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A B S T R A C T

Multiple ecosystem services (ES) can respond similarly to social and ecological factors to form bundles.
Identifying key social-ecological variables and understanding how they co-vary to produce these consistent sets
of ES may ultimately allow the prediction and modelling of ES bundles, and thus, help us understand critical
synergies and trade-offs across landscapes. Such an understanding is essential for informing better management
of multi-functional landscapes and minimising costly trade-offs. However, the relative importance of different
social and biophysical drivers of ES bundles in different types of social-ecological systems remains unclear. As
such, a bottom-up understanding of the determinants of ES bundles is a critical research gap in ES and sus-
tainability science.

Here, we evaluate the current methods used in ES bundle science and synthesize these into four steps that
capture the plurality of methods used to examine predictors of ES bundles. We then apply these four steps to a
cross-study comparison (North and South French Alps) of relationships between social-ecological variables and
ES bundles, as it is widely advocated that cross-study comparisons are necessary for achieving a general un-
derstanding of predictors of ES associations. We use the results of this case study to assess the strengths and
limitations of current approaches for understanding distributions of ES bundles. We conclude that inconsistency
of spatial scale remains the primary barrier for understanding and predicting ES bundles. We suggest a hy-
pothesis-driven approach is required to predict relationships between ES, and we outline the research required
for such an understanding to emerge.
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1. Introduction

Current understanding of how multiple ecosystems services (ES) are
associated across heterogeneous landscapes remains limited (Bennett
et al., 2009; Qiu and Turner, 2013; Turner et al., 2013; Bennett et al.,
2015). This understanding is essential for informing better management
of multi-functional landscapes. Although the idea that the spatial dis-
tribution of ES and their associations are driven by the interplay be-
tween social and ecological variables is well-established (Reyers et al.,
2013), the relative importance of different social and biophysical dri-
vers of sets of ES and how these change across different socio-ecological
systems remains unclear (Bennett et al., 2015). Consequently, there
have been calls to achieve a greater understanding of the drivers of ES
distributions and associations (Bennett et al., 2009; Howe et al., 2014;
Bennett et al., 2015).

Associations among ES are understood to occur when multiple
services respond to the same driver of change or ecological process, or
when interactions among the services themselves cause changes in one
service to alter the provision of another (Bennett et al., 2009). Such
associations are commonly referred to as ES interactions (Raudsepp-
Hearne et al., 2010), with synergies and trade-offs being routinely ex-
plored in multi-ES assessments (Howe et al., 2014). Synergies arise
when multiple services are enhanced simultaneously, while trade-offs
occur when the provision of one service is reduced due to increased use
of another. While ES associations can be highly context-specific (Howe
et al., 2014), there have been calls for the development of general rules
about the relationships among ES (Bennett et al., 2009; Raudsepp-
Hearne et al., 2010). In attempting to distinguish ES associations that
are context-specific from those that are universal, several authors have
emphasised the need for cross-study comparisons (e.g. Bennett et al.,
2009; Raudsepp-Hearne et al., 2010; Meacham et al., 2015). However,
cross-study comparisons are hampered by differences in approaches,
the services covered, spatial scale, how ES are modelled and what
drivers are used (Grêt-Regamey et al., 2014; Queiroz et al., 2015).

The concept of ‘ecosystem service bundles’ has been operationalised
to help in the search for general rules determining ES associations
(Bennett et al., 2009; Raudsepp-Hearne et al., 2010). While rather
confusingly the use of the term varies in the literature, with bundles and
synergies used interchangeably (Berry et al., 2015; see Box 1 for defi-
nitions used here), the term has been widely used in conjunction with
the application of a spatially explicit framework developed by
Raudsepp-Hearne et al. (2010) for identifying and mapping ES asso-
ciations based on cluster analysis. Raudsepp-Hearne et al. (2010) de-
fined ES bundles as coherent sets of ES repeatable in space or time. This
clustering approach has been applied across the world to facilitate
cross-study comparisons of ES associations and their drivers (Table 1
and Fig. 1). Maps of ES bundles delineated with this approach can in-
dicate what services can be expected to associate based on where we
find services repeatedly occurring together across a landscape
(Raudsepp-Hearne et al., 2010). Their distributions have been typically
interpreted with regards to known distributions of principal human
activities or land use within the region (Table 1) and are therefore
considered useful for communicating the potential impact of manage-
ment decisions to policy-makers (Crouzat et al., 2015). This qualitative
interpretation of ES bundle distribution provides some information
about the drivers of ES associations and whether different social-eco-
logical systems have particular sets of ES associated with them (Bennett
et al., 2009). In addition to qualitative interpretation of ES bundles,
recent studies have attempted a more mechanistic approach to under-
standing ES bundle distribution, based on the relative roles of different
social-ecological drivers, with multi-variate approaches being increas-
ingly used (Mouchet et al., 2014). Raudsepp-Hearne et al. (2010) sug-
gested that spatially explicit analyses of the social-ecological variables
driving ES bundles could ultimately allow for the prediction and
modelling of ES bundles and thus, critical trade-offs and synergies

across regions (Raudsepp-Hearne et al., 2010). Studies that aim to
achieve such an understanding typically infer ES associations from the
analysis of spatial trends in the distribution of two or more ES, and
relate these to underlying social-ecological determinants (Mouchet
et al., 2014). Further, if widely accessible data on social-ecological
drivers (such as land use and population density) can predict ES bun-
dles, this could potentially overcome problems associated with complex
and data-intensive models that are required to produce ES maps
(Meacham et al., 2015). Indeed, an ability to use limited variables to
inform about the ES context is particularly important in data scarce
regions (Meacham et al., 2016).

Here, we critically assess the strengths and limitations of current
approaches for explaining and/or predicting the distribution of spatial
associations between multiple ES. Most studies of this type to date
follow the spatially explicit ES bundle approach first outlined by
Raudsepp-Hearne et al. (2010) (Table 1). We first review studies that
have applied this approach (Table 1 and Fig. 1) and synthesize the
application of it into four steps (Fig. 2), that capture the plurality of
methods currently used, and illustrate them with a case study – a cross-
study comparison of the North and South regions of the French Alps.
We then use the outcomes of this case study to assess the strengths and
limitations of current approaches for linking social ecological drivers to
ES bundles. Finally, we outline a roadmap for research required to
enable a general understanding of ES associations.

2. Current approaches to understanding spatially explicit ES
associations

2.1. Step 1: assessment, aggregation and harmonisation of ecosystem service
indicators

Studies that have examined drivers of spatial ES bundles exhibit
considerable variation regarding the number and types of ES con-
sidered, and in how individual ES are quantified (Table 1). Studies have
typically considered a relatively large number of ES (averaging ∼12
ES), encompassing a range of provisioning, regulating and cultural ES,
and also biodiversity metrics (Table 1). Contrasting large numbers of ES
within different ES categories can contribute to a better understanding
of ES trade-offs (Raudsepp-Hearne et al., 2010; Crossman et al., 2013).

ES maps often vary in the units, range of output values, and spatial
resolution. To enable bivariate or multivariate analyses, ES datasets
have been aggregated to a common resolution. While studies have
mapped ES at scales ranging from local to global (see Crossman et al.,
2013 and Malinga et al., 2015 for recent reviews), studies mapping ES
bundles tend to be conducted for parts of countries at the spatial re-
solution of administrative boundaries, typically the smallest political
units such as municipalities (Table 1). The use of administrative
boundaries has been advocated as relevant for multi-ES studies
(Raudsepp-Hearne et al., 2010), as municipalities represent the smallest
scale of governance (in most areas of Europe) where many decisions
regarding planning and landscape management are taken (Hamann
et al., 2015; Queiroz et al., 2015). The selected grain for multi-ES re-
search is also likely to have been driven by data availability; munici-
palities often are the finest scale at which some ES (such as provisioning
ES) and potential social data are available (e.g. census data). We con-
sider the potential limitations of municipality-level analyses in the
discussion.

Following collation and aggregation of multi-ES datasets, data are
usually harmonised to a common range and unit to allow for compar-
ison prior to data analysis. The methods used such as standardisation
(transformation to z-scores by centring and scaling), serve to adjust the
magnitude and variability of the variables to make them compatible for
analysis (Legendre and Legendre, 2012).
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2.1.1. Application of step 1 to french alps case study
The French Alps represent a relatively large, highly socially and

ecologically diverse region characterised by excellent ES data over this
large extent (e.g. Crouzat et al., 2015). Within the region, elevation,
climate and vegetation gradients have historically influenced social
dynamics and economic activities, resulting in the conventional se-
paration into the North and the South Alps (Crouzat et al., 2015; a
detailed description of study system is given in SI). This social-ecolo-
gical divide is also recognised by an administrative boundary at the
NUTS II level (Nomenclature of Territorial Units For Statistics by
Eurostat [http://ec.europa.eu/Eurostat], basic regions for the applica-
tion of regional policies).

We selected nine ES that have been quantified and mapped in the
French Alps previously by Crouzat et al. (2015). These services were
deemed socially, ecologically, and economically relevant to the region
following consultation with scientists and local collaborators (Crouzat
et al., 2015), and included three provisioning (crop [crop], fodder
[fodd] and wood [wood] production) three cultural (hunting [hunt],
recreation [rec] and tourism [tour]) and three regulating ES (water
quantity regulation [wqt], carbon storage [cstock], erosion mitigation
[eros]; see Table S1). These ES are mixed indicators, ranging from
potential capacity to actual use values, as is the case in the majority of
ES bundle analyses (Raudsepp-Hearne et al., 2010; Crouzat et al., 2015;
Queiroz et al., 2015; Meacham et al., 2016). By using the same ES for
both the North and South Alps we were able to control for the effect of
choice of the ES selected in our bundles in our cross-study comparison.
All ES were based on either primary data or bespoke modelled surfaces
of ES based on primary data. Full details of these ES are in Crouzat
et al., 2015 and Appendix S1. Our analyses were conducted at the
municipality scale (a total of 2336 municipalities; 1498 in North Alps
and 838 in the South, ranging in area from 0.52 to 246.20 km2, aver-
aging 22.19 km2 (SD 23.98 km2)). To minimize skew and make the ES
variables dimensionless and comparable in terms of their magnitudes
and variability, Box-Cox transformation (Box and Cox, 1964), centring
and scaling was applied.

2.2. Step 2: assessment of ecosystem service associations and delineation of
ES bundles

ES associations have typically been assessed by mapping multiple ES
across broad regions, and any spatial overlaps (or absence of overlaps)
are assumed to signify a particular type of ES association; positively
correlated ES are assumed to be synergistic, while negative correlations
infer trade-offs (Tomscha and Gergel, 2016). Spatial overlaps between
multiple ES have been most commonly quantified through assessments
of pairwise correlations or PCA (Mouchet et al., 2014); a correlation
biplot from a PCA (scaling type 2; Borcard et al., 2011) is considered a
useful way to visualise the strength of correlations between multiple ES
indicators (e.g. Maes et al., 2012; Turner et al., 2014).

Raudsepp-Hearne et al. (2010) developed an approach for identi-
fying ES bundles based on cluster analysis, which has since been widely
applied to social-ecological systems across the world (Table 1; Fig. 1).
In this approach, clustering algorithms (e.g. k-means, self-organizing
maps) have been applied to define groups of ES that are associated in
space by delineating spatial units supplying the same magnitude and
types of ES (Raudsepp-Hearne et al., 2010; Mouchet et al., 2014). As
such, ES bundles as defined by cluster analysis are emergent properties
of the maps of different ES that are used in the cluster analysis and will
often result from the distribution of underlying driver variables that
drive more than one ES. Following clustering, ES associations have
frequently been visualised using star diagrams (Mouchet et al., 2014),
showing the relative delivery of different ES within each bundle.
Clustering approaches also underpin many current methodologies for
mapping social-ecological systems (Ellis and Ramankutty, 2008; Levers
et al., 2015), by identifying localities that have similar sets of multiple
social-ecological variables.

2.2.1. Application of step 2 to french alps case study
Following the spatially explicit ES bundle approach of Raudsepp-

Hearne et al. (2010) we used k-means cluster analysis to delineate ES
bundles across the N and S French Alps separately (Full Methods in

Box 1
Definitions of key concepts surrounding ecosystem services (ES) used in this article.

ES associations Arise when two or more services respond to the same driver of change or ecological process or when true
interactions among the services themselves cause changes in one service to alter the provision of another (Bennett
et al., 2009). Commonly referred to as ES interactions (Mouchet et al., 2014) and are inferred from spatial overlaps
or lack thereof.

ES bundle “Sets of ES that appear together repeatedly across space or time” (Raudsepp-Hearne et al., 2010). Have been
delineated and mapped using cluster analysis following Raudsepp-Hearne et al. (2010) (Table 1 In a bundle, ES
can be positively (synergy) or negatively (trade-off) associated (Mouchet et al., 2014).

ES demand “the amount of a service required or desired by society” (Villamagna et al., 2013). Different sectors of society can
have different, and even conflicting demands.

ES flow “the service actually received by people, which can be measured directly as the amount of a service delivered, or
indirectly as the number of beneficiaries served” (Villamagna et al., 2013).

ES supply The capacity of the structures and processes of a particular ecosystem to provide ES within a given time period
(modified from Burkhard et al., 2012).

ES use Refers to an ecosystem being accessed/altered/managed/protected due to ES demand (Turkelboom et al., 2015).
ES indicator Proxy measures derived from empirical data or modelled estimates of ES.
Realised ES By definition, an ES is only realised if there is a human benefit. Without human beneficiaries and demand for an

ES, ecosystem functions and processes are not services (Fisher et al., 2009).
Social-ecological system A set of social and ecological components that interact in a constantly evolving and interdependent manner

(Berkes and Folke, 1998).
Synergy Arises when multiple services are enhanced simultaneously by the use of an ES. Typically inferred from positive

spatial overlaps.
Trade-off When the provision of one service is reduced as a consequence of increased use of another, such as the case of crop

production diminishing water quality. Inferred from negative spatial overlaps.
Win-win A situation (or area) where a synergy occurs.

R. Spake et al. Global Environmental Change 47 (2017) 37–50

39

http://ec.europa.eu/Eurostat


Ta
bl
e
1

Ex
am

pl
es

of
st
ud

ie
s
th
at

ha
ve

as
se
ss
ed

so
ci
al
-e
co

lo
gi
ca
ld

ri
ve

rs
of

sp
at
ia
lly

ex
pl
ic
it
ES

bu
nd

le
s.
Th

e
st
ud

ie
s
in
cl
ud

ed
he

re
id
en

ti
fi
ed

an
d
pr
od

uc
ed

m
ap

s
of

bu
nd

le
s
of

ec
os
ys
te
m

se
rv
ic
es

de
ri
ve

d
fr
om

sp
at
ia
lly

ex
pl
ic
it
m
ul
ti
va

ri
at
e
an

al
ys
es

of
ES

.a

St
ud

y
R
eg

io
n

Se
rv
ic
e
ca
te
go

ri
es

(t
ot
al

nu
m
be

r
of

va
ri
ab

le
s)

b
G
ra
in

M
et
ho

d
us
ed

to
ob

ta
in

bu
nd

le
s

In
te
rp
re
ta
ti
on

of
ES

bu
nd

le
s

R
au

ds
ep

p-
H
ea
rn
e
et

al
.

(2
01

0)
Q
ue

be
c,

C
an

ad
a

P,
C
,R
(1
2)

M
un

ic
ip
al
it
y

k-
m
ea
ns

cl
us
te
ri
ng

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

co
in
ci
de

nc
e
w
it
h
so
ci
al
-e
co

lo
gi
ca
l

sy
st
em

s
as

de
fi
ne

d
by

do
m
in
an

t
la
nd

us
es
.

H
ai
ne

s-
Y
ou

ng
et

al
.

(2
01

2)
Pa

rt
of

Eu
ro
pe

P,
C
,R
(1
5)

(N
ot

ju
st

ES
)

N
U
TS

-2
re
gi
on

s
U
nk

no
w
n

M
ea
n
se
rv
ic
e
lo
ad

in
gs

an
d
m
ar
gi
na

l
im

pa
ct
s
of

la
nd

us
e
an

d
co

ve
r
ch

an
ge

fo
r

fo
ur

se
rv
ic
es

ac
ro
ss

tw
o
ti
m
e
pe

ri
od

s
w
er
e
cl
us
te
re
d
to

de
fi
ne

gr
ou

pi
ng

s
of

N
U
TS

-2
re
gi
on

s
w
it
h
si
m
ila

r
ch

an
ge

tr
aj
ec
to
ri
es
.

M
ar
ti
n-
Lo

pe
z
et

al
.(
20

12
)

Ib
er
ia
n
Pe

ni
ns
ul
a,

Sp
ai
n

P,
C
,R
(1
4)

R
es
po

nd
en

ts
H
ie
ra
rc
hi
ca
l
cl
us
te
ri
ng

U
se
d
re
du

nd
an

cy
an

al
ys
is

to
an

al
ys
e
as
so
ci
at
io
ns

be
tw

ee
n
th
e
re
la
ti
ve

im
po

rt
an

ce
of

ec
os
ys
te
m

se
rv
ic
es

pe
rc
ei
ve

d
by

pe
op

le
an

d
th
re
e
ty
pe

s
of

ex
pl
an

at
or
y
va

ri
ab

le
s:

st
ak

eh
ol
de

rs
’c

ha
ra
ct
er
is
ti
cs

(e
.g
.e

du
ca
ti
on

,i
nc

om
e)
,

la
nd

m
an

ag
em

en
t
st
ra
te
gy

(e
.g
.p

ro
te
ct
io
n
le
ve

l)
an

d
ec
os
ys
te
m

ty
pe

(e
.g
.

pr
es
en

ce
of

m
ou

nt
ai
ns
).
Fi
rs
t
th
re
e
ax

es
of

th
e
R
D
A

w
er
e
cl
us
te
re
d
to

ob
ta
in

bu
nd

le
s.

Q
iu

an
d
Tu

rn
er

(2
01

3)
a

Y
ah

ar
a
W
at
er
sh
ed

so
ut
he

rn
W
is
co

ns
in

(U
SA

)
P,

C
,R

(1
0)

30
-m

gr
id

ce
lls

(w
it
hi
n
13

36
km

2

w
at
er
sh
ed

)
Fa

ct
or

an
al
ys
is

Id
en

ti
fi
ed

th
re
e
or
th
og

on
al

ax
es

th
at

re
pr
es
en

te
d
sy
ne

rg
ie
s
as

w
el
la

s
tr
ad

e-
off

s
fo
r
ES

su
pp

ly
.I
nt
er
pr
et
ed

in
te
ra
ct
io
ns

by
m
ap

pi
ng

fa
ct
or

sc
or
es

th
at

re
pr
es
en

te
d
sy
ne

rg
ie
s
an

d
tr
ad

e-
off

s
in

ES
.

H
an

sp
ac
h
et

al
.(
20

14
)

So
ut
he

rn
Tr
an

sy
lv
an

ia
,

R
om

an
ia

P,
C
,R
,B
(9
)

V
ill
ag

e
H
ie
ra
rc
hi
ca
l
cl
us
te
ri
ng

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

sp
at
ia
l
co

in
ci
de

nc
e
w
it
h
so
ci
o-

de
m
og

ra
ph

ic
da

ta
,d

er
iv
ed

fr
om

co
m
m
un

e
le
ve

l
st
at
is
ti
cs
,
in
cl
ud

in
g
e.
g.

to
ta
l

po
pu

la
ti
on

si
ze
,p

ro
po

rt
io
ns

of
th
e
m
ai
n
et
hn

ic
gr
ou

ps
,u

ne
m
pl
oy

m
en

t,
m
ig
ra
ti
on

le
ve

ls
.

Pl
ie
ni
ng

er
et

al
.(
20

13
)

G
ut
ta
u,

G
er
m
an

y
C
(1
1)

(i
nc

lu
de

s
di
ss
er
vi
ce
s)

‘la
nd

co
ve

r
un

it
’

H
ie
ra
rc
hi
ca
l
cl
us
te
ri
ng

of
PC

A
sc
or
es

Bu
nd

le
s
of

pe
rc
ep

ti
on

s
of

cu
lt
ur
al

se
rv
ic
es

ob
ta
in
ed

by
cl
us
te
ri
ng

PC
A

ax
es

of
ES

va
ri
ab

le
s
by

la
nd

co
ve

r
un

it
s.
Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

la
nd

co
ve

r
ty
pe

of
th
e
la
nd

co
ve

r
un

it
.

Tu
rn
er

et
al
.(
20

14
)

D
en

m
ar
k

P,
C
,R

(1
1)

10
km

×
10

km
k-
m
ea
ns

cl
us
te
ri
ng

of
PC

A
sc
or
es

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

ov
er
la
p
w
it
h
so
ci
al
-e
co

lo
gi
ca
ls
ys
te
m
s

as
de

fi
ne

d
by

do
m
in
an

t
la
nd

us
es
.

D
er
kz
en

et
al
.(
20

15
)

R
ot
te
rd
am

,N
et
he

rl
an

ds
R
,C
(6
)

N
ei
gh

bo
ur
ho

od
D
is
tr
ic
t

k-
m
ea
ns

cl
us
te
ri
ng

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

ov
er
la
p
w
it
h
w
at
er

bo
di
es

an
d
ur
ba

n
gr
ee
n
sp
ac
es
.

R
en

ar
d
et

al
.(
20

15
)

Q
ue

be
c,

C
an

ad
a

P,
C
,R
(9
)

M
un

ic
ip
al
it
y

k-
m
ea
ns

cl
us
te
ri
ng

U
se
d
re
du

nd
an

cy
an

al
ys
is

to
an

al
ys
e
th
e
re
la
ti
on

sh
ip

be
tw

ee
n
th
e
pr
ov

is
io
n
of

ES
an

d
so
ci
oe

co
no

m
ic

(p
op

ul
at
io
n
de

ns
it
y,

di
st
an

ce
fr
om

ur
ba

n
ce
nt
er
)
an

d
bi
op

hy
si
ca
l
(a
gr
ic
ul
tu
ra
l
la
nd

ca
pa

bi
lit
y)

va
ri
ab

le
s.

C
ro
uz

at
et

al
.(
20

15
)

Fr
en

ch
A
lp
s,

Fr
an

ce
P,
C
,R
,B
(1
8)

1
km

×
1
km

Se
lf
-o
rg
an

iz
in
g
m
ap

Q
ua

lit
at
iv
el
y
an

al
ys
ed

th
e
ge

og
ra
ph

ic
al

di
st
ri
bu

ti
on

s,
el
ev

at
io
n
an

d
la
nd

co
ve

r
pa

tt
er
ns

of
di
ff
er
en

t
ES

bu
nd

le
s.

H
am

an
n
et

al
.(
20

15
)

So
ut
h
A
fr
ic
a

P(
6)

M
un

ic
ip
al
it
y

k-
m
ea
ns

cl
us
te
ri
ng

M
ul
ti
no

m
ia
l
lo
gi
st
ic

re
gr
es
si
on

us
ed

to
id
en

ti
fy

th
e
m
os
t
im

po
rt
an

t
so
ci
al
-

ec
ol
og

ic
al

pr
ed

ic
to
rs

of
th
e
sp
at
ia
l
pa

tt
er
n
ob

se
rv
ed

in
th
e
di
st
ri
bu

ti
on

of
ES

bu
nd

le
ty
pe

s.
Q
ue

ir
oz

et
al
.(
20

15
)

Sw
ed

en
P,
C
,R
(1
6)

M
un

ic
ip
al
it
y

k-
m
ea
ns

cl
us
te
ri
ng

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

ov
er
la
p
w
it
h
so
ci
al
-e
co

lo
gi
ca
ls
ys
te
m
s

as
de

fi
ne

d
by

do
m
in
an

t
la
nd

us
es
,m

an
ag

em
en

t
in
te
ns
it
y
an

d
so
il
ty
pe

s.
Y
an

g
et

al
.(
20

15
)

Y
an

gt
ze

R
iv
er

D
el
ta
,C

hi
na

P,
C
,R
(1
2)

“U
rb
an

-r
ur
al

co
m
pl
ex
es
”
as

de
fi
ne

d
by

ci
ty

bo
un

da
ri
es

H
ie
ra
rc
hi
ca
l
cl
us
te
ri
ng

Q
ua

lit
at
iv
el
y
in
te
rp
re
te
d
w
it
h
re
ga

rd
s
to

ov
er
la
p
w
it
h
so
ci
al
-e
co

lo
gi
ca
ls
ys
te
m
s

as
de

fi
ne

d
by

do
m
in
an

t
la
nd

us
es

an
d
hu

m
an

ac
ti
vi
ti
es
.

M
ea
ch

am
et

al
.(
20

16
)

Sw
ed

en
P,
C
,R
(1
6)

M
un

ic
ip
al
it
y

Bu
nd

le
s
id
en

ti
fi
ed

by
Q
ue

ir
oz

et
al
.(
20

15
)

U
se
d
ra
nd

om
fo
re
st

an
al
ys
is

to
id
en

ti
fy

be
st

co
m
bi
na

ti
on

s
of

so
ci
al
-e
co

lo
gi
ca
l

va
ri
ab

le
s
to

be
st

pr
ed

ic
t
ES

bu
nd

le
ty
pe

s.
Sc
hu

lz
e
et

al
.(
20

16
)

G
er
m
an

y
P,

R
,B

(6
)

50
0
m

×
50

0
m

k-
m
ea
ns

cl
us
te
ri
ng

Bi
no

m
ia
l
lo
gi
st
ic

re
gr
es
si
on

us
ed

to
as
se
ss

re
la
ti
ve

im
po

rt
an

ce
of

va
ri
ab

le
s
in

de
te
rm

in
in
g
th
e
oc

cu
rr
en

ce
of

di
ff
er
en

t
bu

nd
le
s

R
au

ds
ep

p-
H
ea
rn
e
an

d
Pe

te
rs
on

(2
01

6)
Q
ue

be
c,

C
an

ad
a

P,
C
,R

(1
2)

1
km

×
1
km

k-
m
ea
ns

cl
us
te
ri
ng

A
ss
es
se
d
ho

w
in
te
ra
ct
io
ns

am
on

g
ES

as
ch

ar
ac
te
ri
se
d
us
in
g
co

rr
el
at
io
n
an

d
cl
us
te
r
an

al
ys
is

va
ri
ed

ac
ro
ss

th
re
e
gr
ai
n
si
ze
s

3
km

×
3
km

M
un

ic
ip
al
it
y

H
am

an
n
et

al
.(
20

16
)

So
ut
h
A
fr
ic
a

P(
6)

M
un

ic
ip
al
it
y

Bu
nd

le
s
id
en

ti
fi
ed

by
H
am

an
n
et

al
.(
20

15
)

A
ss
es
se
d
sp
at
ia
l
ov

er
la
p
w
it
h
‘ w

el
l-b

ei
ng

bu
nd

le
s’
,a

s
id
en

ti
fi
ed

us
in
g
cl
us
te
r

an
al
ys
is

of
so
ci
al

an
d
de

m
og

ra
ph

ic
fa
ct
or
s
su
ch

as
in
co

m
e
an

d
ed

uc
at
io
n.

La
m
y
et

al
.(
20

16
)

Q
ue

be
c,

C
an

ad
a

P,
C
,R
(1
0)

M
un

ic
ip
al
it
y

M
ul
ti
va

ri
at
e
re
gr
es
si
on

tr
ee

(M
R
T)

U
se
d
ei
gh

t
la
nd

sc
ap

e
va

ri
ab

le
s
(c
om

po
si
ti
on

an
d
co

nfi
gu

ra
ti
on

m
et
ri
cs
)
as

a
co

ns
tr
ai
nt

in
th
e
cl
us
te
ri
ng

.P
er
fo
rm

ed
an

R
D
A
an

al
ys
is

to
ex
pl
or
e
re
la
ti
on

sh
ip

be
tw

ee
n
ES

co
va

ri
at
io
n
an

d
la
nd

sc
ap

e
st
ru
ct
ur
al

va
ri
ab

le
s.

D
ep

el
le
gr
in

et
al
.(
20

16
)

Li
th
ua

ni
a

P,
C
,R
(3
1)

10
0
m

×
10

0
m

PC
A

Id
en

ti
fi
ed

fi
ve

or
th
og

on
al

ax
es

th
at

re
pr
es
en

te
d
sy
ne

rg
ie
s
as

w
el
l
as

tr
ad

e-
off

s
fo
r
ES

po
te
nt
ia
l(
ES

w
er
e
de

ri
ve

d
us
in
g
a
lo
ok

-u
p
ta
bl
e
an

d
a
la
nd

co
ve

r
m
ap

).
In
te
rp
re
te
d
in
te
ra
ct
io
ns

by
m
ap

pi
ng

fa
ct
or

sc
or
es

th
at

re
pr
es
en

te
d
sy
ne

rg
ie
s

an
d
tr
ad

e-
off

s
in

ES
.

(c
on

tin
ue
d
on

ne
xt

pa
ge
)

R. Spake et al. Global Environmental Change 47 (2017) 37–50

40



Appendix S2). Briefly, for both the North and South regions, a two step
clustering approach was adopted (Turner et al., 2014). A PCA was
firstly used to quantify the main multivariate relationships between the
ES variables to assess whether ES co-occur in spatial bundles. As a
precursor to cluster analysis, PCA can serve to separate signal from
noise and lead to a more stable clustering solution (Husson et al., 2010).
We applied k-means clustering to the relevant PCA axes (selected ac-
cording to the Kaiser-Guttman criterion; Legendre and Legendre, 2012;
Turner et al., 2014), to delineate ES bundles with 1000 random starts
and 10,000 iterations to find a solution with the lowest within-cluster
sum of squares according to the relevant PCA axes. K-means clusters
municipalities so that the composition of ES values are more alike
within than between clusters. Following Renard et al. (2015), we
quantified the effective number of ES provided in each bundle using a
transformation (H) of the Gini–Simpson’s index (S): H= 1/(1 − S),
(Jost, 2006; Appendix S2).

In both the North and South Alps, three ecosystem service bundles
(ESBs) were identified. In both regions, bundles were identified that
were characterised by high crop production and far below average le-
vels of most other services (ESB1(N) and ESB1(S)). Crop production was
negatively correlated with most services across both study regions,
except for water quantity regulation in the south (Appendix S2). In both
the north and south, these crop-dominated bundles had the lowest di-
versity (H = 2.8 for the north Alps and 1.8 for the south Alps). In the
north and south regions, bundles were identified that were char-
acterised by a high delivery of forest ecosystem services (carbon sto-
rage, wood production), and relatively high provision of other services
but a complete lack of crop production (ESB2(N) and ESB2(S)). These
forest ES-dominated bundles had the highest diversity in both the North
and South regions. In the North Alps, multifunctionality was higher
(H= 9.0) than in the South Alps (H= 6.0). A third ESB had a more
intermediate mix of ecosystem services in the north and South Alps. In
the north, ESB3(N) exhibited intermediate levels of crop production
while remaining relatively multi-functional, delivering other services
including high levels of tourism and intermediate hunting and recrea-
tion (Fig. 3; H= 6.9). In the South, ESB3(S) was dominated by delivery
of hunting, erosion mitigation, and carbon storage (H= 5.9; Fig. 3).

2.3. Step 3: identification of social-ecological determinants of ES bundles

Understanding the spatial distribution of ES associations means
identifying key drivers and their interactions that produce coherent sets
of ES across landscapes (Raudsepp-Hearne et al., 2010; Meacham et al.,
2016). Several studies have mapped ES associations to allow for their
qualitative interpretation by association with broad social-ecological
systems (Table 1). The results of cluster analysis are made spatially
explicit when the spatial units (typically administrative units or grid
cells), Table 1 is classified into groups (bundles) and projected onto
maps (Fig. 3), allowing the researcher to identify which localities ex-
hibit similar ES associations (Raudsepp-Hearne et al., 2010; Mouchet
et al., 2014). ES interactions have also been visualised by mapping the
site scores of factor analysis and PCA of multiple ES (Qiu and Turner,
2013; Turner et al., 2014). This approach has allowed for the identifi-
cation of where trade-offs and synergies are the most pronounced in the
landscape. Mapping ES associations in these ways has enabled quali-
tative interpretation of mapped bundles with respect to known dis-
tributions of dominant land uses or principal human activities within
regions (e.g. Raudsepp-Hearne et al., 2010; Queiroz et al., 2015; Turner
et al., 2014; Crouzat et al., 2015). In addition to qualitative inter-
pretation, several quantitative methods are available for analysing ES
bundles in relation to potential social-ecological determinants or pre-
dictors (Mouchet et al., 2014). Widely used methods include those
frequently used in community ecology to study the relationships be-
tween ecological communities and the environment, through the cou-
pling of two data tables, a site × environmental variable table and a
site × species table (Doledec and Chessel, 1994). Studies areTa
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increasingly applying these techniques in ES research to determine how
drivers and ES are related to one another, by replacing the latter table
with a site × ES table (Mouchet et al., 2014; Meacham et al., 2016),
including, for example, redundancy analysis and canonical correspon-
dence analysis. Other approaches have used regression-based or ma-
chine-learning methods with a single response variable, such as ES
bundle type (e.g. Hamann et al., 2015; Meacham et al., 2016; Schulze
et al., 2016), or whether a locality represents a win–win or not (Qiu and
Turner, 2013).

Whichever quantitative method is used, a critical step is the iden-
tification of candidate social-ecological variables that are important in
explaining or predicting different ES bundles. This initial selection is
based either on relationships demonstrated in the primary literature or
on expert knowledge, and of course depends on the ES considered in the
study. Meacham et al. (2016) explored four theories of the driving
forces behind human impact on ecosystems and tested their relative
ability to predict ES bundles. The four models were created by distilling
the different driver variables that each theory emphasises. Using
random forest analysis, they found that models based on socioeconomic

variables performed better than those based on land use. Hamann et al.
(2015) used multiple logistic regression to predict the distribution of
three ES bundles characterised by low, medium and high levels of direct
ES use across South Africa. Drivers were chosen based on variables
thought to contribute to the use of natural resources at the household
level. They found bundle distribution was determined by social factors,
such as household income, gender of the household head, and land
tenure, and only partly determined by the supply of natural resources.
Qiu and Turner (2013) used logistic regression to determine social-
ecological determinants of win–win areas, with candidate variables
including land use, population density, slope and soil properties. See
Mouchet et al. (2014) and Table 1 for a review of quantitative methods
for identifying drivers of ES associations.

2.3.1. Application of step 3 to the French Alps case study
In our case study, potential social-ecological drivers included social

and ecological components used in the modelling or quantification of
the ES in question (including land cover, elevation, climatic factors), in
addition to variables that directly or indirectly drive individual ES and
their associations as identified in the literature (biodiversity, NPP)
(Table S1). Land cover variables and population density are frequently
cited drivers of ES magnitude and distribution (Kienast et al., 2009),
including mountainous regions (Grêt-Regamey et al., 2012) and have
been widely used as a proxy of ES demand and supply in ES assessments
(e.g. Burkhard et al., 2012). Protected area coverage relates to an
ecosystem’s governance and accessibility, has been used as a proxy for
spiritual, aesthetic and recreational services (van Jaarsveld et al., 2005)
and has been shown to be positively correlated with measures of ag-
gregated ecosystem service supply across Europe (Maes et al., 2012).
Full details are given in Appendix S3.

To identify candidate variables significantly affecting the co-varia-
tion of multiple ES, we performed a preliminary redundancy analysis
(RDA) with all potential social-ecological driver variables followed by
forward stepwise selection to select the model with the combination of
variables with the highest R2 and p-value (Legendre and Legendre,
2012). This stepwise procedure defined which variables are relevant in
exploring relationships among ES. RDA and the stepwise selection of
variables were performed using the “vegan” and “packfor” R packages
(Oksanen et al., 2013; Dray et al., 2011).

RDA revealed that the combinations of the following variables sig-
nificantly explained the co-variation of ES indicators within the North
and South Alps (p ≤ 0.001): the coverage of grassland, forest, semi-
natural, urban land area, protected area coverage, elevation, NPP, plant
species richness and population density. The adjusted R2 values, re-
presenting the amount of variance of ES indicators explained by the
social-ecological variables were 0.46 for the north and 0.42 for the
south. Full methodological details and results are in Appendix S3.

Fig. 1. Distribution of 21 case studies that have
mapped ES bundles based on cluster analysis. Three
studies at the European scale (extent) are not plotted.
See Table 1.

Fig. 2. Approach of the spatially explicit analyses of ES associations, organized into four
conceptual steps.
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2.4. Step 4: assessing whether ES bundles are associated with different
social-ecological systems

In a call to develop general rules about ES relationships and their

implications for management of ES, Bennett et al. (2009) asked whether
there exist consistent sets of ES associated with particular social-eco-
logical systems. As these systems are not only defined by land cover
type, Bennett et al. (2009) suggested that the ‘anthrome’ approach of

Fig. 3. Distributions of ecosystem service bundles (ESBs) for the
North and South French Alps. Barplots indicate the relative
provision of ES within each bundle type. Values are ES z-scores
averaged across all municipalities belonging to a specific
bundle. Positive z-scores refer to above-average, negative z-
scores to below- average values regarding the ES for the regions.
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Ellis and Ramankutty (2008) might be useful for identifying a social-
ecological system classifications, with distinct systems derived from
overlays of social and land use/land cover (LULC) data. Hamann et al.
(2015) tested this assertion and quantified the percentage of land area
occupied by different anthrome types (derived from overlays of popu-
lation and LULC data) and bundles of locally derived provisioning ES
across South Africa. Hamann et al. (2016) also assessed the spatial
overlap with ‘well-being bundles’, as identified using cluster analysis of
social and demographic factors such as income and education.We in-
clude this last step, as it represents a logical progression from testing
the relative predictive power of individual social-ecological variables.

2.4.1. Application of step 4 to the French Alps case study
We followed the approach of Hamann et al. (2015, 2016) to as-

certain whether ES bundles were congruent with social-ecological sys-
tems. Having identified the most important social-ecological determi-
nants of ES bundles in step 3 using RDA, we used the k-means algorithm
to cluster these variables into social-ecological bundles (SEBs). SEBs
delineate spatial units supplying the same magnitude and types of so-
cial-ecological variables. Hamann et al. (2015) found that anthromes
offered little predictive power for provisioning service bundles in South
Africa. We therefore used the variables deemed important from the
RDA to delineate SEBs, as opposed to those used in the original con-
struction of anthromes (Ellis and Ramankutty, 2008).

To assess whether particular ES bundles are associated with SEBs, or
whether SEBs can act as proxies for ES bundles, the spatial congruence
between SEBs and ES bundles was assessed using overlap analysis, a
simple and intuitive way to run a spatially explicit detection of possible
associations (Mouchet et al., 2014). We calculated overlap as the per-
centage of municipalities of a particular bundle category that over-
lapped with each SEB category.

The crop-dominated bundles in the North and South (ESB1(N) and
ESB1(S)) overlapped with SEBs characterised by agricultural land
coverage at low elevation and low to intermediate cover of other land
uses (Figs. 4 and 5; SEB1(N) and SEB1(S)). In the north, the bundle
characterised by high provision of forest services (ESB2(N)) broadly
overlapped with a bundle characterised by high forest cover (SEB2(N)).
The North ES bundle dominated by tourism (ESB3N) did not overlap
neatly with any SEB (Fig. 5), except in the north-east of the region
(Fig. 4), dominated by high elevation grasslands and semi-natural areas
with high levels of protected area coverage. However, in the South, the
forest bundle (high wood production and carbon storage) (ESB2(S))
does not overlap with forest cover, but with high elevation areas with
grassland and semi-natural coverage.

3. Discussion

A multitude of methods are available to analyse and explore ES
associations relative to possible social-ecological predictors (Mouchet
et al., 2014). Here, we have reviewed the application of a widely
(Fig. 1) and increasingly used (Table 1) method that analyses the spatial
distribution of ES bundles, delineated by cluster analysis, in relation to
possible socio-ecological predictors. A common theme across all such
studies is the reliance on the spatial coincidence of ES and driver
variables (Crouzat et al., 2015), assuming that consistency in the spatial
congruency between ES likely emerges from common social-ecological
drivers. While comparison among multiple studies, such as cross-site
comparisons, could help disentangle the effect of context-dependent
drivers from interactions between services within bundles (Queiroz
et al., 2015), such comparisons are made difficult by study differences
in scale (i.e. grain and extent), and methodology, in terms of how ES are
modelled and what drivers are used (Grêt-Regamey et al., 2014;
Queiroz et al., 2015). It is also widely acknowledged that which ES are
selected is critical because conclusions are highly influenced by which
indicators are considered in a decision making context (Rodriguez-
Loinaz et al., 2015). Thereofore, studies that have bundled different ES,

or measured or modelled ES in different ways, are not straightforward
to compare, or necessarily generalisable to other regions. We attempted
to overcome both issues in our French Alps case study by comparing
two regions using the same ES and social-ecological datasets, and do so
using a widely used method to analyseES bundles. However, we show
that even within the French Alps, there is enormous variation in the
degree to which different social-ecological variables can explain the
distributions of ES bundles (see Appendix S4 for more discussion on the
findings from the case study). Importantly, our case study – which is
based on the current state of the science – does not enable us to identify
why the explanatory power of different social and ecological variables
considered here differs so much between our two regions. As such,
current approaches based on readily available data that may have little
relationship to underpinning mechanisms may not provide an effective
basis for predicting ES bundles across space or time, as is required for
effective sustainable management of ES. Here we discuss why current
approaches for analysing ES bundles are poorly suited to enabling
sound understanding and prediction of ES bundles and propose a
roadmap to guide future studies aimed at understanding, mapping or
predicting ES associations.

3.1. Issues of scale in understanding determinants of ES associations

Here we detail issues of scale related to the ES bundle approach. We
address two key components of scale: i) grain, the size of the spatial unit
of analysis; and ii) extent, the size of the study area.

3.1.1. Spatial unit and grain
ES associations are often analysed using municipalities or similar

administrative spatial units (e.g. Raudsepp-Hearne et al., 2010); Table 1
justified by the fact that municipalities are expected to be a grain at
which synergies and trade-offs between ES are observed (Rodriguez-
Loinaz et al., 2015), and as while ES synergies and trade-offs can be
causally linked, they do not necessarily occur in close proximity (Berry
et al., 2015). However, municipality boundaries could be relevant for
some ES, such as cultural ES, but arbitrary for others in management
terms, such as for managing water quality. Boundaries may often dis-
sect ecologically meaningful units, such as watersheds, that could be
appropriate for measuring and managing some ES. The choice of mu-
nicipality-level analysis is also often driven by data availability; mu-
nicipalities often are the finest scale at which some ES (namely provi-
sioning ES) and social variables are available (census data). Despite
some good reasons for municipality-scale analyses, several considera-
tions must inform their interpretation. At such coarse scales, the iden-
tification of ES bundles relies on spatial coincidence (Crouzat et al.,
2015), and cannot show direct causal relationships between ES and
social-ecological variables. This is a key assumption with the approach;
that consistency in the spatial congruency between ES likely emerges
from common social-ecological drivers. In actuality, the fine-scale
processes that some ES respond to might not be represented at this
scale.

As one moves across different grain sizes, different processes are
responsible for apparent synergies and trade-offs between ES and re-
lationships to social-ecological drivers. At coarse grains such as muni-
cipalities, spatial units are highly heterogeneous, encompassing mul-
tiple LULC types. ES relationships are likely to be largely driven by
fractional land cover of the large spatial units, due to its representation
of i) natural conditions; e.g. natural land cover and soil conditions as
well as ii) human impacts; mainly via land use (Burkhard et al., 2012).
ES relationships will, therefore, principally reflect land use distribution.
For example, ES may trade-off against each other simply because they
compete for space (e.g. a negative relationship between timber and crop
production; Lautenbach et al., 2010). At smaller grain sizes, where in-
dividual spatial units are less heterogeneous and likely to comprise a
principal land cover type, the main drivers of ES variation are still likely
to be land use. If ES within a single land cover type are analysed at
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small grains, however, such as individual forest plots or stands, then it
is possible that a more useful understanding might be obtained. By
analysing a single land cover type, one can understand drivers of ES

variation in relation to land use activities that result in ‘land mod-
ifications’, changes that occur within the same LULC type (e.g. Lavorel
et al., 2011). These remain much less studied than multi-ES

Fig. 4. Distributions of SEBs for the North and South French Alps. Barplots indicate the relative magnitude of social-ecological variables within each bundle type. Values are variable z-
scores averaged across all municipalities belonging to a specific SEB. Positive z-scores refer to above-average, negative z-scores to below- average values regarding the variables for the
region. See Appendix S2 for variable descriptions).
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relationships to LULC, but data are becoming increasingly available
(Erb et al., 2016).

Another well-documented scale effect related to spatial unit is the
modifiable areal unit problem, in which statistical results can depend
on the size and shape of spatial units in which a variable is aggregated
(Openshaw and Taylor, 1979). Grain size-dependence in the direction
of correlations of ES has been demonstrated in several studies (e.g.
Naidoo et al., 2008; Anderson et al., 2009). Various processes can cause
this phenomenon. Aggregation obscures ES trade-offs particularly when
ES compete for space. For example, different crop competing for pro-
ductive floodplain soils could be seen as spatially concurrent in ag-
gregated datasets, thereby suggesting a synergistic relationship
(Tomscha and Gergel, 2016).

When administrative units are used, the degree of variation in the
grain size among units is likely to be an issue for the interpretation of
relationships, as the mechanisms essential to an ES at one grain can be
less important or absent at another. Significant variation in areal size
could then reduce the specificity of the measured associations, and also
decrease their strength (Arsenault et al., 2013). Such a phenomenon
could affect the apparent relationships between ES or social-ecological
variables, e.g. population density could appear to be inversely related to
landscape multi-functionality, but in actuality, this could be a function
of municipality size, as densely populated areas often divided into
smaller administrative units for health care and mail delivery
(Arsenault et al., 2013). Raudsepp-Hearne and Peterson (2016) showed
that bundles delineated at three grain sizes (1 × 1 km, 3 × 3 km and
municipality) exhibited contrasting patterns across the study area and
varied in their composition in terms of the magnitude and types of ES.
They concluded that individual ES that exhibit strongly clumped or
sparse distributions are likely to vary significantly as one moves from
smaller to larger grain sizes, and therefore are more likely to influence
bundling in a larger study area if they are present in multiple areas,
which is more likely at a larger scale of observation (Raudsepp-Hearne
and Peterson, 2016).

3.1.2. Study spatial extent and context-dependency
The spatial extent of the study region can impact ES relationships.

At present, most studies have delineated ES bundles at regional scale
(Table 1) likely due to data availability, but also due to the relevance to
management of considering variation in ES bundles across

municipalities within a region. However, regions will differ in the
variability of both the ES and social-ecological drivers that may un-
derpin these ES, as seen, for example in our case study, confusing our
results. The relative importance of social-ecological variables in driving
ES variation can change across regions, and therefore study extent. For
example, Holland et al. (2011) found a negative relationship between
agricultural production and river habitat quality at the extent of Britain,
due to the negative effects of agriculture on aquatic ecosystems. How-
ever, within some heavily urbanized sub-regions of Britain, a positive
relationship was observed; this was attributed to urban land cover
having a larger negative effect on aquatic ecosystems than agricultural
land. Variability of predictor and response variables also affects the
degree of statistical power that is available to detect relationships be-
tween spatial variables (Eigenbrod et al., 2011). Moreover, the types of
social-ecological driver variables considered will likely vary with spa-
tial extent. For example, over larger study regions, it is possible to
analyse the effect of slow variables, that exhibit variation at larger
extents, but remain homogeneous across spatial units at small extents.
Given these issues, cross-study comparisons will not necessarily enable
meaningful comparisons of the relative explanatory power of different
drivers between regions, even when the same ES and the same ex-
planatory variables are considered (as in this study).

3.2. Careful selection of ES indicators in multi-ES analyses is critical for
interpretation

The studies that have delineated ES bundles based on spatial asso-
ciations in Table 1 exhibit considerable variation in the number (mean
∼12 ES) and types of ES considered, and in how individual ES are
quantified. It is important to distinguish what aspect of a service is
being measured by an ES indicator; the potential value provided by an
ecosystem, or the service that is actually realised by humans (Jones
et al., 2016). Most previous ES bundle analyses, including this study,
have mixed indicators ranging from potential supply to actual use va-
lues. Two key problems with mixing indicators make attribution and
prediction difficult. Firstly, because the ES indicators may be anywhere
along a spectrum from ecological stocks to flows to benefits in support
of human well-being, some ES indicators may not respond to the in-
fluence of social factors (Hamann et al., 2015). Indeed, supply and
demand bundles are likely to exhibit very different dynamics and

Fig. 5. Overlap between ES bundle and SEBs for the
north (left) and south (right) of the French Alps,
expressed as a percentage of municipalities.
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respond to different drivers, potentially making mixed-indicator bun-
dles more difficult to interpret or predict, as in this and previous studies
(Hamann et al., 2015; Meacham et al., 2016). Hamann et al. (2015)
focused on bundles of one type of ES, direct use of locally available ES
in South Africa (e.g. wood for heating), potentially allowing for a
deeper understanding of linkages between ES use and human well-
being. There is a second difficulty of interpreting bundles of mixed ES
indicators: Crouzat et al. (2015) highlighted that positive associations
between ES that are actual or potential do not necessarily reflect sy-
nergies and can even represent conflicts once the ES are utilised. The
selection of which ES are analysed jointly is particularly critical to
cross-study comparisons; studies that have analysed associations of
different ES, or ES measured or modelled in different ways, are not
straightforward to compare. Ultimately, ES bundles delineated by
cluster analysis are not generalizable to other regions because a clus-
tering solution is entirely dependent upon the variables used. This issue
is already recognised as a limitation for the use of composite indicators
of ES (Rodriguez-Loinaz et al., 2015). Raudsepp-Hearne and Peterson
(2016) demonstrated that ES bundle spatial patterns were highly de-
pendent on the numbers and types of ES included in the cluster analysis.

3.3. Careful selection of social-ecological variables in multi-ES analyses is
critical for attribution

There have been several calls for ES analysts to improve under-
standing of ES associations, to allow for knowledge of how to minimize
trade-offs and enhance synergies (Bennett et al., 2009; Bennett et al.,
2015). This understanding requires identifying key social-ecological
variables that determine the co-variation in ES. Other authors have
suggested the potential benefit of predicting ES associations from
widely available social-ecological datasets, that are not necessarily
causal (Meacham et al., 2015). If widely accessible data on social-
ecological drivers (such as land use and population density) can predict
ES associations, this may overcome problems associated with complex
and data-intensive models that are required to produce ES maps in data
scarce regions (Meacham et al., 2016). While causal relationships are
predictive (within similar contexts), prediction of ES associations does
not necessarily require causative links. We emphasise that causal social-
ecological predictors for multi-ES analysis are likely to be more robust
and less-context dependent (see also Mouchet et al., 2014).

Land-use change is a management intervention that can drive de-
mand and supply in one or more ES (Bennett et al., 2009), and therefore
land use/land cover (LULC) has been considered as a determinant of
individual ES or ES bundles in this study and many others (e.g. Hamann
et al., 2015; Meacham et al., 2016; Schulze et al., 2016). There are
several issues with using LULC as a determinant in multi-ES analyses. In
this study and others, land cover categories were treated as homo-
geneous across study regions, ignoring significant variations due to
management and biophysical gradients (e.g. tree species and age
structure in forests). In our study, forest cover was correlated with
forest services (wood production, carbon storage) in the North (Figs. 3
and S6), but not in the South (Figs. 4 and S7). This is because the French
South Alps experienced extensive afforestation during the last century
due to both natural regeneration and deliberate planting on abandoned
agricultural land. The secondary forests are not widely harvested be-
cause their uniform and dense structure makes cutting expensive, and
because local populations are concerned for their conservation
(Douguédroit, 1981). By using forest cover as a driver, we gained no
fine understanding of ecological processes and interactions. We only
considered variables for which continuous spatial data were available
in the French Alps, but other unmeasured factors or practices (relating
to management history, age of abandonment, or forest age structure)
could affect synergies and trade-offs among ES in the regions. This
emphasises the need for careful consideration of what actually con-
stitutes a driver of individual ES and ES bundles. Bennett et al. (2009)

considered many drivers as finer scale management interventions; for
example, exogeneous drivers (e.g. industrial production) causing en-
vironmental change in the social-ecological system, and pressures (e.g.
use of fertilizers) quantifying the effect of exogenous drivers on a given
social-ecological system (Mouchet et al., 2014). By using LULC as a
determinant, much ES research states the obvious about LULC-ES re-
lationships. A danger of circularity exists in such associations, as when
crop yield is necessarily associated with agricultural lands, and forest-
based recreational services can only be provided by forests.

3.4. Issues relevant to using cluster analysis for modelling ES associations

Cluster analysis is considered a useful first step when no prior
knowledge about existing relationships in a multivariate dataset exists
(Bennett et al., 2009; Dheng et al., 2016). However, its exploratory
nature makes it unsuitable for understanding causality in ES assoca-
tions. Cluster analysis requires somewhat subjective decisions including
the clustering algorithm and the number of clusters, which is not
straightforward (Legendre and Legendre, 2012). The clustering solution
is also entirely dependent on the input variables, rendering the results
ungeneralizable to other regions. In summary, the subjectivity of cluster
analysis makes it poorly suited to cross-study comparisons that are re-
quired for understanding general socio-ecological causes of ES asso-
ciations. This will likely have led to the poor congruence between ES-
bundles and social-ecological bundles as found in this study (Fig. 5).
Maps produced in this way should therefore be used with caution when
presented to stakeholders. The ‘air of authority’ (Hauck et al., 2013)
imparted by these maps and their associated star diagrams completely
mask any uncertainty and could lead to erroneous management deci-
sions.

3.5. Summary: ES bundles display pattern-based multifunctionality, but not
process-based multifunctionality

The visualisation of relationships among multiple ES is considered a
challenge to ES analysts (Birkhofer et al., 2015) and for effectively
communicating with policy makers (Crouzat et al., 2015). Maps of ES
bundles are therefore useful for visualising the joint spatial distribu-
tions of multiple ES. They can be used to identify ‘pattern-based mul-
tifunctionality’, the joint supply of multiple ES in space, without regard
for the ecological processes underlying the pattern (Mastrangelo et al.,
2014), and help guide land management decisions, such as where to
allocate urban development or prioritise conservation efforts. This is
possible when the scale of analysis (spatial unit type, grain and extent)
are close to the desired scale required by key stakeholders (Scholes
et al., 2013). We suggest that analyses that wish to map ES bundles
compare multiple scales corresponding to a portfolio of management
policies (Qiu et al., 2017), focussing for example on biophysically
bounded spatial units such as watersheds of different size (e.g., Qiu and
Turner, 2013).

However, while such correlational analysis is a logical first step in
assessing ES associations, it cannot allow for a mechanistic under-
standing (Bennett et al., 2009). When ES bundles are delineated using
correlation at coarse resolutions, with spatial units exhibiting high
within-unit heterogeneity in land cover and thus ES, and with each ES
mapped at the same resolution and extent, the approach cannot help ES
analysts understand general rules of mechanistic relationships between
key drivers and ES. They therefore cannot provide ‘process-based
multifunctionality’, the joint supply of ES in space caused by well-un-
derstood relationships (Mastrangelo et al., 2014). Such a mechanistic
understanding of relationships between ES and management will allow
the transferral of management recommendations outside the context
where data were collected (Birkhofer et al., 2015).
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4. A roadmap for predictive mapping of bundles of ecosystem
services

Determining the cause of a relationship among ES based on studies
that track only their spatial concordance is difficult (Bennett et al.,
2009). Here, we outline three key requirements for improvements to
current approaches to understanding and predicting ES associations.
The theme that underlies all these requirements is that studies that aim
to explain or predict associations between ES must be designed to have
a clear mechanistic basis in order to be confident about any relation-
ships found.

4.1. Requirement 1: design studies to test specific hypotheses about specific
predictors of key relationships between key ES of interest

The quantification and mapping of associations between a wide
range of ES including provisioning, cultural, and regulating services, is
thought to enable the identification of a diverse range of trade-offs and
synergies that might be missed if only individual ES, or a few more
commonly quantified ES are considered (Lee and Lautenbach, 2016).
However, as outlined earlier, differences in the distributions and types
of ES found in different regions mean that determining causal drivers of
bundles of all available ES is likely impossible.

Given the diversity and complexity of drivers that affect different
ES, a promising approach for understanding the degree of generality of
different predictors of relationships between ES may be to test specific
predictions about the importance of specific drivers of relationships of
key policy-relevant ES, based on putative mechanistic relationships. For
example, a study might set out to test the relative importance of forest
management history and forest age in determining the value of multiple
ES across heterogeneous stands (as in Sutherland et al., 2016). Such
‘unpacking’ of ES bundles into series of specific, focused studies should
enable a bottom-up understanding of ES bundles in a way that studies
that consider all ES simultaneously − like this case study − cannot.
Mitchell et al’s (2015) recent framework and set of specific predictions
about how habitat fragmentation will affect ES provides an excellent
example of the types of clearly defined questions that are required for a
predictive science for ES. The need for formulating specific questions
and hypotheses in ES research is also relevant to the generation of
policy-relevant knowledge. Indeed, designing problem-oriented ES as-
sessments, which focus on the information demands of decision-makers,
can help make ES studies more decision relevant (Förster et al., 2015;
Willcock et al., 2016).

4.2. Requirement 2: the testing of specific research questions requires
bespoke study designs

Observational studies of the relationships between ES and their
drivers are unlike experimental studies in that the identity, crossing,
replication and interspersion of variables are, by definition, outside the
control of the observer (Smart et al., 2012). Careful study designs can
help to deal with these challenges and generate meaningful tests of very
specific and focused predictions about relationships between ES. Here,
ES science should build on the large literature examining the effects of
habitat loss and fragmentation on biodiversity (Fahrig, 2003; McGarigal
and Cushman’s 2002). Of key importance is the need to account for
habitat amount before considering effects of habitat configuration when
attributing effects. For example, Qiu and Turner (2015) examined
whether adding configuration variables could significantly improve the
explanatory power of models explaining water quality after accounting
for the effect of composition. Using this two-step procedure, they found
forests to be more effective at retaining nutrients when more dispersed
across subwatersheds.

One major consideration in designing studies to test predictors of
relationships between ES is the issue of scale (Section 3.1). Multi-scale
assessments of social-ecological relationships with individual ES are

vital to understanding scale-dependent social and ecological processes
and causality (Scholes et al., 2013; Eigenbrod, 2016). Multi-scale as-
sessments may not be possible, for example when the highest spatial
resolution of the data is the municipality as with census-derived so-
cioeconomic variables (Raudsepp-Hearne et al., 2010; Hamann et al.,
2015; Queiroz et al., 2015). Recent developments in downscaling or
disaggregating datasets hold promise for higher resolution analyses
with available datasets (e.g. Keil and Jetz, 2014; Lamboni et al., 2016).

4.3. Requirement 3: utilize a wider range of statistical and modelling
approaches

While statistical techniques cannot compensate for poor study de-
sign (e.g. Hurlbert, 1984), taking advantage of the best statistical ap-
proaches will maximize the inferential strength of a given study design.
As such, a predictive science for ES should take advantage of recent
advances from ecological modelling including models that take account
of biases in data, confounding variables, and mechanistic relationships
(e.g. Sugihara et al., 2012; Warton et al., 2015).

One approach with potential to provide major insights in refining
our hypotheses about how different predictor variables may affect re-
lationships between ES is simulation modelling. For example, the
creation of artificial landscapes could enable researchers to control and
tease apart variables that are inherently confounded in real landscapes.
Such studies have led to major insights in landscape ecology (e.g. With
and King 1997; Gardner et al., 1989), macroecology (e.g. Lennon,
2000), but also in our understanding of how landscape structure might
affect ES at different spatial scales (Mitchell et al., 2015). Simulation
models can also be linked with future scenarios in which effects of
changing drivers, such as land-use patterns and climate, on spatial
dynamics of ecosystem services are explored (e.g., Carpenter et al.,
2015).

4.4. The use of primary data or process models rather than land cover based
proxies

A major issue for understanding causal drivers of relationships be-
tween ES is that most available maps of ES are themselves modelled
rather than measured. For example, regulating services such as polli-
nation and erosion mitigation are typically and necessarily quantified
using models that incorporate causal relationships between social–e-
cological variables (Martinez-Harms and Balvanera, 2012). An element
of circularity therefore exists in ours and most other studies from
having assessed the relationship between social-ecological variables
and modelled surfaces of ES derived from exactly such variables. As
such, a true understanding of determinant predictors of ES will only
come through increased availability of primary data on actual services
rather than LULC surrogates, including from remote sensing (Ayanu
et al., 2012) and field studies that measure ES indicators such as water
quality and carbon storage. That said, understanding the degree to
which widely accessible social-ecological data can be used to predict ES
associations, composed of ES that are either data-intensive or complex
to model is still useful (Meacham et al., 2016), as it facilitates modelling
of such ES associations in data-poor regions.

4.4.1. The consideration of temporal changes in ES and drivers
Inferring interactions from spatial co-incidence is loosely analogous

to a space-for-time substitution in that spatial relationships are used to
infer dynamics over time (Tomscha and Gergel, 2016). A major lim-
itation of this approach is that most spatial studies use ES snapshot data
to assess ES associations and relationships with drivers. Mismatches in
the timing between change in a driver (including demand) and the
supply of an ES may cause relationships to be misinterpreted or over-
looked, particularly in transitioning landscapes. This can also be due to
mismatches in the time series of available datasets. ES are not static but
spatially and temporally dynamic in terms of their delivery and
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associations with other services. Municipalities have been found to
change in the bundles of services they provide over time raising con-
cerns about using snapshots of ES provision to build understanding of
ES relationships in complex and dynamic social-ecological systems
(Renard et al., 2015). Long-term monitoring studies could potentially
capture complex long-term ES interactions and help us avoid or mini-
mize trade-offs and adequately track synergies that simultaneously
support multiple ES (Tomscha and Gergel, 2016).
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