
Appendices
A Latent factors models
Latent factor models (also called ‘latent variable models’) were developed in the JSDMs framework
to reduce the dimension of the residual correlation matrix R, whose number of elements increases
quadratically with the number of species (Warton et al., 2015). Following the same notation of
Box 1, these models write:

yij = I(zij > 0),

zi = βxi + Λωi + eij , eij
iid∼ N(0, 1), ωij

iid∼ N(0, 1). (A.1)

where I() is the indicator function and N(0, 1) is the standard univariate Gaussian distribution.
The S × r matrix Λ is the factor loading matrix, and the r-dimensional Gaussian random vectors
ωi are called latent factors. When the number of latent factors r is smaller than the number of
species (usually r � S), the dimension of the residual correlation matrix decreases, as we now have
R = ΛΛT . Latent variables can be interpreted as ’missing covariates’, and a shared (or opposite)
response to these missing covariates (through similar or opposite latent loadings), introduces the
residual correlation among taxa.

Importantly, latent variables change the probability of presence of species, since we now have
that the probability of presence of species i at site j is pij = Φ(βjx

T
i +Λjω

T
i ), where Λj is the j-th

row of the factor loadings matrix and Φ is the cumulative distribution function of the standard
Gaussian distribution. However, this is only true when the latent variables ωi are known. For out-
of-sample predictions, that are fundamental to understand the distribution of species under new,
climate change driven, scenarios, one has to integrate out these latent variables. This is not only
computationally costly, but also reduces the advantages of latent factor models, whose prediction
is now only based on the environmental variables, as in the Multivariate probit model described
in the main text.

In Appendix B we prove that in the Gaussian setting the regression coefficients do not change
when we assume the residuals to be correlated. The same proof does not hold for latent factor
models, and one might find differences in the estimated regression coefficients due to the different
structure of the model. However, we want to stress here how those discrepancies are not driven
by the effect of other species. In fact, as it is the case in every regression, in the multivariate
probit model the regression coefficient Bjk is linked to the partial correlation between species
j and the environmental covariate k, with the effect of the other environmental covariates being
removed. Importantly, the effect of the presence-absence of the other species is not removed, which
is the reason why both SDMs and JSDMs can only fit the realized niche (as also discussed in the
last section of Appendix B). With latent factor models, when estimating βjk, we also remove the
effect of the latent variables, that might be related to missing covariates, but are not themselves
representative of the explicit presence/absence of other species. Therefore, there is no reason why
latent factor models should better approximate the fundamental niche.

To conclude, if latent factor models solve the scale problem of JSDMs (but scale badly with
the number of sites, Pichler and Hartig, 2020) and might provide computationally driven changes
in the estimated probability of presence and estimated niches, they still do not solve the problem
of taking into account the effects of other species. See Chapter 7 of Ovaskainen and Abrego (2020)
for a complete description of latent factor models and their correct interpretation.
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B Computational details and proofs
To better understand the fundamental differences between SDMs and JSDMs, an interesting angle
is to compare the species environmental niches they estimate. Since considering a link function
leads to intractable calculations, we focus on the particular case of continuous data (e.g. biomass),
where the latent variable in the equation coincides with the data. We first compute the posterior
mean of the regression coefficients in the Bayesian settings for SDMs (Section B.1) and JSDMs
(Section B.2). In Section B.3, we then compute for both models the maximum likelihood estimator
of the regression coefficients.
We rewrite the model defined in Box 1: i = 1, . . . , n is the index for sites, j = 1, . . . , S the
index for species, k = 1, . . . ,K is the index for the environmental covariates, Y is the matrix
whose lines are the observed vectors of species at the different sites, while the lines of X are the
measured environmental covariate at each site and E is the matrix containing the error terms
(i.e. εij = [E]ij). We now call B the S ×K matrix of the regression coefficients, whose rows Bj

are the species-specific responses to the environment. Noticed that we changed from notation of
Box 1 concerning to the regression coefficients, to guarantee a better readability of the following
computations. Therefore the models write:

Y︸︷︷︸
n×S

= X︸︷︷︸
n×K

BT︸︷︷︸
K×S

+ E︸︷︷︸
n×S

. (A.2)

where BT is the transpose of B. The consequent likelihood of the data is:

P (Y | B,Σ,X) = (2π)−nS/2|Σ|−n/2e−1/2tr(Y −XBT )Σ−1(Y −XBT )T .

Where Σ−1 is the inverse of matrix Σ and tr() is the trace operator. When the Σ matrix is
diagonal, i.e. Σ = diag(σ2

1 , . . . , σ
2
S), each species j is modelled independently from the others (i.e.

SDMs), that is:
yj | Bj , σj ,X ∼ N(XBT

j , σ
2
j I). (A.3)

where yj the jth column of Y and I is the identity matrix.
Notice that with Gaussian data we have no identifiability issue, and there are no constraints on
the variances of both SDMs and JSDMs.

Since we work in the Bayesian framework, inference is related to the posterior distribution of
the parameters (i.e. the probability distribution of the parameters given the observed data) that
we want to estimate, here the regression coefficients of the estimated environmental niche B. To
do so, we first need to define the prior distribution of the parameters for both SDMs and JSDMs.
To be able to carry out analytical computations, we need to work under particular priors, called
conjugate priors (Christensen et al., 2010).

B.1 Species Distribution Models
We compute the posterior distribution of the regression coefficients in the case of SDMs. In order
to better visualize the difference between SDMs and JSDMs, we hereafter call βj = BT

j the species-
specific vector of responses to the environment estimated by SDMs. Since we model each species
independently, we compute here below the estimated regression coefficients for a given species, and
we therefore drop the j index for the sake of clarity. For such model the likelihood is:

P (y1, . . . , yn |X,β, σ2) = (2πσ2)−n/2e−1/(2σ2)
∑n

i=1(yi−β
T xi)

2

. (A.4)

To carry out analytical computations on the posterior distribution, we choose to consider a Normal
- inverse Gamma prior for the distribution of the regression coefficients β and the variance σ, that
are conjugate priors for the likelihood of above.

P (β, σ) = P (β | σ)P (σ)

β|σ ∼ NK(β0, σ
2V0)

σ2 ∼ IG(a0, b0),

where NK is the multivariate K-dimensional Gaussian and distributionV0 represents the covariance
matrix across the regression coefficients of the different covariates conditional on σ2 and a0 and b0
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are the shape and scale parameters of the inverse gamma distribution (i.e. the hyperprior of the
variance σ2). This is a commonly used model in the Bayesian literature, and the full computation
of the posterior distribution is described in Christensen et al. (2010). The posterior distribution
of the regression coefficients is thus:

β | y,X ∼ tK(an,βn, bnVn), (A.5)

where tK denotes the multivariate Student t-distribution with parameters an, bn,βn,Vn whose
values are:

βn = (XTX + V −1
0 )−1(XTy + V −1

0 β0)

Vn = (XTX + V −1
0 )−1

an = a0 + n

bn =
1

an
(a0b0 + βT0 V

−1
0 β0 + yTy − βTnV −1

n βn).

Therefore, we obtain that:

E[β | y,X] = βn = (XTX + V −1
0 )−1(XTy + V −1

0 β0).

The credible intervals of the regression coefficients depend on their variance, that is given by:

Var[β | y,X] =
an

an − 2
bnVn =

a0 + n

a0 + n− 2

1

an
(a0b0+βT0 V

−1
0 β0+yTy−βTnV −1

n βn)(XTX+V −1
0 )−1.

(A.6)

B.2 Joint species Distribution Models
We now consider model (A.2). If we call yi the rows of Y , the likelihood of such model can be
rewritten as:

P (y1, . . . ,yn | B,Σ,X) = (2π)−nS/2|Σ|−n/2e−1/2
∑n

i=1(yi−Bxi)
T Σ−1(yi−Bxi),

using the property that tr(XTY ) = vec(X)Tvec(Y ), where vec(X) denotes the vectorization of
X.

Again, we need to choose a prior distribution over B and Σ that leads to a tractable posterior.
Following Rowe (2002), Chapter 8, we choose the following conjugate prior that is consistent with
the prior of the previous model:

P (B,Σ) = P (B | Σ)P (Σ)

B | Σ ∼MNS,K(B0,Σ,V0)

Σ ∼ IW (ν0,S0),

where MNS,K() is the matrix normal distribution. The definition of such a distribution in that
B ∼ MNS,K(B0,Σ,V0) if vec(B) ∼ NS×K(vec(B0),V0 ⊗ Σ), where ⊗ denotes the Kronecker
product and NS×K is the multivariate normal distribution with dimension given by the product
between S and K.

Therefore, V0 (a K ×K matrix)is the prior covariance matrix across the elements of the same
column of B, while Σ (a S × S matrix) is the covariance matrix across the elements of the same
row.
In other words, Σ is the covariance matrix of the regression coefficients across all the species, for
each covariate k: Bk ∼ NS(B0,k,Σ). Instead, V0 is the prior covariance matrix of the regression
coefficients across the different covariates that for the regression coefficients of species j (i.e. the
j-th line of the matrix B, that we call Bj): Bj ∼ NS(BT

0,j ,V0).
To guarantee that the priors on the regression coefficients are consistent across SDMs and JSDMs,
we have that the rows of B0 are equal to βT0,j of SDMs in section B.1 (i.e. B0 = [β0,1, . . . ,β0,S ]T ).
The computations of the posterior distribution of the regression coefficients β are given by Rowe
(2002), who obtains:

B | Y ,X ∼ tS,K(n+ ν0 − S + 1,Bn,G, (X
TX + V −1

0 )−1)
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where tS,K is the matrix t-distribution with parameters n + ν0 − S + 1,Bn,G, (X
TX + V −1

0 )−1

and:

G = S0 + Y TY +B0V
−1
0 BT

0 + (Y TX +B0V
−1
0 )(XTX + V −1

0 )−1(Y TX +B0V
−1
0 )T

Bn = (XTX + V −1
0 )−1(Y TX +B0V

−1
0 ).

Therefore we have that :

E[B | Y ,X] = Bn = (XTX + V −1
0 )−1(Y TX +B0V

−1
0 ).

This is equivalent to say that for each line Bj of B it holds that:

E[BT
j | yj ,X] = (XTX + V −1

0 )−1(XTyj + V −1
0 BT

0,j)

which is identical to the βjn , the posterior mean of the regression coefficients in the independent
case, in Appendix B.1. In other words, the two posterior means are equivalent between SDMs and
JSDMs. The correlation among the residuals does not change the posterior mean of the regression
coefficients, when the data are normally distributed. Importantly, in a frequentist setting where
we obtain the regression coefficients β̂ by maximising the likelihood of the data, the estimates for
SDMs and JSDMs are exactly the same (Appendix B.3).
To study the credible intervals of these regression coefficients, we focus on the marginal distribution
of the regression coefficients of each species, given by the lines Bj of B. Each BT

j follows a
generalized multivariate t-distribution, whose variance is given by:

Var[BT
j | Y ,X] =

Gjj(X
TX + V −1

0 )−1

n+ ν0 − S + 1
.

This expression is really complicated due to the term Gjj (the j-th element on the diagonal of the
scale parameter of the matrix t-distribution), however we can recognize some of the formulations
that we had in (A.6). In particular, we see that, compared to (A.6), the degrees of freedom are
decreased by the number of species, which would imply in general a higher variance of the regression
coefficients, and thus, larger confidence intervals. However the term Gjj might counterbalance such
an effect and we can’t state that one method will always provide larger confidence intervals than
the other.

B.3 Results in the frequentist approach
In the frequentist framework, we aim to find the maximum likelihood estimator (MLE) of the
parameters of the models. In the case of independent species (SDMs), the MLE of the regression
coefficients is well known. Indeed, the MLE and Best Unbiased Linear Estimator (BLUE) of βj of
model (A.3) is:

β̂j,MLE = (XTX)−1XTyj .

If we consider model (A.2) with a full covariance matrix Σ, the MLE and BLUE is (e.g. Rencher,
2002):

β̂MLE = (XTX)−1XTY ,

which implies that for each species j we obtain that βj , the jth line of β is :

β̂j,MLE = (XTX)−1XTyj .

The equivalence of the estimated regression coefficients in the two models is consistent with the
Bayesian approach studied before.

B.4 Discussion of the results and extension to other kind of data
This result is not as surprising as it might seem. As it is the case in every regression, for both models
(A.2) (JSDM) and (A.3) (SDM) the regression coefficient Bjk represents the partial correlation
between species j and the covariate k, with the effect of the other environmental variables being
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removed. Importantly, in both models the effect of the presence-absence of the other species
is not removed. This is the reason why both models confound the biotic and abiotic effect in
the estimation of the regression coefficients β, and can only retrieve the realized niche. While the
extensions of the proof of above to non-Gaussian data is very challenging, the argument that JSDMs
(as SDMs) do not control for the effect of other species when determining the regression coefficients
still holds. Therefore, we suggest that both models still confound the environment and the biotic
context, regardless of the kind of data they are modelling, even thus some computationally driven
small differences might arise. Indeed, when we carefully applied both models to an empirical
presence-absence data, we did not find any difference in the estimated regression coefficients (Box
2 of the main text).
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C Implementation details and code of Box 2

C.1 Implementation details and prior choice
The data are available from the R package ade4 (Dray and Dufour, 2007) and include the pres-
ence/absence of 82 species on 75 sites, with different snowmelt dates, in Aravo (Valloire, France,
Choler, 2005). We considered only the species with more than 4 presences, for a total of 65 species.
We have considered the snowmelt date (Julian day, averaged over 1997–1999) as an environmen-
tal covariate in our study, including a quadratic term (using orthogonal polynomials to reduce
correlation among the covariates):

yij = 1(zij > 0)

zij = βj0 + βj1 snowi + βj2 snow2
i + eij

(A.7)

where the residuals are correlated for JSDMs, ei
iid∼ NS(0,R) and independent for SDMs, ei

iid∼
NS(0, I).

We used the priors suggested by Golding and Harris (2015). For both SDMs and JSDMs, for
each element of each vector of regression coefficients βj we used a diffuse normal prior with mean
0 and variance 100. This is a widely used prior which exhibits little influence on the posterior.
Concerning the prior on the correlation matrix, we also followed Golding and Harris (2015) by
choosing for the unidentified covariance matrix W (that is normalized to the correlation matrix
R at every step of the MCMC sampler) an inverse Wishart prior:

W ∼ IW (ν,V ).

The hyparameters ν (degrees of freedom) and V (scale matrix), were chosen as:

ν = n+ 2S

V = 2SI,

that corresponds to a weakly informative prior on the off-diagonal elements of the correlation
matrix, that are slightly shrinked towards zero. See Golding and Harris (2015) for a complete
motivation on the choice of such prior.

For both SDMs and JSDMs we run a single chain of 100k iterations with 50k burn-in. Conver-
gence was assessed visually (Figure A.1).

We computed three types of residuals for SDMs. The raw residuals as the difference between
observed presence-absence and predictions, Pearson residuals as raw residuals normalised by the
variance of the prediction, and residuals at the latent variable level as the difference between the
inferred latent variable and the regression term. For each kind of residuals we calculated their
correlation for each element of the MCMC chain, in order to have a measure of uncertainty around
this estimate.
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Figure A. 1: Effective sample size (nESS) for SDMs (left) and JSDMs (right). Regression coeffi-
cients nESS are represented in red, the nESS for the elements of the residual correlation matrix
(for JSDMs only) are represented in green.

C.2 Code

list=rm(list=ls())

library("ade4")
library("BayesComm")

data(aravo)

spe = aravo$spe
env = aravo$env

#set Y
spePA = spe>0
spePA = apply(spePA, FUN= as.numeric, MARGIN = 2)

8



spePA_low = spePA[,-which(colSums(spePA) < 5)] #keeping species with more than 4
records

Y=as.matrix(spePA_low)
nsp= ncol(Y)
# 67 species, 75 sites

X = cbind(poly(env$Snow,2))
np = ncol(X) + 1

nits=1e5
nburn = 5e4

#SDM fitting: R is the identity matrix
SDM = BC(Y, X, model = "environment", its = nits, burn = nburn, thin = 1, verbose

=2)

## To compute residual correlation in SDMs. We will consider three ways of
computing them. First, the residuals at the latent variable level (as JSDMs
do), than the residuals at the observed level, both raw residuals (i.e. the
difference between observed and predicted) and Pearson residuals (raw
residuals divided by the variance of the prediction)

#Chains of regression coefficients
B_s = vector()
for(i in 1:ncol(Y)){

B_s = cbind(B_s, SDM$trace$B[[i]])

}

#Correlation of residuals at the latent level
R_s = array(dim = c(nrow(B_s), nsp , nsp))

for(j in 1:dim(SDM$trace$z)[1]){

mu = cbind(rep(1,nrow(X)), X) %*% matrix(as.vector(B_s[j,]),nrow=np,ncol=nsp)
R_s[j, , ] = cor(as.matrix(SDM$trace$z[j,,]) - mu)

}

# Correlation of Raw residuals
R_s_Obs = array(dim = c(nrow(B_s), nsp , nsp))

for(j in 1:dim(SDM$trace$z)[1]){

R_s_Obs[j, , ] = cor(Y- pnorm(SDM$trace$z[j,,]) )

}

#Pearson residuals
R_s_ObsP = array(dim = c(nrow(B_s), nsp , nsp))

for(j in 1:dim(SDM$trace$z)[1]){

R_s_ObsP[j, , ] = cor( (Y- pnorm(SDM$trace$z[j,,])) /sqrt(pnorm(SDM$trace$z[j
,,])*(1-pnorm(SDM$trace$z[j,,]))))
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}
## Fit JSDM, R is a correlation matrix

JSDM = BC(Y, X, model = "full", its = nits, burn = nburn, thin = 1, verbose=2)
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D Supplementary figures for Box 2

D.1 Niche estimation
Estimated regression coefficients for all species. JSDMs’ estimates are in green, SDMs’ estimates
in red. For each species, the estimate of the intercept is represented in the last line, while the two
coefficients for the snow melt day are in the first and second line.
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Figure A. 2: Posterior mean and 95% credible intervals for species from 1 to 20 (in alphabetical
order). JSDMs’ estimates are in green, SDMs’ estimates in red. For each species, the estimate of
the intercept is represented in the last line, while the two coefficients for the snow melt day are in
the first and second line.
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Figure A. 3: Posterior mean and 95% credible intervals for species from 21 to 40 (in alphabetical
order). JSDMs’ estimates are in green, SDMs’ estimates in red. For each species, the estimate of
the intercept is represented in the last line, while the two coefficients for the snow melt day are in
the first and second line.
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Figure A. 4: Posterior mean and 95% credible intervals for species from 41 to 60 (in alphabetical
order). JSDMs’ estimates are in green, SDMs’ estimates in red. For each species, the estimate of
the intercept is represented in the last line, while the two coefficients for the snow melt day are in
the first and second line.
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Figure A. 5: Posterior mean and 95% credible intervals for species from 61 to 65. JSDMs’ estimates
are in green, SDMs’ estimates in red. For each species, the estimate of the intercept is represented
in the last line, while the two coefficients for the snow melt day are in the first and second line.
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D.2 Residual correlation
D.2.1 Raw residuals

Figure A. 6: The points represent the posterior mean of the elements of the residual correlation
matrix of SDMs (calculated as the raw residuals: the difference between observed presence-absence
and prediction) on the x-axis and JSDMs on the y-axis. The dashed line is the 1:1 line. We have
R2 = 0.813, and the credible intervals are of the same sign (both negative, both positive or both
overlapping zero) 86% of the times.
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Figure A. 7: Posterior means of the residual correlation matrix for SDMs, where the residuals are
calculated as the difference between the predicted probability of presence and observed occurrences.
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D.2.2 Residuals at the latent variable level

Figure A. 8: The points represent the posterior mean of the elements of the residual correlation
matrix of SDMs (where the residuals are calculated at the latent variable level as the difference
between the inferred latent variable and the regression term) on the x-axis and JSDMs on the
y-axis. The dashed line is the 1:1 line. We have R2 = 0.862, and the credible intervals are of the
same sign (both negative, both positive or both overlapping zero) 98% of the times.
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Figure A. 9: Posterior means of the residual correlation matrix for SDMs, where the residuals are
calculated as the difference between the latent variable and the regression terms, as in JSDMs.
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D.2.3 Pearson Residuals

Figure A. 10: The points represent the posterior mean of the elements of the residual correlation
matrix of SDMs (where the residuals are the Person residuals: the difference between observed
presence-absence and prediction, normalised by the variance of the prediction) on the x-axis and
JSDMs on the y-axis. The dashed line is the 1:1 line. We have R2 = 0.803, and the credible
intervals are of the same sign (both negative, both positive or both overlapping zero) 74% of the
times.
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Figure A. 11: Posterior means of the residual correlation matrix for SDMs, where the residuals are
calculated as the Pearson residuals.
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