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INTRODUCTION

Environmental niche models utilize associations between

environmental variables and known species distributions to

define abiotic conditions within which populations can be

maintained. Projection of modelled niches into new regions

and under scenarios of future climate change enables the

geographical distribution of suitable conditions to be predic-

ted. This approach has been widely applied, including in

studies investigating the potential impacts of climate change
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ABSTRACT

Aim Many attempts to predict the potential range of species rely on

environmental niche (or ‘bioclimate envelope’) modelling, yet the effects of

using different niche-based methodologies require further investigation. Here we

investigate the impact that the choice of model can have on predictions, identify

key reasons why model output may differ and discuss the implications that model

uncertainty has for policy-guiding applications.

Location The Western Cape of South Africa.

Methods We applied nine of the most widely used modelling techniques to

model potential distributions under current and predicted future climate for four

species (including two subspecies) of Proteaceae. Each model was built using an

identical set of five input variables and distribution data for 3996 sampled sites.

We compare model predictions by testing agreement between observed and

simulated distributions for the present day (using the area under the receiver

operating characteristic curve (AUC) and kappa statistics) and by assessing

consistency in predictions of range size changes under future climate (using

cluster analysis).

Results Our analyses show significant differences between predictions from

different models, with predicted changes in range size by 2030 differing in both

magnitude and direction (e.g. from 92% loss to 322% gain). We explain

differences with reference to two characteristics of the modelling techniques: data

input requirements (presence/absence vs. presence-only approaches) and

assumptions made by each algorithm when extrapolating beyond the range of

data used to build the model. The effects of these factors should be carefully

considered when using this modelling approach to predict species ranges.

Main conclusions We highlight an important source of uncertainty in

assessments of the impacts of climate change on biodiversity and emphasize

that model predictions should be interpreted in policy-guiding applications along

with a full appreciation of uncertainty.

Keywords

Bioclimate envelope modelling, biodiversity, Cape Flora, climate change,

conservation biogeography, distribution modelling, environmental niche mod-

elling, Proteaceae, South Africa, species biodiversity.
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on biodiversity (e.g. Peterson et al., 2002; Midgley et al., 2003;

Thomas et al., 2004; Hannah et al., 2005; Thuiller et al., 2005;

Araújo et al., 2006), conservation prioritization (e.g. Araújo &

Williams, 2000; Ferrier et al., 2002; Raxworthy et al., 2003;

Williams et al., 2005), range filling (Svenning & Skov, 2004),

niche evolution (Peterson et al., 1999; Martinez-Meyer et al.,

2003; Graham et al., 2004; Martı́nez-Meyer & Peterson, 2006),

factors governing species distributions (Coudun & Gégout,

2006; Luoto et al., 2006) and the geographical ecology of

invasive species (Higgins et al., 1999), agricultural pests (Baker

et al., 2000) and disease vectors (Costa et al., 2002). However,

whilst the modelling approach is generic, studies have

employed a number of different techniques for defining

potential ranges (e.g. Nix, 1986; Stockwell & Peters, 1999;

Pearson et al., 2002; Thuiller, 2003; Thuiller et al., 2003; Miles

et al., 2004; Segurado & Araújo, 2004; McClean et al., 2005;

Maggini et al., 2006) and the impact that the specific method

has on model predictions is an important consideration in

model applications (Thuiller et al., 2004a).

Here we assess consistency in predictions from nine of the

most widely applied environmental niche modelling approa-

ches. Using identical input variables, each model was used to

simulate current and potential future distributions for four

species of Proteaceae that are endemic to South Africa’s Cape

Floristic Kingdom. We compare predictions by testing agree-

ment between observed and simulated distributions, and by

assessing consistency in predictions of changes in range size

under future climates. Previous studies have demonstrated

important differences between predictions arising from different

data sample sizes (Stockwell & Peterson, 2002) and species range

sizes (McPherson et al., 2004; Segurado & Araújo, 2004). Our

focus here is on differences between predictions from different

modelling techniques (see also Loiselle et al., 2003; Segurado &

Araújo, 2004; Thuiller, 2004; Araújo et al., 2005b). We highlight

significant differences between models and demonstrate that the

magnitude of variation between predictions can be very large.

Further analysis of our results enables two key factors causing

differences between model predictions to be identified: data

input requirements and model extrapolation assumptions.

METHODS

The modelling approaches we tested were: artificial neural

networks, with two alternative parameterizations, ANN1

(Pearson et al., 2002) and ANN2 (Thuiller, 2003); the climate

envelope range (CER) (Nix, 1986; similar to BIOCLIM); the

constrained Gower metric (CGM) (Miles et al., 2004; similar

to DOMAIN); classification tree analysis (CTA) (Thuiller

et al., 2003); genetic algorithm (GA) (McClean et al., 2005);

the generalized additive model (GAM) (Segurado & Araújo,

2004); genetic algorithm for rule-set prediction (GARP)

(Stockwell & Peters, 1999); and the generalized linear model

(GLM) (Thuiller, 2003). Each modelling technique was

implemented with close adherence to published studies (see

Appendix S1 in Supplementary Material for details) and using

the same five climatically derived input variables.

We studied a region of the Western Cape extending from

17�86¢–20�79¢ E and 31�91¢–34�83¢ S. Five model input vari-

ables considered to be critical to plant physiological function

and survival were gridded for this region at a spatial resolution

of 1¢ · 1¢ (Schulze, 1997; Midgley et al., 2002). The variables

used were mean minimum temperature of the coldest month,

heat units calculated as the annual sum of daily temperatures

(�C) exceeding 18 �C, annual potential evaporation (calculated

as the sum of mean monthly A-pan equivalent potential

evaporation figures derived using the Penman–Monteith

method), winter soil moisture days and summer soil moisture

days. Soil moisture days are calculated by a hydrological model

and are defined as those days on which soil moisture is above a

critical level for plant growth (Midgley et al., 2002). Input

variables under a climate warming scenario (IS92a) for 2030

were calculated using projections from the general circulation

model HadCM2 interpolated to 1¢ · 1¢ resolution (as detailed

in Schulze & Perks, 1999).

Two species and two subspecies whose distributions had

contrasting spatial characteristics were selected so as to test

model performance across a range of distribution types.

Distributions were characterized by the number of occupied

grid cells (occupancy) and the straight-line distance between the

two most distant occupied grid cells (extent of occurrence)

(Segurado & Araújo, 2004). The species studied were: Diastella

divaricata subsp. divaricata (restricted area of occupancy and

low extent of occurrence); Leucospermum hypophyllocarpoden-

dron subsp. hypophyllocarpodendron (restricted area of occu-

pancy and high extent of occurrence); Leucospermum

tomentosum (large area of occupancy and low extent of

occurrence); Protea longifolia (large area of occupancy and high

extent of occurrence). The inclusion of two subspecies was

considered appropriate since in each case the subspecies have

distributional and functional characteristics that are strong

enough to distinguish a taxonomic grouping that is driven by

climate. Leucospermum hypophyllocarpodendron subsp. hypo-

phyllocarpodendron is distinguished from its sister subspecies by

the absence of leaf pubescence and differing leaf shape. These

characteristics are associated with the less arid and cooler climate

of the southern Cape lowlands, rather than the warmer western

lowlands which are occupied by its sister. In the case of

D. divaricata subsp. divaricata, this species is strongly distin-

guished from its sister by leaf size and shape, and is associated

with the much warmer and drier conditions of the lowlands,

rather than the cooler montane environment of its sister

subspecies. In neither case are the subspecies sympatric with

their sisters.

Species distributional data were available as presence and

absence for 3996 sampled sites (Rebelo, 1992). Each sampled

site was located within a different 1¢ · 1¢ cell distributed across

the gridded study region (total of 23,875 cells). Environmental

niches were defined using each technique based on an identical

randomly selected 70% of the sampled sites. The remaining

30% of the sampled data were used to test the agreement

between modelled and observed distributions (Araújo et al.,

2005a). The 70:30 ratio of this random split approximately
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follows the guidelines provided by Huberty (1994). We tested

agreement between known presence/absence and simulated

distribution by calculating the area under the receiver operating

characteristic curve (AUC) and Cohen’s kappa statistic of

similarity (k) (Fielding & Bell, 1997; Pearce & Ferrier, 2000). We

calculated the AUC using the method presented by Hanley &

McNeil (1982) which is based on the derivation of the Wilcoxon

statistic. This method of calculation is recommended for

ecological applications because it is non-parametric (Pearce &

Ferrier, 2000). Values of AUC range from 0.5 for models with no

predictive ability to 1.0 for models giving perfect predictions.

Kappa was calculated following the formula presented in

Fielding & Bell (1997) and yields values ranging from 0.0 (no

predictive ability) to 1.0 (perfect predictive ability).

The AUC and k have been widely applied to assess the

predictive performance of species range models (e.g. Loiselle

et al., 2003; Thuiller, 2003; Brotons et al., 2004; Huntley et al.,

2004; Parra et al., 2004). The statistics may be interpreted

according to subjective guidelines which suggest that AUC

values above 0.9 (Swets, 1988) and k values above 0.7

(Monserud & Leemans, 1992) describe ‘very good’ discrimin-

ation ability. Unlike k, AUC is independent of species prevalence

(the proportion of recorded presences relative to the number of

sampled sites) and is thus the preferred statistic for comparing

model performance across different species. AUC cannot,

however, be calculated from the CER and GA output since

these techniques predict presence/absence (the calculation of

AUC requires model output to be a suitability, or probability,

value scaled from 0 to 1). We thus use k to compare modelling

techniques since this statistic can be calculated from either

predicted presence/absence or from suitability values (by

maximizing the statistic over a range of thresholds above which

model outputs are considered to represent species presence).

Despite being influenced by species prevalence, k is informative

when comparing between techniques since the distributions on

which each model was calibrated and tested were identical (i.e.

prevalence was constant).

In order to predict potential ranges under current and

future climate conditions we projected the niches defined by

each technique onto the entire gridded study region. A

decision threshold above which model outputs are considered

to represent species presence was defined for those techniques

that simulate a suitability value from 0 to 1 (all models except

CER and GA). Thresholds were defined by maximizing

agreement between observed and modelled distributions for

the sampled dataset (3996 cells). Sensitivity (the proportion of

true positive predictions vs. the number of actual positive

sites) and specificity (the proportion of true negative predic-

tions vs. the number of actual negative sites) were calculated at

thresholds increasing in increments of 0.01 from 0 to 1, and

the threshold at which these two values were closest was

adopted. This approach balances the cost arising from an

incorrect prediction against the benefit gained from a correct

prediction (Manel et al., 2001).

Having defined species ranges for the study region, we

assessed the similarity between model predictions of change in

range size under future climates. For each technique, we

calculated the percentage gain or loss of suitable climate-space

from current to future modelled climate envelopes under two

assumptions of species dispersal ability (Peterson et al., 2002;

Thomas et al., 2004): firstly, we assumed unlimited dispersal,

such that the future distribution is the entire area projected by

the climate envelope model; secondly, we assumed no disper-

sal, whereby the future distribution is the overlap between

current and future envelopes.

Finally, in order to test for similarity between predictions

from different techniques, we used cluster analysis to group

predicted ranges from different models under current and

future climate conditions. Methods were grouped using average

clustering based on Bray–Curtis dissimilarities (Clarke &

Gorley, 2001) of model predictions combined for all four

species. The significance of groupings was assessed with analysis

of similarity (ANOSIM) (Clarke & Green, 1988) which tests the

degree to which differences between groups are greater than

differences within groups. Cluster analysis was carried out using

PRIMER 5 software (http://www.primer-e.com).

RESULTS

Assessing consistency in model predictions

We first assessed consistency in model predictions by

measuring agreement between modelled present-day distribu-

tions and known presence and absence of species (Table 1).

Our results overall showed good ability to predict observed

distributions, with AUC values ranging from 0.850 to 0.997.

These statistics can be interpreted as indicating good predictive

performance according to the guidelines of Swets (1988).

However, variability in predictive performance between mod-

elling techniques was high, with mean k varying by up to 0.259

between models. Results for estimates of change in range size

under future climates also demonstrate that the modelling

technique used to define climate envelopes can have a very

large impact on predictions (Fig. 1). Predictions for three of

the four species varied in both the direction (gain or loss) and

magnitude of change. For example, for L. hypophyllocarpoden-

dron subsp. hypophyllocarpodendron (Fig. 1b) under the

assumption of unlimited dispersal, five models predicted an

increase in range size and four models predicted a decrease,

whilst with no dispersal (in which case suitable climate space

cannot be gained) predicted losses ranged from 1–100%. Only

for P. longifolia (Fig. 1d) did the models all predict the same

direction of change, yet losses still ranged from 58–94% with

unlimited dispersal, and 68–98% with no dispersal.

Grouping the techniques using cluster analysis identified a

first group consisting of three methods (CTA, GAM and

GLM), second and third groups comprising two methods each

(ANN1 and ANN2; CER and GARP) and two methods with

distinct predictions (CGM and GA). These clusters were

consistent across current (ANOSIM global R ¼ 0.819, signi-

ficance ¼ 0.2%) and future (ANOSIM global R ¼ 1.0, signi-

ficance ¼ 0.1%) predictions. The identification of five distinct
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patterns of range prediction from nine models highlights the

differences between modelling approaches, whilst providing a

foundation for further investigation as to which technique, or

group of techniques, may be most appropriate for predicting

future ranges.

Accounting for differences between model

predictions

Variation between the identified groups of models may be

understood, at least in part, with reference to two character-

istics of the modelling techniques. Firstly, the five techniques of

groups one and two used data about both the observed

presence and absence of species, whilst the remaining four

approaches used only observed presence records (which are the

only data available in many applications). Although both

approaches model the ‘realized’ niche of species in environ-

mental space (since observed distribution data are used),

presence/absence techniques project the niche model onto a

geographical space whereby information regarding unsuitable

conditions resulting from both biotic and abiotic limiting

factors (Pearson & Dawson, 2003) is inherent within the

absence data. In contrast, presence-only approaches project the

realized niche into a geographical space without giving weight

to observed absence information (Peterson et al., 1999;

Raxworthy et al., 2003), resulting in a poorer fit to the current

observed distribution (mean k for presence-only approa-

ches ¼ 0.435; mean k for presence/absence approa-

ches ¼ 0.602; see Table 1). Differences in predictions of

changes in range size between presence/absence and pres-

ence-only techniques were statistically significant (Mann–

Whitney U-test P < 0.001 for both unlimited dispersal and

no dispersal), with a general tendency for presence-only

techniques to predict greater losses. Thus, across all four

species under the assumption of unlimited dispersal, presence/

absence techniques predicted 13 range gains and 7 losses

(mean ¼ 62% gain; range ¼ 409%), compared with 1 gain

and 15 losses (mean ¼ 67% loss; range ¼ 109%) for presence-

only techniques. Similarly, with no dispersal, losses ranged

from 0–93% with presence/absence models, and from 78–

100% with presence-only models.

Secondly, differences between simulations from alternative

models will be caused by the various assumptions made by

each algorithm when extrapolating environmental variables

beyond the range of the data used to define the modelled

niche. Isolating instances of extrapolation in our study (19% of

cells under the current climate and 56% of cells under future

climate have at least one variable falling outside the range for

which the environmental niche was modelled), we find that:

GLM predicted 11% of these cases as ‘presences’; GAM, CTA,

ANN1 and ANN2 predicted 7%, 6%, 5% and 3%, respectively,

as presences; GARP predicted < 0.2% as presences; CER, CGM

and GA predicted no presences. The problem of extrapolation

into ‘unknown’ niche space is rarely considered in model

applications (Pearson & Dawson, 2003; Thuiller et al., 2004b)

yet we demonstrate the uncertainty that can arise if models are

naively applied without consideration of the effect that

extrapolation will have on model predictions.

DISCUSSION

Previous critiques have questioned the usefulness of the

environmental niche modelling approach (Woodward &

Beerling, 1997; Davis et al., 1998; Lawton, 2000; Pearson &

Dawson, 2003), citing a number of potential sources of

predictive error that may be categorized as either ‘algorithmic’

or ‘biotic’ (Fielding & Bell, 1997). Algorithmic errors are

caused by limitations of the modelling techniques and include

the model-based uncertainty that we have identified and

quantified here. Further algorithmic uncertainty is caused by

the use of alternative methods for identifying decision

thresholds (Pearson et al., 2004; Liu et al., 2005). Biotic errors

Table 1 Assessment of agreement between modelled and observed distributions. Statistics given are area under the receiver operating

characteristic curve (AUC) and Cohen’s kappa (k)

Modelling

technique

D. divaricata subsp.

divaricata

L. hypophyllo. subsp.

hypophyllo. L. tomentosum P. longifolia

Mean kAUC k AUC k AUC k AUC k

ANN1 0.995 0.780 0.888 0.350 0.996 0.853 0.918 0.515 0.625

ANN2 0.993 0.796 0.930 0.417 0.990 0.799 0.908 0.487 0.625

CER* – 0.387 – 0.095 – 0.689 – 0.294 0.366

CGM* 0.988 0.748 0.941 0.353 0.993 0.754 0.890 0.398 0.563

CTA 0.950 0.628 0.857 0.350 0.920 0.736 0.879 0.456 0.543

GA* – 0.480 – 0.210 – 0.567 – 0.409 0.417

GAM 0.995 0.745 0.931 0.366 0.997 0.842 0.920 0.498 0.613

GARP* 0.931 0.347 0.850 0.127 0.937 0.692 0.868 0.406 0.393

GLM 0.994 0.748 0.927 0.382 0.997 0.800 0.918 0.493 0.606

Mean AUC 0.969 0.896 0.976 0.890

Values were calculated from model predictions made using a randomly selected 30% of the sampled data that were not used for defining

environmental niches. Empty cells (–) are those for which AUC cannot be calculated (see Methods). An asterisk (*) identifies those models that use

only observed species presence data, whilst those species without an asterisk use both observed presence and absence data.
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are caused by ecological factors that are not captured within

the niche-based modelling framework, which may cause

species distributions to depart from assumptions of equilib-

rium that are inherent to niche-based models (Araújo &

Pearson, 2005). Biotic uncertainty thus results from our

limited understanding of factors including species dispersal

ability (Pearson & Dawson, 2005), biotic interactions (Davis

et al., 1998), rapid in situ adaptation (Thomas et al., 2001),

existing adaptation of populations to local conditions across

the range (Hampe, 2004; Harte et al., 2004) and the direct

impacts of increased concentrations of atmospheric CO2 on

species physiology (e.g. Catovsky & Bazzaz, 1999). Further

uncertainties result from potential inaccuracies in the available

species distribution data sets (Griffiths et al., 1999; Soberón &

Peterson, 2004) and, perhaps most fundamentally in the case

of climate change applications, uncertainties are inherent in

predicted scenarios of future climate (Allen et al., 2000).

Despite these difficulties, it has been argued that environmen-

tal niche models provide the best available tool for rapid

species-specific assessments of potential ranges (Baker et al.,

2000; Hannah et al., 2002; Pearson & Dawson, 2003, 2004;

Huntley et al., 2004). Our results highlight the need for much

further research to test and improve the approach so as to

increase confidence in model predictions. By demonstrating

large differences between predictions from alternative model-

ling approaches, our study shows that selecting the most

appropriate modelling technique to address a particular

question is a very important part of the modelling process.

Whilst we have demonstrated a great deal of variability in

predictions from alternative models, it has not been possible to

single out a ‘best’ technique for predicting potential species

ranges. Comparing each model’s ability to simulate observed

presences and absences is an informative step, yet good model

fits with observed distributions do not guarantee that a species’

potential range has been accurately captured (Pearson &

Dawson, 2003; Hampe, 2004; Araújo et al., 2005a; Randin

et al., 2006). It may, in fact, be argued that the best techniques

are those that make the fewest false-negative predictions

(Anderson et al., 2003). This is because predictions of

unsuitability at sites where a species’ presence has been

observed are clear errors, whilst predictions of suitability at

sites where no presence has been observed can be attributed to

non-climatic factors that limit the actual distribution (i.e.

biotic error) or to insufficient sampling (Anderson, 2003).

Further research to test the various modelling approaches,

including analysis of variability using alternative decision

thresholds that minimize false-negative predictions (Pearson

et al., 2004), assessment of the ability to predict past distri-

bution changes (Martinez-Meyer et al., 2004; Martı́nez-Meyer

& Peterson, 2006) and near future (Araújo et al., 2005b)

distribution changes, and comparison against predictions from

mechanistic models (Cramer et al., 2001), will be required to

decipher which technique, or group of techniques, is most

appropriate for range prediction in different applications.

Our study has highlighted two key factors that should be

carefully considered in applications of environmental niche

models, namely data input requirements (presence/absence vs.

presence-only data) and model extrapolation assumptions.

The impacts that such factors have on model results must be

investigated and taken into account when drawing conclusions

from niche-based models across different applications (Loiselle

et al., 2003). We recommend that methodologies to avoid

model extrapolation are adopted (Pearson et al., 2002) and

that future studies investigate predictions obtained from a
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Figure 1 Comparison of predicted percentage gain/loss (%D) of

suitable climate space by 2030 for four Proteaceae in the Cape
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range of modelling techniques so as to reduce and quantify

predictive uncertainty (Araújo et al., 2005b, 2006; Thuiller

et al., 2005). However, that is not to say that application of a

single technique cannot provide informative biogeographical

data, so long as model behaviour is well understood and can be

justified for the application at hand (e.g. Raxworthy et al.,

2003). Perhaps most importantly, it is vital that environmental

niche models are interpreted as tools for sharpening our

understanding of species range constraints, and that they are

only applied in a predictive capacity along with full appreci-

ation of the inherent uncertainty.
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Araújo, M.B. & Pearson, R.G. 2005. Equilibrium of species’

distributions with climate. Ecography, 28, 693–695.
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