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Reliable identification of hotspot areas with high numbers of threatened plant species has a central role in
conservation planning. We investigated the potentiality of identifying the distribution, richness and hot-
spots of threatened plant species at a 25 ha resolution using eight state-of-the-art modelling techniques
(GLM, GAM, MARS, ANN, CTA, GBM, MDA and RF) in a taiga landscape in north-eastern Finland. First, the
individual species models developed based on occurrence records of 28 species in the 1677 grid squares
and derived from different statistical techniques were extrapolated to the whole study area of 41
750 km2. Second, the projected presence/absence maps were then combined to create species richness
maps, and the top 5% of grid cells ranked by species richness were classified as hotspots. Finally, we cre-
ated an overall summary map by combining the individual hotspot maps from all eight modelling tech-
niques and identified areas where the individual hotspots maps overlapped most. There were
distinguishing differences in projections of the geographic patterns of species richness and hotspots
between the modelling techniques. Most of the modelling techniques predicted several hotspot locations
sporadically around the study area. However, the overall summary map showed the highest predictive
performance based on Kappa statistics, indicating that the locations where the hotspot maps from the
eight models coincided most harboured highest observed species richness. Moreover, the summary
map filtered out the patchy structures of individual hotspot maps. The results show that the choice of
modelling technique may affect the accuracy and prediction of hotspot patterns. Such differences may
hamper the development of useful biodiversity model applications for conservation planning, and thus
it is beneficial if the conservation decision-making can be based on sets of alternative maps and overlay-
ing of predictions from multiple models.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recognition and understanding of geographical patterns of spe-
cies distributions have long been central themes in ecology and
biogeography (Franklin, 1995; Wu and Smeins, 2000; Seoane
et al., 2003; Araújo and Guisan, 2006), and such information is fre-
quently used in different ecological applications especially in the
field of nature conservation and management planning (Gioia
and Pigott, 2000; Wu and Smeins, 2000; Loiselle et al., 2003;
Vaughan and Ormerod, 2003). One important attribute of biologi-
cal diversity that has a significant role in conservation and man-
agement strategies is concentrations (hotspots) of threatened
species (Eyre and Rushton, 1989; Gaston, 1994). Information of
where hotspots of threatened species richness are located, or are
most likely to occur, is thus critical for successful nature conserva-
tion (Margules and Pressey, 2000).
ll rights reserved.

inen).
Predictive models of single species geographical distributions
and species richness provide an attractive alternative for incom-
plete or spatially biased survey data as a basis for conservation
planning (Fleishman et al., 2002; Lehmann et al., 2002; Vaughan
and Ormerod, 2003; Heikkinen et al., 2007a; Rodriguez et al.,
2007; Parviainen et al., 2008). If reliable models for occurrences
and richness of (rare or threatened) species can be produced, they
can enhance the capacity for land-use planning and assist manag-
ers in meeting different objectives (Fleishman et al., 2002), and the
development of rapid and cost-effective methods to map areas in
order to assess their biological value for nature conservation (Mar-
gules and Austin, 1991; Gaston, 1996; Debinski et al., 1999; Nagen-
dra and Gadgil, 1999; Ottaviani et al., 2004).

A traditional way to develop spatial projections of species rich-
ness has been direct measurement of numbers of species from sur-
veyed sites and relation of this information to the environmental
variables measured from the same sites or derived from different
digital layers of geographical information (GIS) data, to produce
models that yield predictions of richness to unsampled sites
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(Gould, 2000; Luoto et al., 2004; Moser et al., 2005). A less often em-
ployed way of simulating richness patterns is to model each species
separately, and then to identify trends and hotspots of species rich-
ness by summing up the spatial predictions of individual species
(Cumming, 2000; Gioia and Pigott, 2000; Lehmann et al., 2002; Pin-
eda and Lobo, 2009). This approach can provide some interesting
advantages, such as better control for poorly modelled species
and unacceptable prediction maps (Gioia and Pigott, 2000), and
easier identification of the set of the most important explanatory
variables and the response shapes between of species and their
environment in certain subgroups of species. However, there are
also potential limitations in this approach. The broad array of meth-
ods currently available to modellers and managers for modelling
patterns of species distribution can be confusing (Franklin, 1995;
Guisan and Thuiller, 2005; Elith et al., 2006), and evaluation of
the relative performance of different techniques remains a contin-
uous challenge in ecology and conservation biology (Loiselle
et al., 2003; Thuiller, 2003; Lawler et al., 2006; Pearson et al.,
2006; Elith and Leathwick, 2007; Heikkinen et al., 2007a; Marmion
et al., 2009a). Moreover, very little is known concerning whether
the differences between various methods projections for separate
species accumulate in summed richness maps, which may make
the planning decisions even more sensitive to differences between
model outputs. It is possible that the spatial overlaying of simulated
richness maps from several different techniques, and examination
of the locations where they overlap, could help in generating more
robust identification of richness hotspots. However, this question
has been insufficiently studied (but see Loiselle et al., 2003).

In northern Europe, intensive forest management has caused
drastic changes in forests during recent decades (Kouki et al.,
2001). This has resulted in the decline and endangerment of many
forest species. For example, 80% of all red-listed (threatened or
near-threatened) species recorded in Finland are primarily threa-
tened by habitat changes (Rassi et al., 2001). The distributions of
many threatened species groups, especially vascular plants, are in
many areas rather well-known in Finland. Thus these species pro-
vide a useful study setting for investigating the potentiality of iden-
tifying threatened species hotpots in more remote and insufficiently
areas in the landscape, by summing up the predictions of separate
species models and using several different modelling techniques.

In this study, we aimed to identify the distribution and hotspots
of threatened plant species using eight modelling techniques, ap-
plied to each of the 28 threatened vascular plant species in order
to predict current species distribution, richness and threatened
plant species hotspots. The study is an extension based on the
work by Marmion et al. (2009a) in which a thorough comparison
of the performance of the same eight modelling techniques was
provided. Here, we specifically focused on topics that were not ex-
plored in Marmion et al. (2009a), namely (1) to investigate and
compare the differences between the simulated hotspot maps of
threatened plant species among the eight techniques, and (2) to
explore the potentiality of identifying locations of the threatened
plant species hotspots in taiga landscapes by overlaying the predic-
tions from multiple models.
2. Materials and methods

2.1. Study area

The study area (41,750 km2) is located between 31–32�450E and
65–67�500N in north-eastern Finland (Fig. 1). Phytogeographically
the study area lies within the northern boreal zone (Ahti et al.,
1968), where pine- and spruce-dominated forests prevail. Wet-
lands, numerous lakes and rivers characterize the landscape of
the study area. The bedrock is calcium-rich in many places, provid-
ing favourable conditions for species-rich plant communities (Par-
viainen et al., 2008). The mean annual temperature is ca. �0.5 �C,
the growing season lasts ca. 130 days, and the difference between
the mean temperature of the coldest (January, ca. �14 �C) and the
warmest (July, ca. 15 �C) month is ca. 29 �C (Atlas of Finland, 1987).

2.2. Plant species data

Due to the long-standing naturalist tradition, the species distri-
bution patterns of threatened vascular plant species are relatively
well known in many parts of Finland. In this study we used occur-
rence records from the national database of threatened species
maintained by the Finnish Environment Institute. The comprehen-
sive field records made by voluntary amateur and professional bot-
anists are the most important data sources for this data base, but
information on species occurrences has also been gathered from
the scientific literature and herbaria.

The species data for our study area consisted of presence re-
cords of 28 species with ten or more records in the 1677 grid
squares with an area of 25 ha (Table 1). These 1677 grid squares
were spread across the whole study area and used as the starting
data set in the model building (Parviainen et al., 2008). The data-
base of the threatened plant species does not include records of
the absence of the species. However, we assumed that the absence
of a record in any of the 1677 grid squares corresponded to true ab-
sence of the species (Eyre et al., 2004), given the quasi-exhaustive
sampling strategy. According to the IUCN classification (Gärdenfors
et al., 2001), 24 (86%) of the plant species were defined as vulner-
able and 4 (14%) as endangered (EN) (Table 1).

2.3. Environmental variables

In total, three climate, four topography, three geology and six
land cover variables were used to explain threatened plant species
distribution (see Parviainen et al., 2008). The correlations between
explanatory variables used in the modelling experiments were low
(Spearman’s correlation coefficient, |r| < 0.70) The explanatory
variables are described in detail in Parviainen et al. (2008).

2.4. Modelling techniques

We simulated the distribution of the 28 threatened plant species
and their hotspots using the BIOMOD tool (Thuiller, 2003), as
implemented for R software. The following eight techniques based
on binomial data were used in modelling analyses: generalized lin-
ear models (GLM), generalized additive models (GAM), multivariate
adaptive regression splines (MARS), artificial neural networks
(ANN), classification tree analysis (CTA), general boosting method
(GBM), mixture discriminant analysis (MDA), and random forests
(RF). The modelling techniques are described and discussed in Thu-
iller (2003), Elith et al. (2006) and Marmion et al. (2009a, in press).
Marmion et al. (2009a) provides a detailed comparison of the accu-
racy of these eight modelling techniques with the present species
data, and thus those results are only briefly touched upon here.

First, for all eight modelling methods, we calibrated and vali-
dated the models using the species data in the 1677 grid squares
with an area of 25 ha. The derived models were then used to pro-
duce simulated distribution maps for individual species at a spatial
resolution of 25 ha in the whole study area (i.e. 166,968 grid cells
each 25 ha in size) showing the area where the environmental
requirements for the species were met (Guisan and Thuiller,
2005). Second, to create richness maps we combined the pres-
ence/absence maps for individual species and used a simple
summation of the predicted occurrences (Lehmann et al., 2002).
Third, we identified richness hotspots as the top 5% of grid cells
ranked by species richness (see Prendergast et al., 1993; Williams



Fig. 1. (A) A distribution map with the observational points of the studied threatened plant species in the 1677 grid squares used in the model building and environmental
variables calculated for the whole study area: (B) growing degree days (gdd), (C) elevation (m), and percentage cover (%) of (D) calcareous rock and (E) open mire.
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et al., 1996). Finally, we created an overall summary map by com-
bining the individual hotspot maps from all eight modelling tech-
niques. The resulting overall summary hotspot map is a
summation of the eight individual hotspots maps and any location
on this summary map can have a hotspot value between 0 and 8. In
other words, high values in the summary maps indicate the loca-
tions where the hotspots identified by the eight models coincide
most.

For a comparison, we produced a map of predicted species rich-
ness, using the traditional direct species richness modelling ap-
proach by relating the observed species richness to the same
predictor variables as used in the single-species models, using a
GAM and Poisson distribution and logarithmic link function (Hei-
kkinen, 1998). The hotspot map (5% of grid cells ranked by species
richness) produced with this approach was then compared with
the hotspot maps obtained by summing individual species models.

2.5. Model evaluation

To evaluate the models, the original data set of 1677 grid
squares was randomly divided into model training (70%,
n = 1174) and model evaluation sets (30%, n = 503) (split-sample
approach; see Guisan and Zimmermann, 2000). The predictions
and observed data from the subsets of data were combined and
used to measure the performance of models by calculating the area
under the curve (AUC) of a receiver operating characteristic (ROC)
plot (Fielding and Bell, 1997) to assess the agreement between the
presence–absence records and the predictions. The AUC ranges
generally from 0.5 for models with no discrimination ability to 1
for models with perfect discrimination.

Finally, we evaluated how well the different modelling ap-
proaches (a hotspot map derived from direct species richness mod-
el provided by GAM, hotspot maps based on the eight individual
models, and the overall summary map based on the eight hotspot
maps) identified the observed species richness hotspot in the mod-
el evaluation set. The predictive performance of the different ap-
proaches was here assessed by Kappa (j) statistics using the
modelled and the observed hotspot information. The j value ex-
presses the agreement not obtained randomly between two quali-
tative variables (Congalton, 1991). The j index is based on the
misclassification matrix. The range of j is from �1.0 to 1.0.

We acknowledge here that our evaluation data set does not rep-
resent a totally independent test set for assessing the predictive
abilities of different models (cf. Araújo et al., 2005; Randin et al.,
2006; Heikkinen et al., 2007b). However, as the 25 ha grid cells
in both our model calibration and evaluation data sets were dis-
tributed rather sparsely across the whole study area (grid cells
used in modelling covered only ca. 1% of the whole study area),
we assume that the effect of spatial autocorrelation was rather
small. Moreover, in the recent paper by Parviainen et al. (2008)
the effect of spatial autocorrelation on the modelling results of
the same data set was tested by including autocovariate terms in



Table 1
Prevalence (the ratio of presence squares to the total sample in the original data set of
1677 grid squares), main habitats of species and conservation status for the studied
28 threatened plant species.

Species Prevalence (%) Main habitats Status

Arnica angustifolia 1.85 R VU
Asplenium ruta-muraria 2.62 R VU
Botrychium boreale 3.88 C, R, S VU
Botrychium lanceolatum 2.74 S, C VU
Calypso bulbosa 17.11 F, M VU
Carex appropinquata 3.58 M, A, S VU
Carex heleonastes 9.90 M, A VU
Carex lepidocarpa ssp. jemtlandica 1.61 M VU
Carex microlochin 1.25 S, M, R EN
Carex viridula var. bergrothii 2.98 M, S VU
Cerastium alpinum (ssp. alpinum) 4.00 R EN
Cypripedium calceolus 16.82 F, M, C VU
Dactylorhiza traunsteineri 6.74 M VU
Dactylorhiza lapponica 1.01 M VU
Dactylorhiza incarnata ssp. cruenta 4.83 M, S, C VU
Elymus fibrosus 6.14 S, C VU
Epilobium laestaedii 1.49 M, A, C EN
Epipogium aphyllum 1.31 F, M VU
Gentianella amarella 3.64 C, S, R VU
Gypsophila fastigiata 2.03 F, R VU
Lonicera caerulea 0.72 S, F EN
Lychnis alpina var. serpentinicola 2.03 K VU
Minuartia biflora 1.25 R VU
Moehringia lateriflora 12.82 F, S VU
Primula stricta 2.74 S VU
Saxifraga hirculus 22.06 M, A VU
Schoenus ferrugineus 1.91 M VU
Silene tatarica 6.02 S, C VU

Mean ± std 5.18 ± 5.54

Main habitats of the species: A = aquatic, C = cultural, F = forest, M = mire, R = rocky,
S = shore. Conservation status: EN = endangered, VU = vulnerable (Rassi et al.,
2001).
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the GAMs. Inclusion of the autocovariate had only a minor effect on
the importance of the environmental variables and the shape of
predictor–response curves. Thus, we consider that our study set-
ting is not considerably impaired by spatial autocorrelation.

3. Results

The number of threatened species recorded in 1677 grid cells
each 25 ha in size varied between 1 and 8, with a mean of 1.47 spe-
cies. The average AUC values of the evaluation set varied from 0.730
(CTA) to 0.856 (RF) with a mean value of 0.801 (Appendix A).
Although the variation of the AUC values of the evaluation data
was high (ranging from 0.482 to 0.998), almost half (47%) of the
models had good or excellent model performance (AUC > 0.8). The
environmental variables selected into models are presented in
Appendix B.

As in Marmion et al. (2009a), also in the present results there
were partly marked differences in the predicted distributions be-
tween different modelling techniques. Predictions of threatened
plant species richness and richness hotspots based on summation
of single-species predictions and direct species richness approach
are shown in Figs. 2 and 3. Based on visual examination and statis-
tical evaluation, also here there was considerable variation
between modelling methods. The correlations between the pro-
jected richness patterns and hotspots were highest between GLM
and GAM (Spearman’s correlation coefficient, r = 0.578 and Kap-
pa = 0.300; Table 2). GAM and GLM illustrated the greatest hotspot
concentration in the eastern part of study area, whereas MARS sug-
gested hotspot squares scattered all over the study area. Very
dissimilar richness maps were produced by ANN and GBM, as indi-
cated by the negative correlation (r = �0.119) and very low Kappa-
value (0.033) (Table 2) between their projections.
The geographic overlap of threatened plant species hotspots be-
tween different modelling techniques is represented in Fig. 4. A to-
tal of 1695 squares (1.02%) of the whole study area were identified
as hotspots by at least four modelling techniques, but only 13 grid
(0.01%) squares by all eight modelling techniques. Visual interpre-
tation showed rather clearly the bimodal distribution pattern of
the summarized hotspots in the eastern and northern parts of
the study area. Based on Kappa statistics, the overall summary
map based on eight hotspot maps showed the highest predictive
performance to identify observed species richness hotspots in the
evaluation data (Fig. 5). Moreover, the overall summary map fil-
tered out the patchy structures of individual hotspot maps improv-
ing the visual interpretation of the model outputs.
4. Discussion

4.1. Examination of threat spots

Total species richness and biodiversity hotspots are widely used
measures of biological diversity (Prendergast et al., 1993; Purvis
and Hector, 2000). However, developing representative assess-
ments of biodiversity for a given area also requires examination
of threatened species, i.e. species that are considered to be at risk
of extinction in the wild. Threatened species often have restricted
geographical distributions and are not well-represented in overall
species richness analysis (Jetz and Rahbek, 2002). Examination and
reliable modelling of regions with high numbers of threatened
species, threat spots, may thus have an essential role in success-
ful conservation strategies (Gaston, 1994, 1996; Kivinen et al.,
2008). This is because although regions with a high number of
species may contain many rare species, rarity and species richness
often provide independent and complementary measures of bio-
logical diversity (Prendergast et al., 1993; Ceballos and Ehrlich,
2006).

Classical way to model total species richness or threatened spe-
cies richness is based on GLM or GAM techniques using Poisson
distribution and logarithmic link function (Heikkinen, 1998). How-
ever, modelling of the spatial distribution of threatened species
and developing useful models for their richness patterns generally
poses different challenges than modelling of species with large
ranges. This is because the performance of the models depends
on the characteristics of the species (see Pearce et al., 2001; Seoane
et al., 2005; Carrascal et al., 2006; McPherson and Jetz, 2007; Pöyry
et al., 2008). Whereas species with large ranges are often generalist
species with wide ecological tolerances showing continuous distri-
bution ranges, threatened species distribution patterns are usually
geographically much more limited and tend to be particularly at fi-
ner resolutions spatially sporadic due to their strict ecological
requirements for certain habitat characteristics (e.g. soil types,
microclimate). For modelling studies carried out at landscape scale,
including the present study, the sporadic distribution patterns of
threatened species may cause a certain problem. Namely, data on
the summed number of threatened species in the surveyed loca-
tions across the study area are often zero inflated. Zero inflated
data are defined as data that has a larger proportion of zeros than
expected from pure count (Poisson) data (Barry and Welsh, 2002).
If we ignore this feature of the threatened species richness data
and apply standard Poisson error models problems with inference
can occur. These problems arise because the Poisson assumption is
not always an adequate approximation to the conditional distribu-
tion of the data. In that case modelling species distributions sepa-
rately for each species and then summing the predicted presences
could be a useful strategy to assess the spatial variation in species
richness for conservation purposes, particularly for poorly sampled
regions (Cumming, 2000; Pineda and Lobo, 2009).



Fig. 2. Spatial predictions of species richness for the whole study area based on eight different modelling techniques: (A) GLM, (B) GAM, (C) MARS, (D) ANN, (E) CTA, (F) GBM,
(G) MDA, (H) RF and (I) direct species richness approach based on Poisson GAM.
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4.2. Interpretation of the prediction maps and multiple models

Maps representing the locations of the projected hotspots
are important to conservation managers, landscape planners
and researchers. However, there is currently a broad array of
approaches available to modellers and conservation manag-
ers, and thus it can be difficult to choose the most suitable
technique from several competing methods (Cumming, 2000;
Pineda and Lobo, 2009). This study makes a contribution
to this arena by summing up of predictions from multiple



Fig. 3. Spatial predictions of threatened plant species hotspots based on eight different modelling techniques: (A) GLM, (B) GAM, (C) MARS, (D) ANN, (E) CTA, (F) GBM, (G)
MDA, (H) RF and (I) direct species richness approach based on Poisson GAM.
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occurrence models in identifying hotspots of threatened plant
species.

Based on our modelling results, the spatial patterns of threa-
tened plant species hotspots in the overall summary map indicate
that there were two distinct hotspot concentrations, in the eastern
and the northern part of study area, but minor concentrations of
threatened plant species were also found in other parts of the
study area, especially near the rivers. It is known that threatened
species diversity can be encompassed in relatively small areas of
the landscape (Reid, 1998). In general, hotspots of threatened plant



Table 2
Pairwise correlation coefficients (Spearman rank correlation) for the predicted species richness between eight modelling techniques and direct richness modelling approach based
on GAM. The value between brackets denotes Kappa values for the spatial agreement between the observed and predicted hotspots. The correlations are based on predicted
species richness, whereas the Kappa-values are based on the binary information of the predicted hotspots.

GAM Poisson GLM GAM MARS ANN CTA GBM MDA

GLM 0.281 (0.160)
GAM 0.274 (0.173) 0.578 (0.300)
MARS �0.043 (0.033) 0.097 (0.040) 0.065 (0.032)
ANN 0.520 (0.266) 0.152 (0.131) 0.080 (0.121) 0.058 (0.018)
CTA 0.084 (0.216) �0.106 (0.000) �0.032 (0.019) �0.021 (�0.006) 0.108 (0.021)
GBM �0.006 (0.312) 0.181 (0.067) 0.291 (0.099) 0.053 (0.049) �0.119 (0.033) 0.426 (0.294)
MDA 0.064 (0.146) 0.177 (0.072) 0.239 (0.079) �0.022 (0.014) 0.065 (0.039) 0.240 (0.133) 0.264 (0.152)
RF 0.065 (0.252) 0.053 (0.049) 0.071 (0.044) 0.045 (0.026) 0.041 (0.018) 0.455 (0.285) 0.534 (0.294) 0.249 (0.135)

Fig. 4. Overall summary map of threatened plant species hotspots based on the
combination of the individual hotspot maps from all eight modelling techniques
(see Fig. 3), showing the degree of the overlap between the individual hotspots
maps.
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species in our study area were located in areas characterized by
rather continental climate and at relatively high altitudes with
sun-drenched cliffs, where calcareous rich sandy soils prevail
(see Parviainen et al., 2008).

Similarly as in the previous study (Marmion et al., 2009a), we
found also here marked variation in modelling success between
different modelling techniques. This emphasizes the fact that it is
beneficial to consider prediction outputs from multiple models
while making assessments of species richness trends and hotspot
patterns (Thuiller, 2003; Segurado and Araújo, 2004; Elith et al.,
2006). However, it is also imperative to realize that good modelling
performance with observed distributions does not guarantee that
the model produces the ecologically most plausible distribution
maps, especially for non-sampled parts of a given area (Pearson
and Dawson, 2003; Pearson et al., 2006; Randin et al., 2006). Due
to the large differences between predictions from alternative mod-
elling techniques, it is usually not possible to single out the ‘‘best”
technique for identification of potential hotspot locations. This has
important consequences for the applied use of predictive models
e.g., for conservation purposes, where the accuracy of the models
is a critical factor distinguishing the hotspots of threatened species
(Heikkinen, 1998).

An important aspect of model evaluation is the visual interpre-
tation of the probability maps. It is noteworthy that although AUC
yielded rather similar results across techniques, there were never-
theless non-negligible differences in the spatial predictions made
for the whole study area. This indicates that small differences be-
tween two modelling techniques in terms of evaluation statistics
can result in large differences in predictions (Thuiller, 2003,
2004). The marked variation in results between species and differ-
ent modelling techniques supports the argument of Elith and
Leathwick (2007) that the fitting of reliable models is not always
possible, and that it is important to evaluate the output as rigor-
ously and comprehensively as possible.

The correlations among richness maps and hotspot maps cre-
ated with different techniques were rather weak. Somewhat sur-
prisingly, although the predictive performance of GAM and GLM
was only moderate, the richness and hotspot maps produced by
these models were nevertheless best supported by the biological
knowledge of threatened plant species richness. Our findings also
reinforce the argument that different modelling techniques do
not necessarily produce equivalent and equally plausible hotspot
predictions; particularly projections by ANN and GBM did not gen-
erally coincide. Most of the modelling techniques predicted several
hotspot locations sporadically around the study area, and thus the
individual predicted hotspot distribution maps for the study area
were remarkably patchy. However, the patterns of predicted hot-
spot locations became much more clearly defined when individual
species richness prediction maps were combined. Thus, overlaying
of predictions from multiple models may significantly enhance fil-
tering out of the patchy structures of individual hotspot maps and
identification of the distinct hotspot concentrations in a given area
by summarizing agreements among projections generated by dif-
ferent models. In addition, the overall summary map of hotspots
provided a more accurate projection of hotspots, that coincided
better with the locations of high observed species richness that
the forecasts from the traditional approach of modelling species
richness directly using a GAM with a Poisson distribution
assumption.

Predictive distribution modelling of species and associated
richness maps offer a useful tool for identification of threatened
species hotspots and help in directing attention to critical geo-
graphical locations for conservation and management planning.
However, caution should be exercised also in interpretation of
the summed richness, because the separate species distribution
models forming the basis for such richness maps may be sensitive
to many different problems, ranging from the selection of predictor
variables and scaling problems into sampling biases and species
geocoding problems (see Gioia and Pigott, 2000; Gutzwiller and
Barrow, 2001; Elith et al., 2002; Vaughan and Ormerod, 2003).

In the North European taiga landscape, there is a great deal of
pressure to increase resource extraction, mining, tourism industry
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Fig. 5. The spatial agreement between the observed and predicted hotspots in direct species richness approach, the eight individual hotspot maps and overall summary map
in the evaluation data. The degree of spatial agreement was assessed by Kappa statistics.
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and road building, to generate power from rivers, to protect native
heritage and economies, and to preserve wilderness areas (Kouki et
al., 2001). All these activities require an analysis of potential eco-
logical resources and effects on an area. Our results show that spe-
cies distribution models and the summed richness maps from
multiple models can provide powerful means to delimit valuable
nature conservation areas and focus management efforts in order
to ensure the preservation of biological diversity in taiga
landscapes.

5. Conclusions

Identification of the locations harbouring several threatened
plant species (hotspots) based on summation of the predictions
from individual species distribution models provides an attractive
alternative for ‘direct’ modelling of species richness (Cumming,
2000; Gioia and Pigott, 2000; Lehmann et al., 2002). In addition, in-
stead of production of a single richness or hotspot map for conser-
vation prioritization (Redford et al., 2003), it is beneficial if the
broader conservation decision-making can be based on sets of
alternative maps based on varying parameters and choices (Whit-
taker et al., 2005). The summed richness and hotspots patterns and
maps such as presented here can be readily divided into different
sub-categories. This enables the modellers and managers to scruti-
nize the predictions for species with, for example, different endan-
germent status, different responses to alternative management
measures, or species with different ecological traits. Information
on species compositional trends is also easier to extract from sep-
arate species models than from traditional species richness maps
(Luoto et al., 2004). Most importantly, differences between the spa-
tial predictions among different models may hamper the reliable
identification of richness hotspots of threatened species (or other
species groups of interest) and development of useful applications
for conservation and management planning. A more solid basis for
planning can be built by overlaying several different model out-
puts. Hotspots identified in this way represent potentially impor-
tant areas for the targeting of survey and conservation efforts.
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