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Abstract Invasive species are known to influence the

structure and function of invaded ecological commu-

nities, and preventive measures appear to be the most

efficient means of controlling these effects. However,

management of biological invasions requires use of

adequate tools to understand and predict invasion

patterns in recently introduced areas. The present

study: (1) estimates the potential geographic distribu-

tion and ecological requirements of the Argentine

ant (Linepithema humile Mayr), one of the most

conspicuous invasive species throughout the world, in

the Iberian Peninsula using ecological niche modeling,

and (2) provides new insights into the process of

selection of consensual areas among predictions from

several modeling methodologies. Ecological niche

models were developed using 5 modeling techniques:

generalized linear models (GLM), generalized additive

models (GAM), generalized boosted models (GBM),

Genetic Algorithm for Rule-Set Prediction (GARP),

and Maximum Entropy (Maxent). Models for the

eastern and western portions of the Iberian Peninsula

were built using subsets of occurrence and environ-

mental data to investigate the potential for ecological

niche differences between the invading populations.

Our results indicate geographic differences between

predictions of different approaches, and the utility of

ensemble predictions in identifying areas of uncer-

tainty regarding the species’ invasive potential. More

generally, our models predict coastal areas and major

river corridors as highly suitable for Argentine ants,

and indicate that western and eastern Iberian Peninsula

populations occupy similar environmental conditions.
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Introduction

Rates of species’ introductions are increasing globally

as a consequence of broadening human movements

(Vitousek et al. 1997). This invasive presence fre-

quently has negative influences on native communities

and ecosystems, with consequences such as species

loss, food web reorganization, community simplifica-

tion, and changes in disturbance regimes (Chapin et al.

2000; Mack et al. 2000). As such, techniques for

modeling species’ potential distributions could support

pro-active strategies to avoid the introduction or to

guide screening to impede establishment of invasive

alien species (Peterson 2003; Drake and Lodge 2006).

A highly successful invasive species is the Argen-

tine ant (Linepithema humile). Native to the Rı́o de la

Plata region in South America (Tsutsui et al. 2001;

Wild 2004), Argentine ants are now established in

many Mediterranean-type and subtropical areas world-

wide (Suarez et al. 2001). With the development of

global trade, Argentine ants have been transported on a

large scale to new areas associated with humans

(Suarez et al. 2001; Ward et al. 2005), from where they

invade natural habitats, causing severe ecologic and

economic impacts (Vega and Rust 2001). In the Iberian

Peninsula, at least two points of introduction have been

detected: first observations date to 1894 in Oporto

(western Iberian Peninsula), and to 1923 or possibly

1919 in Valencia (eastern Iberian Peninsula) (Espad-

aler and Gómez 2003). Presently, Argentine ants range

along much of the coastal zone, except along the

Cantabrian coast where records are scarce. Few

populations are known from interior localities, except

those associated with urban centers (Espadaler and

Gómez 2003; Carpintero et al. 2004). Several studies

have analyzed Argentine ant invasion in the region

(Way et al. 1997; Espadaler and Gómez 2003; Roura-

Pascual et al. 2004; Carpintero et al. 2005; Roura-

Pascual et al. 2006; Carpintero and Reyes-López

2008), but none has focused on regional-scale ecolog-

ical requirements of the species in this part of its

introduced range.

Species’ distribution patterns are eminently scale-

dependent, since different ecological processes

emerge depending on the spatial scale of analysis

(Wiens 1989; Mackey and Lindenmayer 2001; Farina

et al. 2005). Distributional patterns of Argentine ants

have been studied at both large (Roura-Pascual et al.

2004; Hartley et al. 2006; Roura-Pascual et al. 2006)

and small (Hartley and Lester 2003; Krushelnycky

et al. 2005) spatial scales. Here, we analyze the

Argentine ant distribution at regional scales using

ecological niche modeling to elucidate the main

factors responsible for its present-day distribution

across the Iberian Peninsula.

With the increasing use and improvement of

ecological niche models in the last few decades

(Guisan and Thuiller 2005; Araújo and Guisan 2006;

Elith et al. 2006), it has become clear that predictions

are sensitive not only to occurrence and environmen-

tal data, but also to the methods used to calibrate the

models (Thuiller 2004; Pearson et al. 2006). Elith

et al. (2006) have demonstrated differences in pre-

dictive performance among modeling methods, as

well as significant variations among regional datasets.

To deal with this variability, one solution is to

develop models using multiple modeling methods

and to identify consensual areas of consistent predic-

tion (e.g., Anderson et al. (2003); Araújo et al.

(2006)). Areas of consensus among predictions

incorporate modeling uncertainties to produce more

reliable estimates of species’ potential distributions

(Hartley et al. 2006). For this reason, we have

developed ensemble models across modeling

approaches for determining the potential distribution

of Argentine ants in the Iberian Peninsula.

In addition, variations in occurrence and environ-

mental data have long been known to produce

divergences among geographic predictions. Models

calibrated based on a wider range of environmental

conditions are better able to outline ecological niches

of species than models developed using restricted

geographic areas and subsets of data, which tend to

predict narrower suitable areas for the species. Hence,

we also modeled potential distributions of Argentine

ants based on the eastern and western sides of the

Iberian Peninsula separately. The two sides present

different colonization histories (Giraud et al. 2002)

and ecological characteristics (Mediterranean versus

Atlantic influences, respectively), which could pro-

duce divergences in invasion patterns of Argentine ants

in the Iberian Peninsula. Hence, we had two objectives:

(1) to determine the potential distribution of Argentine

ants in the Iberian Peninsula and the environmental

factors that explain the present-day occurrence of the

species at regional spatial scales, and (2) to study

possible divergences in the invasive process among

populations within the Iberian Peninsula.
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Materials and methods

The approach used herein is based on modeling

species’ ecological niches, here taken as the set of

conditions under which a species is able to persist and

maintain stable populations without immigrational

subsidy (Grinnell 1917; Hutchinson 1957). Niche

modeling algorithms search for non-random associa-

tions between known occurrences of the species and

relevant ecological/environmental parameters in the

form of digital maps; these niche models are then used

to identify areas fitting the ecological requirements of

the species (Soberón and Peterson 2005). A limitation,

however, is when the ecological characteristics of

species’ present distributions do not reflect their entire

ecological potential, because this ecological diversity

is not fully represented on that landscape, or the

species is not in equilibrium. Despite this limitation,

niche models based on occurrence data from native or

introduced ranges can potentially indicate some,

although not all, new areas susceptible to invasion,

and can elucidate ecological processes governing

invasion processes (Peterson 2003).

In contrast to previous studies predicting the

potential distribution of the Argentine ant in introduced

areas based on occurrence data from the native area

(Roura-Pascual et al. 2004; Hartley et al. 2006), we

only use occurrence data from the invaded range to

calibrate the models. Although Argentine ants are not

known to be in equilibrium with the environment

(Casellas 2004) and models might thus underestimate

its potential distribution, we think that the current

distribution of the species in the region provides a good

estimate of its potential range based on two main facts.

Firstly, we did not find significant differences in model

performance between predictions derived from models

calibrated using native and invaded occurrences (Ro-

ura-Pascual et al. 2006). Secondly, since the first

observations were made approximately 100 years ago,

the species has had time to sample a wide variety of

available habitats. Based on these considerations, we

preferred to use occurrence data from the invaded

range to understand in great detail the main drivers of

the Argentine ant invasion in the Iberian Peninsula.

Occurrence and environmental datasets

We used 350 known occurrence localities for Argen-

tine ants across the Iberian Peninsula compiled from

specimens at natural history museums and personal

collections, scientific literature, and field surveys (full

dataset provided as electronic appendices in Roura-

Pascual et al. (2004)) (Fig. 1). Since absence data

were unavailable, we generated pseudoabsence data

for constructing the models despite being aware of

their limitations (Brotons et al. 2004; Pearce and

Boyce 2006).

To summarize the environmental space potentially

available to Argentine ants, we used 12 coverages

summarizing aspects of topography1 (elevation

(herein abbreviated as elev), orientation (orient),

and slope (slope), derived from the 200 m resolution

digital elevation model of the Iberian Peninsula,

Ninyerola et al. 2005); and climate2 (annual mean

solar radiation (amrad), annual mean precipitation

(amprecip), annual mean temperatures (amtemp),

minimum winter mean temperatures (minwtemp),

and maximum summer mean temperatures (maxs-

temp), from the 200 m resolution Digital Climatic

Atlas of the Iberian Peninsula, Ninyerola et al. 2005);

and remotely sensed data3 (16-day composites at

500 m for the Normalized Difference Vegetation

Index (NDVI) and for the Enhanced Vegetation Index

(EVI) from July 2005 from the NASA-MODIS/Terra

Fig. 1 Distribution of the Argentine ant in the Iberian

Peninsula (SW Europe), with known occurrences indicated as

dots. Darker shades indicate higher elevations

1 http://opengis.uab.es/wms/iberia/index.htm
2 Ibid. http://opengis.uab.es/wms/iberia/catala/ca_bibliografia.

htm
3 http://edcimswww.cr.usgs.gov

A case study of Argentine ants in the Iberian Peninsula 1019

123

http://opengis.uab.es/wms/iberia/index.htm
http://opengis.uab.es/wms/iberia/catala/ca_bibliografia.htm
http://opengis.uab.es/wms/iberia/catala/ca_bibliografia.htm
http://edcimswww.cr.usgs.gov


dataset, Justice et al. 1998). These environmental

data were selected according to our knowledge of the

species’ ecology (Holway et al. 2002; Abril 2005;

Krushelnycky et al. 2005; Heller et al. 2006; Menke

and Holway 2006; Menke et al. 2007; Heller et al.

2008). Minimum winter mean temperatures were

obtained by calculating the mean of December,

January, February, and March minimum tempera-

tures, and maximum summer mean temperatures by

calculating the mean of May, June, July, August,

September, and October maximum temperatures.

Months were selected according to known details of

Argentine ant activity; the period May–October is

when the species is most active. We also used NDVI/

EVI 16-day composites from July because during this

month the Argentine ant is most active (Abril 2005).

All data were resampled to 600 m spatial resolution

for analysis.

Ecological niche modeling techniques

Five different modeling methods were used to

produce ensemble predictions. The first two methods,

generalized linear models (GLM) and generalized

additive models (GAM), are generalizations of clas-

sical linear regression models that have been used

widely to model, explain, and predict species’

distributions (Guisan et al. 2002). GLM allows for

non-linearity and non-constant variance among data,

whereas GAM permits non-parametric and complex

relationships between the response and predictor

variables, in addition to parametric forms (Hastie and

Tibshirani 1990; Guisan et al. 2002). In GLM,

predictor variables (i.e., the environmental data) are

combined to generate linear, quadratic, and cubic

parametric terms related to the expected value of the

response variable (i.e., probability of presence versus

absence of the species) through a logit link function

(Guisan et al. 2002; Rushton et al. 2004). Although

widely applied in ecological studies, GLM has

difficulties in dealing with complex ecological

relationships (Elith et al. 2006). By fitting non-

parametric, smoothed functions of explanatory vari-

ables to the response variable without prejudging the

shape of the relationship between both terms, GAM

produces more flexible response curves than most

classical linear models. In both GLM and GAM, the

most influential variables and the required transfor-

mation (polynomial terms and degree of smoothness,

respectively) were selected through a stepwise pro-

cedure based on the AIC criterion (Akaike 1974).

We also applied a recent proposed alternative, the

generalized boosted model (GBM) (Friedman 2001).

Contrary to previous methods that produce single

parsimonious models, GBM uses an iterative

method (the boosting algorithm) for developing

multiple regression trees and combining them into

an ensemble prediction (Friedman and Meulman

2003). ‘‘Regression trees’’ are built by splitting the

calibration data repeatedly, according to a simple

rule based on a single explanatory variable. At each

split, the data are partitioned into two exclusive

groups, each of which is as homogeneous as

possible. The heterogeneity of a node is defined

with a deviance notion that can be interpreted as the

deviance of a multinomial model (Breiman et al.

1984). Regression trees have been used successfully

in ecology (Rouget et al. 2001; Thuiller et al. 2003).

‘‘Boosting’’ is used to overcome the inaccuracies of

a single model (see discussion in (Araújo and New

(2007)), and makes possible to model a complex

response surface. For more details or applications in

ecology, see Ridgeway (1999); Friedman (2001);

Elith et al. (2006); Leathwick et al. (2006); Elith

et al. (2008).

Although these three above-mentioned methods

have been usually used with presence-absence data,

they can be applied to presence-only situations by

using pseudo-absence selected randomly from areas

from which the species is not known (Brotons et al.

2004; Pearce and Boyce 2006). Herein, to calibrate

final models, we generated an equal number of

pseudo-absences as presence localities by selecting a

random subset of pixels from the overall study area.

All of these modeling techniques were run under the

BIOMOD modeling application (Thuiller 2003) or R-

CRAN software, which relies on the use of GLM,

GAM (by T. Hastie) and GBM (by G. Ridgeway)

libraries.

In contrast to this group of modeling methods, we

also implemented two evolutionary-computing meth-

ods that generate pseudo-absences as an intrinsic step

in the modeling algorithm, GARP and Maxent.

Although they are not considered presence-only

methods, these two techniques have been proved to

outperform classical presence-only models assessing

the distribution of species (Elith et al. 2006; Ward

2007). The Genetic Algorithm for Rule-Set
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Prediction (GARP) uses different rule types (logistic

regression, range rules, negated range rules, and

atomic rules) to develop a rule-set defining the

species’ ecological niche (Stockwell and Noble 1992;

Stockwell and Peters 1999), which is projected into

geographic space to produce a binary map of

presence versus absence. The model evolves through

an iterative process of rule selection, evaluation,

testing and incorporation or rejection, randomly

subsetting occurrence data into training and testing

data to estimate the predictive accuracy of each rule

(here 50% and 50%, respectively). Then, input

training presence data are resampled randomly with

replacement to create a set of 1,250 presence points,

and an equal number of points is also resampled

randomly from the background area where the

species has not been recorded (pseudoabsences).

Change in predictive accuracy between iterations is

used to evaluate whether particular rules should be

incorporated into the model; the algorithm runs 1,000

iterations or until convergence. To optimize model

performance, we developed 100 replicate GARP

models and chose a ‘‘best subset’’ of 10 models

based on error distributions for individual models

(Anderson et al. 2003), which were summed to

provide an estimate of potential distribution for

Argentine ant.

Finally, the Maximum Entropy method (Maxent)

is a machine-learning method that uses a mathemat-

ical formulation to estimate the probability

distribution of a species following the principle of

maximum entropy, which supposes that no

unfounded constraints should be included in the

estimation (Phillips et al. 2006). In constructing the

probability distribution, Maxent uses different types

of environmental features (linear, quadratic, product,

and threshold combinations of raw continuous envi-

ronmental data, as well as categorical environmental

data) and a regularization parameter (b) for each

feature, which estimates how close the expected

value should be to the observed value (Phillips et al.

2004). For developing the model, Maxent creates

random samples of background pixels (10,000) from

the study area as pseudoabsences. We used the

default parameters throughout. The final probability

distribution developed is projected onto the geo-

graphic space, and a cumulative probability

(expressed as a percentage) is assigned to each pixel,

interpretable as an index of suitability for the species.

Approach for modeling Argentine ant potential

distribution in the Iberian Peninsula

Our approach for comparing invasion patterns in the

western and eastern Iberian Peninsula consisted of

two steps. (1) We selected optimal environmental

datasets for modeling the species’ ecological niche,

and (2) we identified the areas of consensus among

modeling approaches to elucidate differences and

similarities between invasion patterns of the Argen-

tine ant within the Iberian Peninsula.

To select environmental data (Step 1), we devel-

oped 50 generalized boosted models for the overall

Iberian Peninsula, and for western (UTM longitude

\184,000) and eastern (UTM longitude [637,000)

areas separately. First, we created three occurrence

datasets: 350 localities from the whole Iberian

Peninsula (herein called Ib), 175 localities from the

western area (wIb), and 142 localities from the

eastern area (eIb). Since true absence data were not

available to calibrate models, an equal number of

pseudoabsences were randomly resampled from each

area. GBM then estimated the relative importance of

each environmental variable in the model accounting

for all the other variables. We used a permutation

method, which randomly resamples each predictor

variable independently and computes the associated

reduction in predictive performance (Thuiller et al.

2006). However, to reduce uncertainties due to the

random selection of pseudoabsence data, we devel-

oped 50 GBM models for each area using different

subsets of pseudoabsence data. The influence of each

predictor variable was computed by averaging its

relative importance (following Friedman (2001))

across the 50 runs; the most relevant environmental

variables in each area were retained, and three

separate environmental data-subsets thus obtained to

develop final models of Argentine ant distribution.

The GBM approach averages the relative influence of

each variable across all trees generated by the

boosting algorithm, giving a relatively robust and

stable estimate (Friedman 2001); we did not use the

other approaches to estimate the relative importance

of variables because we believe that this boosting

approach is the most reliable and unbiased, and

because comparing the choice of variables among

models was not the point of the paper.

Finally (step 2), using the environmental data

selected, we developed ensembles of models for
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overall, western, and eastern portions of the Iberian

Peninsula. First, we divided occurrence data ran-

domly (including presence data and an equal number

of pseudoabsences) from each area into training

(70%) and testing (30%) datasets for calibrating and

testing the accuracy of models, respectively. With the

training data and the previously selected environ-

mental data, we developed models for the entire, as

well as the eastern and western Iberian Peninsula

areas, using GLM, GAM, GBM, GARP, and Maxent.

Model performance was tested using the independent

testing data set aside from model development. To

reduce uncertainty caused by sampling artifacts

(generated during the random resampling of presence

localities and generation of pseudoabsence), we

calibrated 10 replicate models for each area and

modeling technique by using different combinations

of training data. While presence data were selected

randomly from the initial pool of Argentine ant

localities, pseudoabsences were resampled each time,

selecting points from the area without confirmed

presence of the species.

Each set of 10 replicate models was finally

transformed into a single model via a weighted

model average (Eq. 1). Model weights were assigned

so as to enhance contributions of those models with

higher model performance values (measured by the

AUC of a ROC analysis) relative to the set of

plausible models developed using the same modeling

technique and calibration area, but based on different

subsets of occurrence data, allowing us to discern

differences among modeling approaches.

gM Xð Þ¼
X10

m¼1

xm �pm Xð Þ where xm¼
AUCm

X10

m¼1

AUCm

ð1Þ

where pm(x) is the value predicted by each replicate

model (m), developed applying one of the five

modeling approaches and different training data-

subsets; xm is the weight assigned to each replicate

model taking into account its model performance,

measured using the area under the curve (AUCm), in

relation to the mean model performance of the overall

set of replicate models.

However, given our interest in identifying patterns

of consensus among predictions of Argentine ant

distribution from different modeling techniques, we

also averaged final model predictions obtained by

each modeling approach. As previously showed

(Eq. 1), we assigned weights depending on compar-

isons with the average AUC of the set of replicate

models for each modeling approach (see Eq. 2). This

approach allowed us to identify consensus areas for

Argentine ant potential distribution.

c Xð Þ¼
X5

M¼1

xM �gM Xð Þ where xM¼
AUCM

X5

M¼1

AUCM

ð2Þ

where gM(x) is the weighted average value for each

modeling approach (M) obtained using Eq. 1, and xM

is the weight assigned to each averaged prediction

taking into account model performance, measured as

the mean area under the curve (AUCM) of the ten

individual models developed using that particular

modeling approach (Eq. 2). Finally, to identify and

localize discrepancies among modeling methods in

predicting potential distributions of the Argentine ant,

we measured the variance among averaged predic-

tions, which gave us greater confidence in our final

results and permitted us to represent geographically

uncertainties among methods (Hartley et al. 2006).

Throughout, model performance was tested using

the Receiver Operating Characteristic (ROC) analysis

(Hanley and McNeil 1982) implemented in R-CRAN

software (function ‘somers’ from the ‘Hmisc’

library). ROC analysis evaluates model performance

independently of arbitrary thresholds for presence,

and has been used extensively in distribution mod-

eling studies owing to its nonparametric threshold-

independent nature (Manel et al. 2001). Overall

model performance is summarized as the area under

the curve (AUC), interpretable as the probability that

a model discriminates correctly between presence

and absence sites (Pearce and Ferrier 2000). AUC

values range 0–1, where AUC = 1 indicates perfect

model performance, and AUC = 0.5 indicates pre-

dictive discrimination no better than random.

Additional statistical analyses

We used a repeated-measures ANOVA to assess how

model performance (measured by means of AUC

values) varied between modeling approaches (five

levels: GLM, GAM, GBM, GARP, Maxent) and

areas of calibration (three levels: Ib, eIb, and wIb),

respectively. We considered modeling approaches

1022 N. Roura-Pascual et al.
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and areas of calibration as fixed factors, and occur-

rence data-subsets used for training and testing the

replicate models in each area (ten levels par area of

calibration: number of iterations performed in step 2)

as random factors. Repeated-measures ANOVA per-

mitted us to deal with the non-independence in the

model performance measures between predictions

calibrated using the same occurrence dataset. The

analysis was performed using the lme function, which

performs mixed linear models, implemented in

R-CRAN.

To investigate environmental relationships

between eastern and western occurrence localities,

we followed the methodology of Broennimann et al.

(2007). A PCA analysis was conducted to visualize

(in a bivariate plot of the two main factors of a PCA)

variation patterns among occurrences for western and

eastern areas. To search for environmental similari-

ties/dissimilarities among ecological niches on both

sides of the Iberian Peninsula, after performing a

PCA analysis for eastern and western localities

separately, factor coordinates of the first two princi-

pal components of each PCA were compared.

Results

Selection of environmental data

After performing a first correlation analysis, we

eliminated minwtemp and EVI from the modeling

exercise owing to their high correlation (r [ 0.8)

with other environmental variables. Minwtemp was

highly correlated with elev and amtemp, and EVI was

only correlated with NDVI, which is more chloro-

phyll-sensitive and can have a greater influence on

Argentine ant distribution than EVI (Huete et al.

2002).

The averaged results of the 50 replicate GBM

models identified the most relevant environmental

variables, i.e. those with high values of relative

influence, for predicting Argentine ant distributions

in each area (Fig. 2). For Iberian-based models, the

most relevant environmental variables were elev,

amtemp, maxstemp, amprecip, and slope. Somewhat

different results appeared when using eastern and

western localities only: while western-based models

also indicated NDVI as relevant, eastern-based models

identified only elev, amtemp, and amprecip as relevant.

Comparison between niche predictions

For modeling Argentine ant distribution across the

entire peninsula, and in the eastern and western sectors

separately, we developed 10-replicate models by

combining the most influential variables for each

region with 10 different subsets of training occurrence

Fig. 2 Most relevant environmental variables in predicting

Argentine ant distributions in areas of the overall (Ib), eastern

(eIb), and western Iberian Peninsula (wIb) using generalized

boosted models (step 1). Bar refers to mean relative influence

of each variable developed applying the same environmental

dataset to 50 different subsets of occurrences. For visualization,

the dotted line indicates the threshold (relative influences = 8)

used to include or exclude particular variables from further

analysis
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data from each area. These sets of replicate models

were calibrated using different modeling techniques to

reduce divergences among methods and produce

ensemble predictions. The weighted average of AUC

values of each set of 10-replicate models ranged

between 0.77 and 0.95 (mean AUC = 0.87; Fig. 3),

which indicated overall good ability to predict the

distribution of the species. However, variation in

predictive performance between modeling approaches

was statistically significant (Table 1). Highest values

of model performance were attained by Maxent

models, and lowest by GARP models.

Despite these differences, all modeling methods

showed similar trends in predicting Argentine ant

distribution (Fig. 3). Models developed using occur-

rence data from the entire Iberian Peninsula gave AUC

values between 0.86 and 0.94 (mean AUC = 0.90).

Whereas eastern-based models gave similar AUC

values of 0.89–0.95 (mean AUC = 0.92), western-

based models produced lower AUC values (ranging

0.77–0.85, mean AUC = 0.80). This observation was

corroborated by the repeated-measures ANOVA,

which found significant differences in predictive

performance depending on the area: western-based

models presented lower model performance than

eastern or overall-based models (Table 1).

Visual comparisons of model predictions also

revealed some divergences: GARP predicted the

largest area suitable for Argentine ants and Maxent

the narrowest areas at the highest predicted thresholds,

whereas GLM, GAM, and GBM presented intermedi-

ate predicted areas (Fig. 4). However, ensemble

predictions for the overall, eastern and western areas

coincided in indicating coastal areas and river valleys

as highly suitable for Argentine ants (Fig. 5). Never-

theless, taking into account the variability among final

predictions, some areas (e.g., most river courses, and

northern and southeastern coastal areas) presented high

levels of variance among models.

Restricted to the initial non-correlated environ-

mental variables, the principal component analysis

aimed to describe the relationship between eastern

and western localities of the Argentine ant. The first

two axes of the PCA accounted for 41% of total

variance: PC1 (26% of variance) was positively

correlated with NDVI (r = 0.53) and amprecip

(r = 0.49), and negatively correlated with amtemp

(r =-0.33); PC2 (15% variation) was negatively

correlated with maxstemp (r = -0.58) and orient

(r = -0.47; Fig. 6). Comparisons of environmental

conditions between western and eastern localities

indicated some similarities, and some divergences:

while occurrence data on the two sides of the Iberian

Peninsula presented similar precipitation gradients,

western localities seemed to occupy a larger radiation

range (i.e., lower values of maxstemp and orient) than

eastern localities. This pattern was confirmed by

developing additional principal components analyses

for each side of the Iberian Peninsula. The first

factors (PC1) of each analysis were significantly

correlated between areas (r = 0.95), but the second

factors (PC2) presented a low correlation (r = 0.15).

This result thus indicated that occurrence data of the

Fig. 3 Differences in model performance between modeling

approaches depending on the area used for calibrating the

models: overall Iberian peninsula (represented by d), eastern

Iberian Peninsula (h), western Iberian Peninsula (m). The y-

axis presents the mean AUC value of each set of predictions

developed applying the same environmental dataset to different

subsets of occurrences. Whiskers show standard errors

Table 1 Repeated-measures ANOVA assessing changes in

model performance between modeling approaches and areas of

calibration

Source of variation Model performance (AUC)

Num df Den df F-value P-value

Intercept 1 116 23458.145 \0.0001

Modeling approaches 4 116 28.780 \0.0001

Areas of calibration 2 27 44.232 \0.0001

The analysis was performed using linear mixed effects models.

Modeling approaches (five levels: GLM, GAM, GBM, GARP,

Maxent) and areas of calibration (three levels: Ib, eIb, and wIb)

were included as fixed factors, and occurrence data-subsets

used for training and testing the replicate models in each area

(ten levels par area of calibration: number of iterations

performed in step 2) as random factors
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species at both sides of the Iberian Peninsula,

although highly similar, are influenced in different

ways by environmental conditions.

Discussion

In this exercise, we identified the most influential

variables in determining Argentine ant distribution

using generalized boosted models (GBM). In general,

the species’ distribution appears highly dependent on

the shape of the elevation gradient over the entire

Iberian Peninsula. However, other climatic variables

(annual mean temperature and annual mean precipita-

tion) were also important in refining our predictions.

This result is consistent with our knowledge of the

species, which is not known to occur in cold and dry

areas of the Iberian Peninsula (Espadaler and Gómez

2003), and also with the spatial resolution of our

analyses, which does not allow us to consider smaller-

scale processes that restrict the species’ distribution

Fig. 4 Predicted potential distribution of Argentine ant in the

Iberian Peninsula using different modeling approaches. Col-

umns indicate the calibration area of the models, while rows

indicate the modeling approach used: GLM, GAM, GBM,

GARP, and Maxent. Note that models developed for each area

were calibrated using different environmental datasets (see

Results). Higher probabilities in predicting the potential

geographic distribution of the Argentine ant are indicated in

darker shades

Fig. 5 Areas of consensus and variance among modeling

approaches in predicting Argentine ant distribution in the

Iberian Peninsula. The first row shows areas of consensus

among predictions developed using GLM, GAM, GBM,

GARP, and Maxent, while the second row shows the variance

among them. Darker shades indicate higher agreement (first

row) and higher variance (second row) between modeling

approaches in predicting the potential geographic distribution

of the Argentine ant
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locally, such as anthropogenic disturbances or pres-

ence of watercourses (Carpintero et al. 2004; Menke

and Holway 2006; Menke et al. 2007).

It is also important to notice that elevation has a

stronger influence in the east than in the west, where

other variables (maximum summer mean tempera-

ture, NDVI vegetation index) seem to be more

influential on the species’ distribution. We suspect

that altitude has a lower influence in western-based

models because topography is more homogeneous in

the west, and it does not seem to constrain Argentine

ants as much as on the eastern side, where elevations

are higher. Moreover, because of Atlantic influences

(lower temperatures, higher precipitation), Argentine

ant distribution on the western side of the Iberian

Peninsula would be more constrained by maximum

summer temperature and vegetation-related variables

than eastern localities. This result is supported by

Way et al. (1997), who suggested that the species’

distribution on the western side is constrained

principally by soil type and vegetation. Contrarily,

Mediterranean influences (with less precipitation and

higher mean temperatures) on the eastern side restrict

Argentine ants to low elevations near the coast with

temperate climates (characterized by cool tempera-

tures and higher levels of humidity). Holway (1998)

suggested that Argentine ant distribution in Mediter-

raean California is highly dependent on moisture

levels. In dry environments, Argentine ant popula-

tions seem to be highly limited by proximity to

permanent watercourses and rainfall patterns (Human

et al. 1998; Menke et al. 2007; Heller et al. 2008).

Differences between the eastern and western sides

of the Iberian Peninsula were expected, since models

were calibrated in different areas (Van Horne 2002;

Thuiller et al. 2004; Pearson et al. 2006). However, it

is essential to determine whether these differences

result simply from environmental differences

between areas or from real ecological divergences

between the two populations of Argentine ants

(Roura-Pascual et al. 2006). A better knowledge of

overall factors influencing the Argentine ant distri-

bution within the Iberian Peninsula would permit to

refine our predictions and establish more reliable

guidelines in future management practices.

Indeed, the accuracy of our niche models in

predicting Argentine ant distributions is highly depen-

dent on the occurrence data and environmental

coverages included in the analysis (Stockwell and

Peterson 2002). Based on our previous experience with

the same occurrence dataset, we consider the [100

occurrence localities to have been sufficient to predict

Argentine ant distributions (Roura-Pascual et al.

2006). Moreover, the best model performance was

attained using 3–6 predictor variables, which seem to

be an adequate number (Peterson and Cohoon 1999).

However, because these variables have been selected

using only GBM, some biases enhancing the perfor-

mance of this modeling approach in front of the others

might have been introduced. Nevertheless, the suit-

ability of both occurrence and environmental data

seems corroborated by the high values of model

performance (AUC [ 0.7) attained in our final predic-

tions (Fig. 3).

However, we also found slight differences between

predictions depending on the method used to calibrate

the model. While Maxent showed the highest model

agreement between localities of Argentine ants and

model predictions, GARP performed more poorly than

all other methods, and GLM, GAM and GBM

presented intermediate values of model performance.

These results coincide generally with results of other

Fig. 6 Visualizations of environmental conditions of Argen-

tine ant occurrence localities in the Iberian Peninsula in a

bivariate plot of two principal components, which summarize

variation among the environmental variables included in the

modeling exercise. Black dots refer to occurrence data from the

eastern side, while grey to western occurrences. Different lines

represent the convex hulls, including 25%, 50% and 75% of the

overall occurrences for each area
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comparative studies (Elith et al. 2006). However,

Peterson et al. (2008) evidenced that these results are

extremely biased by the evaluation technique, which

favours algorithms that predict across the whole range

of predicted thresholds (such as Maxent) in detriment

of those models that make only predictions at the end of

the spectrum (such as GARP). From a geographic point

of view, these results in the model performance’s value

are consistent with the fact that GARP predicted

broader areas as highly suitable for the species than the

other methods, whereas Maxent tended to distin-

guished maximally among presence and absence test

data and fit predictions more closely to the known

distribution of the species at higher predicted thresh-

olds. These divergences among modeling techniques,

and the lack of a standardized criterion to select the

most reliable prediction, suggest that conclusions

based on areas of consensus can be more reliable than

those derived from individual models developed via a

single modeling approach. In addition, the use of

consensual predictions allows identifying areas of

disagreement between modeling approaches. More

than simple artifacts, these discrepancies indicate

regions where the invasive potential of the species is

not well understood, and where studies should be

conducted to refine our knowledge of the biological

invasion (Hartley et al. 2006). However, further

refinements of the process (principally in relation to

the environmental data selection, and the implemen-

tation of the weighting scheme) should be developed to

produce an objective framework in which to conduct

consensual modeling approaches. The advantage of

using consensual models is that they incorporate most

of the uncertainties into the picture (Thuiller 2004;

Araújo and New 2007). This is especially important in

this study, where models calibrated using only records

from the invaded range might underestimate the

potential range of the species (Welk 2004).

Given the current distribution of the Argentine ant,

predictions of its potential ensemble distribution

across the Iberian Peninsula suggest that a further

expansion of the species is possible along the coast

and into inland areas along river valleys. Mountain

ranges and inland plateau are predicted as highly

unsuitable for Argentine ants. Since river courses

make it easy for the species to enter far inland,

scrutiny efforts should focus along the Ebro, Gua-

dalquivir, Guadiana, Tagus, Douro, and Minho river

valleys to look after future expansions into the

interior of the Iberian Peninsula. Moreover, although

northern and southeastern coasts also appear suitable

for the Argentine ant, further research is necessary to

determine the species’ real distribution in these areas

where model predictions are variable. Expansion of

the invasion along the Cantabric coast is probably

limited by lower temperatures, but on the Betic

Systems coast by higher temperatures and extreme

drier conditions. Special attention should also be paid

at some interior areas of the Guadiana, Guadalquivir

and Ebro depressions, where variance among model

predictions is high. In these interior areas, L. humile

will probably be limited to moist areas or along

watercourses (Holway 1995; Human et al. 1998).

Nevertheless, to size up whether herein developed

models are underestimating the species’ potential

distribution or not, we compared our predictions

(Fig. 5) with those predictions obtained in Roura-

Pascual et al. (2006) using occurrences from both

native and invaded ranges to determine the ecological

niche of the Argentine ant in the Iberian Peninsula.

Both studies used the same set of occurrence data

from the invaded range and similar spatial scales, but

slightly different environmental data and modeling

approaches. In general, invaded-based predictions

from both studies indicate coastal areas and major

rivers as highly suitable for the species. However,

when compared with native-based models in Roura-

Pascual et al. (2006), predictions developed in this

study might underestimate the suitability of inland

plateaus for Argentine ants and overestimate the

capacity of the species to occupy northern coastal

areas. In fact, the Cantabric Coast was already

identified as a highly uncertain region by ensemble

predictions (Fig. 5). Contrarily, although potential

ensemble distributions were also highly variable in

river valley depressions, native-based models seem to

corroborate the vulnerability of these areas to become

invaded by the Argentine ant. Especially important

are the Guadalquivir and Ebro depressions, where

native-based models predict high values of suitable

for the species.

Additionally, comparing ensemble predictions for

western and eastern areas derived from models

calibrated using occurrences from each area sepa-

rately with predictions calibrated using occurrences

from the overall Iberian Peninsula (i.e. using a wider

range of environmental characteristics), differences

are small. As in other studies (Peterson et al. 1999),
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these results indicate that Argentine ant populations

on the two sides of the Iberian Peninsula occupy

similar ecological conditions and, therefore, present

similar ecological niches. This idea is corroborated

by the PCA analyses, which indicate that environ-

mental characteristics of Argentine ant localities at

western and eastern Iberian Peninsula are correlated.

The small divergences observed between predic-

tions could be simply sampling artifacts or may reflect

slight differences in the species’ ecological niche

(Broennimann et al. 2007). Real ecological niche

differences between western and eastern populations,

not due to modeling artifacts (Roura-Pascual et al.

2006), could result from different origins of introduced

populations, as the existence of two supercolonies of

the Argentine ant seems to indicate (Giraud et al.

2002). The eastern supercolony (so-called Catalan

colony) is differentiated from the main supercolony

that is spread more broadly in the Peninsula (Giraud

et al. 2002). However, since the first reference to

Argentine ant occurrence in the Iberian Peninsula was

earlier on the western side (1894 in Oporto) than on the

eastern side (1923 in Valencia, probably 1919; Espad-

aler and Gómez 2003), and the so-called Catalan

colony is restricted to the northeastern side of the

Iberian Peninsula, we cannot conclude with certainty

that these slight divergences reflect real ecological

niche differences. Contrarily, these divergences may

be the results of the invasion history and/or environ-

mental differences between both sides of the Iberian

Peninsula (Roura-Pascual et al. 2006).

Conclusions

This modeling exercise attempts to understand factors

responsible for shaping Argentine ant distributions in

the Iberian Peninsula, and to identify the areas most

vulnerable to be invaded by the species. However,

given its anthropophilic tendency and opportunistic

requirements for propagule pressure (Hee et al. 2000),

Argentine ant expansion is expected to occur mostly in

populated areas (especially coastal areas and river

valleys) of the Iberian Peninsula, where opportunities

to control invasions effectively are few. In this sense,

although screening areas suitable for the species cannot

provide a basis for establishing preventive guidelines

for the overall Peninsula, it can help to plan local

measures in areas where Argentine ants cause

problems to humans (e.g., building infestations) or

natural ecosystems (e.g., threaten biodiversity or

ecosystem functioning; Passera 1994).

In this sense, our results indicate that Argentine ants

still have potential for further expansions in the Iberian

Peninsula, especially along coastal areas and water-

courses. Argentine ant distributions seem to be

influenced principally by altitude, mean temperature,

and precipitation. However, future studies should aim

to characterize the suitable range for the species at local

scales. Special attention should be focus on areas of

maximum incertitude among models, to elucidate the

ultimate drivers of the species’ distribution. On the

other hand, although our results suggest that different

populations of Argentine ant within the Iberian Pen-

insula present similar ecological niches, more specific

studies of ecological divergences of populations are

necessary to improve niche predictions and identify

areas environmentally resistant to invasion.

Finally, from the methodological point of view,

use of ensemble predictions to identify the potential

distributional areas of invasive species provided new

insights into the development of an objective frame-

work on consensus modeling. Future studies of

methods for selecting environmental data and select-

ing weighting schemes would permit more objective,

consensus-based predictions.
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E. Knox-Davis for their comments on the manuscript, and

M. Clavero, S. Phillips, and J. Hortal for statistical guidance.

X. Espadaler provided useful comments on historical data of the

Argentine ant invasion in the Iberian Peninsula. This research

was funded by the Ministry of Education and Science CGL2004-

05240-C02-02/BOS and MEC/FEDER2007-64080-C02-02/

BOS of the Spanish Government in support of N. Roura-

Pascual, and is a contribution to the European Research Group

GDRE ‘‘Mediterranean and mountain systems in a changing

world’’. N. Roura-Pascual benefited from a Beatriu de Pinós

postdoctoral grant (2006 BP-A 10124) from Catalan Agency for

Management of University and Research Grants, and L. Brotons

from a Ramon y Cajal contract from the Spanish government.

W. Thuiller was partly funded by the EU FP6 MACIS specific

targeted project (Minimisation of and Adaptation to Climate

change: Impacts on biodiversity N� 044399) and EU FP6

ECOCHANGE integrated project (Challenges in assessing and

forecasting biodiversity and ecosystem changes in Europe).

References

Abril S (2005) Ecologia alimentària de la formiga argentina
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Carpintero S, Reyes-López J, Arias de Reyna L (2005) Impact

of Argentine ants (Linepithema humile) on an arboreal ant
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