension reduction as in epidemics model (Simon et al.460

2011).461

In order to further investigate properties of our mutualistic metacommunity model, we did a462

deterministic approximation to obtain the nm-intertwined model, named in reference to epidemics463
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Figure 6: Simulating the dynamics for a given spatial and biotic interaction network with the com-
bined effect model. (a) Colonisation network whose size of the nodes is proportional to their degree
and colour indicates the occupancy at equilibrium (grey: low occupancy, black: high occupancy)
(b) Spatial network whose size of the nodes is proportional to their degree and colour indicates the
species α-diversity at equilibrium (grey: low α-diversity, black: high α-diversity) (c) Mutualistic
interaction network whose size of the nodes is proportional to their degree and colour indicates
the mean occupancy across the sites at equilibrium (grey: low mean occupancy, black: high mean
occupancy) (d) Relationship between the occupancy at equilibrium and the degree of the node of
the product network. Each point of the relationship (corresponding to a node of the product graph)
is coloured according to the ratio of the degree of the site in the spatial network over the degree
of the focal node in the colonisation network (e) Relationship between the species α-diversity at
equilibrium and the degree of the sites in the spatial network (f) Relationship between the mean
occupancy at equilibrium and the degree of the species in the biotic interaction network

28



model (Van Mieghem 2011). It allows to keep track of interaction and spatial network structure464

in the deterministic model, contrary to mean field approximation in lattice based metacommunity465

models (Kéfi et al. 2007). We assume that species occupancies vary independently and we showed,466

using simulations, that it provides a reasonable approximation of our metacommunity stochastic467

model (Fig. 5). However, this approximation holds as soon as the metacommunity is far from468

the extinction threshold. Otherwise, pairwise correlation between species occupancies must be469

considered (pair approximation, e.g., Kéfi et al. 2007) or even higher order correlation structure470

(Hiebeler & Millett 2011, Wuyts & Sieber 2022).471

Assuming that all species have the same colonisation and extinction parameters, our determin-472

istic metacommunity model showed a sharp transition between states where the metacommunity473

persisted (i.e., all species have non-null occupancy in all sites), and a state where the entire meta-474

community went extinct (i.e., all species have null occupancy in all sites). The transition depended475

on the structure of the interaction and spatial networks and on colonisation and extinction pa-476

rameters. We defined the metacommunity capacity, a scalar quantity depending on the structure477

of both networks, as a threshold on colonisation/extinction parameters governing persistence of478

interacting species, thus extending the single-species concept of metapopulation capacity (Hanski479

& Ovaskainen 2000, Ovaskainen & Hanski 2001) to a metacommunity context. Importantly, strong480

assumptions on colonisation and extinction functions lead to the threshold behaviour of our model.481

We assume that both spatial and interaction networks contribute to species colonisation. By doing482

so, even if a species is absent from the metacommunity, populations of this species can colonise483

sites where partner species are present. This guarantees not to have prior invariant (except 0) in484

the model, as for deterministic metapopulation model and leads to the threshold behaviour of the485

metacommunity model. We consider that mutualistic interactions help implantation of new species.486

This assumption is supported by the existence of foundation species that helps the metacommuni-487

ties to settle down (e.g., cushion plants, Reid & Lortie 2012). In our mutualistic model, presence488

of a foundation species in the metacommunity will lead to colonisation of the metacommunity by489

partner species.490

We extended the framework of metapopulation capacity to the case of a mutualistic meta-491

29



community with a critical extinction threshold that is the same for all species belonging to the492

metacommunity. Importantly, in this model, even in the absence of biotic interactions, all species493

have the same metapopulation capacity (since they have the same spatial network and colonisa-494

tion and extintion parameters) leading to a the same extinction threshold for all species (even if495

they have independant dynamics). Adding mutualistic interactions tangle the different metapop-496

ulation dynamics and increase metapopulation capacity (that becomes metacommunity capacity)497

thus strengthening the metacommunity in regard to extinction. This conclusion is specific to the498

deterministic model, while local extinctions are still possible in our stochastic model. We showed499

that spatial and interaction networks jointly determine the metacommunity capacity (Fig. 4, Fig.500

S3). In other words, any viability statement on a metacommunity (like classic metapopulation501

viability statements, e.g., Bulman et al. 2007) should be done using both networks, although we502

should keep in mind that the perceived spatial grain (i.e. nodes of the spatial network) and coloni-503

sation/extinction parameters might differ among species. Metacommunity capacity has important504

implications for biodiversity management (e.g., for metapopulations Groffman et al. 2006), since it505

helps conservationists to forecast and thus prevent crossing critical thresholds to metacommunity506

extinction when facing habitat destruction, pollution or other alteration. Despite appealing proper-507

ties, our deterministic mutualistic metacommunity model is ecologically unrealistic since all species508

have stricly positive occupancies at equilibirum (in case of metacommunity persistence) ignoring so509

the possibility of local extinction due to environmental constrains or demographic stochasticity.510

Our model of mutualistic metacommunity showed a sharp state-transition. Such abrupt transi-511

tions are known for community with positive interactions along environmental gradients (Callaway512

1997, Kéfi et al. 2016). We somehow extended these known results for mutualistic metacommunities.513

Mutualistic interactions tangle individual metapopulation dynamics and strengthen metacommu-514

nity in regards of extinction and, thanks to the proposed framework, we are able to quantify the515

gain in viability. If we assume that species have different colonisation and extinction parameters516

(depending on the environment for example) or that new species cannot colonise the metacommu-517

nity thanks to mutualistic partners, we can no more apply Ovaskainen & Hanski (2001). We might518

expect intermediate equilibrium states (i.e., states where only a subset of species goes extinct). Can519
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we extend the framework for other types of interactions? The assumptions on extinction functions520

in our model cannot represent non-mutualistic interactions and thus prevent its extension to com-521

petitive or multitrophic metacommunities. Regarding competition, competitive exclusion models522

in communities (Chesson 2000) and metacommunities (Calcagno et al. 2006) can lead to several523

intermediate states between coexistence and extinction of the entire metacommunity. However,524

competitive interactions along environmental gradients can induced dependencies between species,525

entailing alternative stable states (Liautaud et al. 2019). In the classic Lotka-Volterra deterministic526

model, conditions on trophic interaction network can lead to states where some of the species goes527

extinct but not the entire community (Takeuchi 1996; Bunin 2017). Wang et al. (2021) proposed528

a two species extension of metapopulation capacity with trophic interaction. They consider the529

metapopulation capacity for the prey and the predator separately. By approximating equilibrium530

prey occupancy, they compute predator metapopulation capacity. They extend the results to food531

chain in a hierarchical way. Contrary to the proposed framework, they do not propose a meta-532

community capacity but rather a set of metapopulation capacity that depends on each other in533

hierarchical way. It could be extended towards a trophic metacommunity model in a more general534

framework in several ways (Gross et al. 2020). However, predicting the outcome of these models535

from parameters only still poses tough challenges (Gross et al. 2020). In particular, this makes it536

difficult to establish critical thresholds for conservation science for competitive and trophic meta-537

communities. Nevertheless, we doubt that a single threshold value governs the fate of many species538

engaged in several types of interaction with each others as we believe that threshold phenomena539

occur in multi-interactions metacommunity. Our model should pave the way for a better under-540

standing of properties of spatially realistic trophic and competitive metacommunity models.541
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A Appendix: details on the model and simulations and proofs549

A.1 Stochastic models of metacommunity dynamics using dynamic Bayesian550

networks551

A.1.1 Bayesian networks and dynamic Bayesian networks552

Given a set of n random variables (X1,...,Xn) (we note I = {1, ..., n}),553

Definition 4. Two random variables Xi and Xj are independent conditionally given XIr{i,j} iff:

P(Xi, Xj |XIr{i,j}) = P(Xi|XIr{i,j})P(Xj |XIr{i,j})

Bayesian networks aim to map conditional independence statements using a Directed Acyclic Graph554

G (DAG). For a given node u, we note Pau(G) the set of nodes that are parents of u.555

Pau(G) = {v ∈ V, (v, u) ∈ E} (32)

The joint probability P(X) factorises over G as :556

P(X1, ..., Xn) =
∏
i

P(Xi|XPai(G)) (33)

The factorisation gives the independence conditional statement according to the structure of the557

DAG.558

A particular case of Bayesian network consists in Dynamic Bayesian Networks (DBNs). Indexing559

our previous n random variables by time t, a DBN describes the homogeneous dependencies be-560

tween {Xt
1, ..., X

t
n} and {Xt+1

1 , ..., Xt+1
n } using a directed bipartite network Gbip (we note Abip its561
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adjacency matrix). Importantly, as the structure of Gbip does not depend on t, it can be built562

using an aggregated network G (we note A its adjacency matrix) and a graph P2 (we note A2 its563

adjacency matrix) whose set of nodes is {t, t+ 1} and set of edges is {(t, t+ 1)}. We have564

Abip = A2 ⊗ (A + In) (34)

where In denotes the identity matrices of dimension n. We set Ã = A + In and denotes G̃ the565

associated graph. The joint probability factorizes over Gbip:566

P(Xt+1
1 , ..., Xt+1

n |Xt
1, ..., X

t
n) =

∏
i

P(Xt+1
i |XPai(G̃)) (35)

A.1.2 Convergence properties of the stochastic models567

The spatially realistic metapopulation model is a homogeneous Markov chain on χ = {0, 1}n. A568

state of the metapopulation is a binary vector of length n indicating whether each site is occupied569

or not. The dimension of the transition matrix is 2n ∗ 2n and the probability of transition between570

a state sk = (x1, ..., xn) and sl = (x̃1, ..., x̃n) is571

Pk,l = P(Xt+1
1 = x̃1, ..., X

t+1
n = x̃n|Xt

1 = x1, ..., X
t
n = xn) (36)

By applying conditional independence statements, we get:572

Pk,l =
∏
i

P(Xt+1
i = x̃i|Xt

i = xi,X
t
Ns(i) = (xNs(i))) (37)

0 is an absorbing state of the model. However, the model will reach a quasi-stationary distribution573

(see Darroch & Seneta 1965) before extinction which gives a distribution of all possible states of the574

metapopulation among sites. Getting extinction time and quasi-stationary distribution require to575

compute eigenvectors and eigenvalues of P that are intractable in the general case since P is high-576

dimensional. Using the “sampling from the past” algorithm (Aldous et al., 1988) is an alternative577

option to estimate the quasi-stationary distributions and associated eigenvalues, see e.g. Schreiber578
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et al. (2023) for an application of this technique in an ecological context.579

The mainland-island model of species interaction is a homogeneous Markov chain on χ = {0, 1}m580

with no absorbing state. A state of the mainland-island model of species interaction is a binary581

vector of length m, representing the composition of the community. The dimension of the transition582

matrix is 2m ∗ 2m and the probability of transition between a state sk = (x1, ..., xm) and sl =583

(x̃1, ..., x̃m) is584

Pk,l =
∏
j

P(Xt+1
j = x̃j |Xt

j = xj , X
t
Nb(j) = (xNb(j))) (38)

The chain converges towards a unique stationary distribution, a distribution of probability over all585

possible species communities. However, as in the metapopulation case, computing the stationary586

distribution is intractable in the general case since P is high-dimensional. To summarise, in the587

metapopulation model, the spatial network acts on the probability of colonisation, whereas in the588

interaction model, the biotic network acts on the probability of extinction.589

590

Proposition 3. The stochastic spatially realistic metacommunity model converges towards a unique591

stationnary distribution592

In the stochastic spatially realistic models of mutualistic metacommunities, the transition matrix593

of the chain is of dimension 2mn ∗ 2mn, encoding the probability of transition between a state594

sk = (x11, ..., xmn) of the metacommunity and a state sl = (x̃11, ..., ˜xmn), where xij ∈ {0, 1}595

describes the presence of a population of species i in site j. We note P the transition matrix, the596

probability of transition between sk and sl is :597

Pk,l =
∏
i,j

P(Xt+1
ij = x̃ij |Xt

11 = x11, ..., X
t
mn = xmn) (39)

Moreover, we have:598

P(Xt+1
i,j = 1|Xt

i,j = 0,
∑

(k,l)∈NGc (i,j)

Xt
k,l) = ε+ (1− ε) ∗ (1− (1− c)

∑
(k,l)∈NGc

(i,j) X
t
k,l) (40)
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with ε ∈]0; 1[ and c ∈]0; 1[. We have:599

P(ε < ε+ (1− ε) ∗ (1− (1− c)
∑

(k,l)∈NGc
(i,j) X

t
k,l) < 1) = 1 (41)

Moreover:600

P(Xt+1
i,j = 1|Xt

i,j = 1,
∑

(k,l)∈NGe (i,j)

Xt
k,l) = 1− e(1−

∑
(k,l)∈NGe (i,j)X

t
k,l

1 + degGe
((i, j))

) (42)

where e ∈]0; 1[. We have then:601

e

1 + degGe((i, j))
< e(1−

∑
(k,l)∈NGe (i,j)X

t
k,l

1 + degGe((i, j))
) < e (43)

The probability of extinction is in ]0; 1[.602

Consequently :603

∀i ∈ {1, ..., n},∀j ∈ {1, ...,m}, P(Xt+1
i,j = xi,j |Xt

1,1 = ˜x1,1, ..., X
t
m,n = ˜xm,n) > 0 (44)

It follows that P is irreducible and aperiodic and (Xt)t converges towards a unique stationary604

distribution. Importantly, in the stationnary distribution, each species in each sites has a non-nul605

probability of presence.606

A.2 The nm-intertwined model607

The approximation is derived from Bianconi (2018) and Van Mieghem (2011). The aim is to study608

the dynamics of occupancy of each species j in each site i: pij(t) = E(Xt
ij)). For all i and j, we609

have610

pi,j(t+1) = E((1−Xt
i,j)(ε+(1−ε)(1−(1−c)

∑
(k,l)∈NGc

(i,j) X
t
k,l)))+E(Xt

i,j(1−e(1−
∑

(k,l)∈NGe (i,j)X
t
k,l

1 + degGe
((i, j))

)))

(45)

This approach leads to a hierarchy of equations that cannot be solved (i.e. we need to consider611
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E(Xt
1,1, ..., X

t
m,n) to find a solution to the system). A drastic approximation consists in the mean612

field approximation, for any sequence of indices n(1), n′(1); ..., n(r), n′(r′), we assume :613

E(Xt
n(1),n′(1), ..., X

t
n(r),n′(r′)) ' E(Xt

n(1),n′(1))...E(Xt
n(r),n′(r′)) (46)

614

pi,j(t+1) = (1−pi,j(t))(ε+(1−ε)(1−(1−c)
∑

(k,l)∈NGc
(i,j) pkl(t))+(1−e(1−

∑
(k,l)∈NGe (i,j) pk,l(t)

1 + degGe((i, j))
))pi,j(t)

(47)

We assume that c = o(1), e = o(1) and ε = o(c), a Taylor expansion at order 1 with set Mi,j :=615

1 + degGe((i, j)) leads to:616

pi,j(t+1) = (1−pi,j(t))(ε+(1−ε)(c
∑

(k,l)∈NGc (i,j)

pk,l(t))+(1−e+e
∑

(k,l)∈NGe (i,j)

pk,l(t))/Mi,j)pi,j(t)

(48)617

pi,j(t+ 1) = (1− pi,j(t))(c
∑

(k,l)∈NGc (i,j)

pk,l(t)) + (1− e+ e
∑

(k,l)∈NGe (i,j)

pk,l(t))/Mi,j)pi,j(t) (49)

We introduce a single index v for the nodes of the product networks and get:618

pv(t+ 1) = (1− pv(t))(c
∑

u∈NGc (v)

pu(t)) + (1− e+ e
∑

u∈NGe (v)

pu(t))/Mv)pv(t) (50)

619

pv(t+ 1)− pv(t) = (1− pv(t))(c
∑

u∈NGc (v)

pu(t))− e(1−
∑

u∈NGe (v)

pu(t))/Mv)pv(t) (51)

pv(t+ 1)− pv(t) = Cv(p(t))(1− pv(t)))− Ev(p(t))(pv(t)) (52)

where Cv(p(t)) = c
∑

u[Ac]v,upu(t) and Ev(p(t)) = e(1−
∑

u[Ae]v,upu(t)/Mv).620

621

p(t + 1)− p(t) = c(Acp(t))� (1− p(t))− e(1− (De + Inm)−1Aep(t))� p(t) (53)

where � denotes the element-wise product, De denotes the indegree matrix of Ge and Inm the622

identity matrix of dimension nm.623
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A.3 Proof of proposition 1624

We need to show that the two submodels are irreducible. Let J be the matrix of dimension n× n625

so that:626

627

Jij =


1 if ∂gi

∂pj
(p) > 0,p ∈ Ω

0 otherwise
(54)

We say that the model is irreducible if J is irreducible, i.e., the graph that has J as adjacency628

matrix is strongly connected.629

Importantly, as pointed out in Smith (2008), we need to show that the models are irreducible on630

Ω, that is the interior of the domain but also its boundary.631

We have:632

gv(p) =

∑
u[Ac]v,upu

1−
∑

u[Ae]v,upu/Mv
(55)

We first note that gv is defined on Ω since:633

|
∑
u

[Ae]v,upu/Mv| ≤ |
∑
u

[Ae]v,u/Mv| < 1 (56)

We have:634

∂gv
∂pu

(p) =
[Ac]v,u(1−

∑
k[Ae]v,kpk/Mv) + ([Ae]v,u/Mv)

∑
k[Ac]v,kpk

(1−
∑

k[Ae]v,kpk/Mv)2
(57)

635

For the Levins type model:636

∂gv
∂pu

(p) = [Ac]v,u (58)

And since, Gs and Gb are both strongly connected and Gc = Gs�Gb, Gc is also strongly connected637

and J is irreducible on Ω.638

639

For the combined effect model, we note that E(Ge) ⊂ E(Gc). It follows that [Ac]v,u = 0 =⇒640
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[Ae]v,u = 0 and [Ae]v,u = 1 =⇒ [Ac]v,u = 1. We have then:641

∂gv
∂pu

(p) =
[Ac]v,u + (

∑
k[Ac]v,k[Ae]v,upk/Mv − [Ac]v,u[Ae]v,kpk/Mv)

(1−
∑

k[Ae]v,kpk/Mv)2
(59)

• If [Ac]v,u = 0, then [Ae]v,u = 0 and, for all k, [Ac]v,u[Ae]v,k − [Ac]v,k[Ae]v,u = 0. It follows642

that ∂gv
∂pu

(p) = 0643

• If [Ac]v,u = 1 and [Ae]v,u = 0, then:644

∂gv
∂pu

(p) = 1−
∑
k

[Ae]v,kpk/Mv (60)

and ∂gv
∂pu

(p) > 0645

• If [Ac]v,u = 1 and [Ae]v,u = 1, then:646

∂gv
∂pu

(p) =
1 + (

∑
k[Ac]v,k − [Ae]v,k)/pkMv

(1−
∑

k[Ae]v,kpk/Mv)2
(61)

Since E(Ge) ⊂ E(Gc), we have (
∑

k[Ac]v,k − [Ae]v,k) > 0 and ∂gv
∂pu

(p) > 0.647

Consequently, for the combined effect model, then non-zero elements of J are the non-zero elements648

of Ac. Since Gc = Gs�Gb it follows that J is irreducible.649

A.4 Computation of λI650

As provided in the main text, for the Levins type submodel, λI = λM = Λs + Λb. We now compute651

the λI for the three other submodels.652

We first compute the Jacobian matrix of p 7→ g(p) evaluated in p = 0. We have653

∂gv
∂pu

(0) = [Ac]v,u (62)

λI is the dominant eigenvalue of
(

∂gv
∂pu

(0)
)
u,v

654
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• Combined effect submodel655

For this submodel, Ac = As ⊗ Im + In ⊗Ab, it follows λI = Λs656

A.5 Computation of λM657

In order to compute λM for the combined effect submodel, the separated effect model and the658

rescue effect submodel where the components of g are not concave, we used a simulated annealing659

algorithm. We used the result of the iterative procedure described in Appendix D of Ovaskainen &660

Hanski 2001 as starting point.661

The code to compute the metacommunity capacity in the different models is available at: https:662

//gitlab.com/marcohlmann/metacommunity_theory.663

We assessed the performance of the method on the Levins type model on the simulated data, since664

we know analytically the metacommunity capacity in this case. We used 20000 time steps on the665

900 different networks for the two submodels. The maximum is not reached (Fig. S1a) but the there666

is a strong correlation (0.955) between the estimated metacommunity capacities and the theoretical667

metacommunity capacities (Fig. S1b), allowing so comparison of the metacommunity capacities668

among the different network structures.669

B Appendix: detail on the simulation670

B.1 Spatial networks671

In order to mimic fragmentation of the landscape, we sampled spatial networks (10 nodes) using

Erdős-Renyi model and a block model. For the Erdős-Renyi model, the probability of connection

was C = 0.25 and we kept connected networks only. For the block model, we partitioned in two
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Figure S1: (a) Distribution of the relative error in the estimation of the metacommunity capacity (b)
Relation between the metacommunity persistence capacity computing using a simulating annealing
algorithm and the theoretical metacommunity capactity for the Levins type submodel

groups of equal sizes, p and q, with a matrix of probability of connection, Π, given by:

p q 7C
4

C
4 p

C
4

7C
4 q

where C = 0.25.672

The overall probability of connection in the network is :673

P(i↔ j) =
∑

k∈{p,q},l∈{p,q}

Pr(i↔ j|i ∈ k, j ∈ l)Pr(i ∈ k)Pr(j ∈ l) (63)

P(i↔ j) =
1

4
(
7C

4
+
C

4
+
C

4
+

7C

4
) (64)
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P(i↔ j) = C (65)

So the expected value of connectance for all spatial networks is the same despite different674

modularity values (Fig. S2).675
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Figure S2: Distribution of the modularity of the spatial networks over the 15 replicates for the
Erdős-Renyi strucutre and the modular structure

B.2 Biotic interaction networks676

We first generated random undirected network with various shapes of the degree distribution using677

the function sample_fitness_pl implemented in the R package igraph (Csardi & Nepusz, 2006). We678

generated Erdős-Renyi networks and networks with a degree distribution given by a power-law.679

We only kept connected networks. On the random network G sampled (A is its adjacency matrix),680

we build a bipartite network Gbip with adjacenncy matrix Abip as:681

Abip = A2 ⊗ (A + In) (66)
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where A2 is the adjacency matrix of an undirected graph made of two nodes and a single edge682

between these two nodes. By doing so, all the sampled undirected bipartite networks are strongly683

connected.684

B.3 Results685

We simulated the dynamic (as presented in the main text for the combined effect submodel) for the686

Levins type model (Fig. S5, Fig. S6).687
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spatial network
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Figure S3: Assessing metacommunity persistence capacity in function of the structure of the spatial
network (Erdős-Renyi/Modular) and the structure of the interaction network (Erdős-Renyi/Power
law) for the Levins type model
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Figure S4: Comparison between the stochastic metacommunity model and the nm-intertwined
model for the Levins type model. (a) Comparison of the mean total occupancy dynamics averaged
over 1000 replicates (solid line, the standard deviation is represented in grey) with the prediction of
the equilibrium by the nm-intertwined model (dashed line) (b) Comparison of the mean local oc-
cupancies in the stationary distribution of the stochastic metacommunity model with the predicted
values by the nm-intertwined model

B.4 Robustness of metacommunity capacity estimation688

We analysed the robustness of the estimation of λM for the four different structures for each689

submodel. We described the distribution of λM (225 samples per combination of structure for690

each model) using a boxplot (Fig. S7). Morever, we used a Tukey test to estimate the confidence691

intervals of the difference in mean metacommunity capacity per pairs of structures (Fig. S8). For692

the Levins type and combined effect model, all differences in mean λM were statistically different693

of 0. For the seperated effect and rescue effect model, difference in mean λM of PL/E-E/E (PL:694

Power-Law, E: Erdős-Renyi, M: Modular) and PL/M-E/M were statistically not different from 0.695

43



degree

3

4

5

6

7

8

9

(a)

degree

1

2

3

4

(b)

degree

2

3

4

5

(c)

0.70

0.75

0.80

0.85

4 6 8
degree of the product network

oc
cu

pa
nc

y

0.2

0.4

0.6

0.8

1.0

deg(Gs)
deg(Gc)

(d)

13.95

13.96

13.97

13.98

13.99

1 2 3 4
degree of the spatial network

α
−

di
ve

rs
ity

(e)

0.800

0.825

0.850

2 3 4 5
degree of the biotic interaction network

m
ea

n 
oc

cu
pa

nc
y

(f)

Figure S5: Simulating the dynamics for a given spatial and biotic interaction network with the
Levins type model. (a) Colonisation network whose size of the nodes is proportional to their degree
and colour indicates the occupancy at equilibrium (grey: low occupancy, black: high occupancy)
(b) Spatial network whose size of the nodes is proportional to their degree and colour indicates the
species α-diversity at equilibrium (grey: low α-diversity, black: high α-diversity) (c) Mutualistic
interaction network whose size of the nodes is proportional to their degree and colour indicates
the mean occupancy across the sites at equilibrium (grey: low mean occupancy, black: high mean
occupancy) (d) Relationship between the occupancy at equilibrium and the degree of the node of
the product network. Each point of the relationship (corresponding to a node of the product graph)
is coloured according to the ratio of the degree of the site in the spatial network over the degree
of the focal node in the colonisation network (e) Relationship between the species α-diversity at
equilibrium and the degree of the sites in the spatial network (f) Relationship between the mean
occupancy at equilibrium and the degree of the species in the biotic interaction network
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Figure S6: Aggregated statistics from occupancy at equilibrium for the combined effect submodel
in the spatial network and the biotic interaction network. (a) Spatial network whose size of the
nodes is proportional to their degree and colour indicates the α-diversity at equilibrium (grey: low
α-diversity, black: high α-diversity). (b) Relationship between the α-diversity at equilibrium and
the degree of the sites in the spatial network. (c) Biotic interaction network whose size of the
nodes is proportional to their degree and colour indicates the mean occupancy across the sites at
equilibrium (grey: low α-diversity, black: high α-diversity). (d) Relationship between the mean
occupancy at equilibirum and the degree of the species in the biotic interaction network.

It means that, for these two models, whatever the structure of the spatial network (Modular or696

Erdős-Renyi), mean λM was comparable for a power-law or Erdős-Renyi biotic interaction network.697
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Figure S7: Boxplot representing distributions of λM for each combination of structure in the Levins
type and the combined effect model. E: Erdős-Renyi, PL: Power-Law, M: Modular
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