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Abstract
Aim:	Modelling	the	response	of	β-	diversity	(i.e.,	the	turnover	in	species	composition	
among	sites)	to	environmental	variation	has	wide-	ranging	applications,	including	in-
forming	conservation	planning,	understanding	community	assembly	and	forecasting	
the	impacts	of	climate	change.	However,	modelling	β-	diversity	is	challenging,	espe-
cially	for	multiple	diversity	facets	(i.e.,	taxonomic,	functional	and	phylogenetic	diver-
sity),	 and	 current	 methods	 have	 important	 limitations.	 Here,	 we	 present	 a	 new	
approach	for	predicting	the	response	of	multifaceted	β-	diversity	to	the	environment,	
called	Multifaceted	Biodiversity	Modelling	(MBM).	We	illustrate	the	approach	using	
both	a	plant	diversity	dataset	from	the	French	Alps	and	a	set	of	simulated	data.	We	
also	provide	an	implementation	via	an	R	package.
Location:	French	Alps.
Methods:	For	both	the	French	Alps	and	the	simulated	communities,	we	compute	β-	
diversity	indices	(e.g.,	Sørensen	dissimilarity,	mean	functional/phylogenetic	pairwise	
distance)	 among	 site	 pairs.	We	 then	 apply	Gaussian	 process	 regression,	 a	 flexible	
nonlinear	modelling	technique,	to	predict	β-	diversity	 in	response	to	environmental	
distance	among	site	pairs.	For	comparison,	we	also	perform	similar	analyses	using	
Generalized	Dissimilarity	Modelling	(GDM),	a	well-	established	method	for	modelling	
β-	diversity	in	response	to	environmental	distance.
Results:	In	the	Alps,	we	observed	a	general	increase	in	taxonomic	(TD)	and	functional	
(FD)	β-	diversity	(i.e.,	site	pairs	were	more	different	from	each	other)	as	the	climatic	
distance	between	site	pairs	increased.	GDM	performed	better	for	TD	and	FD	when	
fitting	to	calibration	data,	whereas	MBM	performed	better	for	both	when	predicting	
to	a	validation	dataset.	For	phylogenetic	β-	diversity,	MBM	outperformed	GDM	 in	
predicting	the	observed	decrease	in	phylogenetic	β-	diversity	with	increasing	climatic	
distance.
Main conclusions:	Multifaceted	Biodiversity	Modelling	provides	a	flexible	new	ap-
proach	that	expands	our	capacity	to	model	multiple	facets	of	β-	diversity.	Advantages	
of	MBM	over	existing	methods	include	simpler	assumptions,	more	flexible	modelling,	
potential	to	consider	multiple	facets	of	diversity	across	a	range	of	diversity	indices,	
and	robust	uncertainty	estimation.
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1  | INTRODUC TION

Recent	increases	in	the	availability	of	biodiversity	data	have	driven	
interest	in	understanding	how	biodiversity	varies	in	response	to	en-
vironmental	variables,	land	use	and	human	impact	(D’Amen,	Rahbek,	
Zimmermann,	&	Guisan,	2017;	Granger	et	al.,	2015;	Newbold	et	al.,	
2016).	Modelling	these	relationships	and	projecting	them	into	space	
have	varied	applications,	including	conservation	planning,	illuminat-
ing	community	assembly	processes,	understanding	how	evolution-
ary	history	shapes	contemporary	communities,	and	climate	change	
planning	(Bässler	et	al.,	2015;	Kraft	et	al.,	2015;	Lavergne,	Mouquet,	
Thuiller,	&	Ronce,	2010;	Yuan	et	al.,	2016).

Historically,	 community-	level	 diversity	 models	 have	 focused	
on	 species	 diversity,	 applying	metrics	 such	 as	 species	 richness	 or	
Simpson’s	 diversity	 that	 relates	 to	 taxonomic	 diversity	 within	 a	
single	 site	 (i.e.,	α-	diversity)	 (D’Amen	et	al.,	 2017).	However,	 recent	
studies	 have	 demonstrated	 that	 taxonomic	 diversity	 (TD)	 alone	 is	
insufficient	to	capture	all	aspects	of	biodiversity	(Cadotte,	Albert,	&	
Walker,	2013;	Cadotte	et	al.,	2010).	Instead,	adding	consideration	of	
functional	diversity	(FD)	and	phylogenetic	diversity	(PD)	provides	a	
more	holistic	view	of	biodiversity	by	capturing	elements	of	ecologi-
cal	processes	and	evolutionary	history.

Additionally,	 compared	 to	 α-	diversity,	 β-	diversity—repre-
senting	turnover	 in	diversity	among	sites—can	provide	more	de-
tailed	 information	regarding	how	biodiversity	structure	varies	 in	
space,	and	can	better	capture	the	diversity	of	an	entire	landscape	
(Weinstein	 et	al.,	 2014).	 For	 instance,	 contrasting	 functional	 β-	
diversity	 patterns	 to	 expectations	 from	 neutral	 evolutionary	
models	can	illuminate	the	historical	processes	producing	species’	
ecological	 niches,	which	 is	 important	 for	understanding	 the	ori-
gins	of	biodiversity	 (Mazel	et	al.,	2017).	Modelling	and	analysing	
the	 response	 of	 β-	diversity	 to	 key	 environmental	 drivers	 has	 a	
strong	role	to	play	in	providing	important	new	insight	into	these	
biodiversity	 patterns	 and	 processes.	 However,	 while	 modelling	
the	 distribution	 of	 α-	diversity	 has	 a	 long	 history	 of	 theoretical	
development	and	strong	statistical	models	 (D’Amen	et	al.,	2017;	
Thuiller,	Midgley,	Rougeti,	&	Cowling,	2006),	understanding	taxo-
nomic,	phylogenetic	and	functional	β-	diversity	(hereafter,	we	use	
“β-	diversity”	to	refer	to	all	3	facets)	 is	more	challenging	as	 it	 im-
plies	pairwise	 comparisons	 among	 localities.	These	 comparisons	
can	introduce	statistical	non-	independence	among	modelled	data	
points	 (where	 each	 point	 represents	 a	 pair	 of	 sites).	 Moreover,	
there	 is	 little	 theoretical	basis	 for	understanding	how	ecological	
processes	producing	patterns	of	β-	diversity	should	be	related	to	
the	environment,	which,	for	a	pair	of	points,	could	be	represented	
by	the	environment	at	either	site	or	the	difference	in	the	environ-
ments	between	the	sites.

A	first	challenge	in	modelling	β-	diversity	is	developing	a	robust	
statistical	 framework.	 The	 different	 facets	 of	 β-	diversity	 can	 be	
expressed	by	a	range	of	 indices,	most	of	which	are	derived	from	a	
combination	of	species	presence/abundance,	phylogenetic	and	trait	
data,	and	which	generally	do	not	have	clear	prior	expectations	re-
garding	their	statistical	distribution	(compared	with,	e.g.,	Poisson	or	

negative	binomial	expectations	for	species	richness).	Further	com-
plicating	 modelling	 may	 be	 lack	 of	 clear	 mechanistic	 connections	
between	 available	 environmental	 variables	 and	 the	 target	 index.	
This	can	make	specifying	the	form	of	a	regression	difficult,	and	can	
result	in	poorly	specified	models,	a	poor	fit	to	the	data	and	violated	
assumptions	when	fitting	indices	that	may	have	nonlinear	and	highly	
complex	responses	to	the	environment.

There	are	a	number	of	techniques	that	have	been	developed	
to	model	pairwise	β-	diversity,	though	each	has	limitations.	Most	
basic	 is	 linear	matrix	 regression	 (Manly,	 1986),	which	 assumes	
a	 linear	 response	 of	 β-	diversity	 to	 environmental	 distance,	 an	
assumption	that	is	commonly	violated	in	ecological	datasets.	To	
overcome	this	limitation,	Ferrier,	Manion,	Elith,	and	Richardson	
(2007)	 developed	 generalized	dissimilarity	modelling	 (GDM),	 a	
powerful	 technique	 that	 accounts	 for	 nonlinearity	 in	 pairwise	
β-	diversity	 across	 environmental	 gradients.	 However,	 the	 cur-
rent	implementation	of	GDM	enforces	somewhat	limited	forms	
for	 the	 relationship	 between	 diversity	 and	 the	 environment,	
and	 in	 particular	 forces	 β-	diversity	 to	 increase	 monotonically	
as	 a	 function	 of	 environmental	 distance.	 This	 assumption	 can	
be	problematic	when	modelling	FD	and	PD.	Another	technique	
currently	 used	 to	 model	 β-	diversity	 is	 gradient	 forests	 (GF)	
(Ellis,	 Smith,	&	Pitcher,	 2012),	 an	 extension	 of	 random	 forests	
(Breiman,	2001)	which	is	a	machine-	learning	regression	tree	ap-
proach.	While	GF	is	more	flexible	than	GDM	(for	example,	there	
is	no	a	priori	assumption	of	increasing	diversity	with	increasing	
environmental	 distance)	 (Ellis	 et	al.,	 2012),	 it	 has	 no	means	 of	
incorporating	 geographic	 distance	 and	 may	 be	 susceptible	 to	
overfitting.

While	 existing	 approaches	 to	modelling	 β-	diversity	 have	 ad-
vanced	 our	 capacity	 to	 understand	 biodiversity	 patterns,	 there	
is	significant	scope	for	development	of	new	techniques	that	help	
overcome	 current	 limitations.	Here,	we	 present	 a	 novel	method	
for	 statistically	 modelling	 β-	diversity:	 Multifaceted	 Biodiversity	
Modelling	(MBM).	The	underlying	approach	is	quite	general,	in	that	
it	is	suitable	for	modelling	both	α-		and	β-	diversity	for	all	facets	of	
diversity	and	for	any	choice	of	index.	For	simplicity,	we	focus	here	
on	modelling	β-	diversity	 (i.e.,	β	 TD,	 FD	and	PD).	 The	 foundation	
of	MBM	is	Gaussian	process	regression,	a	highly	flexible	Bayesian	
approach	to	machine	learning.	This	method	improves	on	some	of	
the	shortcomings	of	other	methods	(e.g.,	assumptions	of	linearity,	
monotonicity).	Computational	time	is	reasonable,	allowing	for	the	
application	of	MBM	to	 large	datasets.	Furthermore,	 the	analysis	
provides	 full	 conditional	 posterior	 estimates	 of	 all	 biodiversity	
metrics,	 allowing	 for	 a	 robust	understanding	of	uncertainty	 that	
can	be	propagated	when	biodiversity	metrics	 are	used	 in	down-
stream	analyses.	We	present	the	general	approach	here,	then	de-
scribe	specific	modelling	steps	in	detail	with	a	case	study	of	plant	
β-	diversity	in	the	French	alps.	To	explore	computational	time	and	
compare	modelling	performance	with	GDM,	we	also	model	a	simu-
lated	dataset	constructed	from	virtual	species.	An	implementation	
is	provided	via	an	R	package,	mbm,	which	is	freely	available	(http://
github.com/mtalluto/mbm).

http://github.com/mtalluto/mbm
http://github.com/mtalluto/mbm
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2  | METHODS

The	core	of	our	method	relies	on	Gaussian	Process	(GP)	regression,	
a	widely	used	Bayesian	machine	 learning	 technique.	A	 full	 discus-
sion	of	GPs	is	beyond	the	scope	of	this	paper;	we	direct	the	reader	
to	(Rasmussen	&	Williams,	2005)	for	a	comprehensive	mathematical	
treatment	and	to	(Golding	&	Purse,	2016;	Jones	&	Moriarty,	2012)	
for	ecological	examples.	In	general	terms,	a	GP	regression	operates	
by	estimating	a	smooth	latent	function	f(x)	of	a	set	of	predictor	vari-
ables	x,	where	the	value	of	f(x)	 is	defined	by	a	multivariate	normal	
distribution	with	mean	 function	μ(x)	 and	 covariance	 function	 k(x).	
We	can	then	estimate	the	probability	of	observing	a	response	varia-
ble y	(here	a	metric	of	β-	diversity)	as	P(y)	=	D[f(x), σ],	where	D	is	some	
probability	density	function	with	expectation	f(x)	and	(depending	on	
the	distribution)	dispersion	parameter	σ.	Much	like	generalized	linear	
modelling	 (GLM),	 generalized	additive	modelling	 (GAM),	 and	other	
methods,	a	variety	of	distributions	are	available,	and	the	latent	func-
tion	can	be	connected	to	the	response	via	a	link	function.	Currently,	
the	mbm	package	implements	Gaussian	likelihoods	with	options	for	
identity,	 probit,	 and	 log	 links,	 although	 other	 options	will	 be	 pos-
sible	 in	 future	 versions.	 Guidelines	 for	 installation	 and	 testing	 of	
basic	functionality	for	the	mbm	package	are	provided	in	Supporting	
Information	Appendix	S1.

GP	regressions	produce	latent	functions	(i.e.,	predictions	for	the	
mean	of	y)	that	smoothly	vary	as	a	function	of	the	predictor	variables	
and,	depending	on	 the	covariance	 function	used,	can	 take	 flexible	
shapes	that	do	not	necessarily	conform	to,	e.g.,	 linear	or	quadratic	
relationships	between	y and x.	This	makes	them	a	natural	choice	for	
biodiversity	 modelling,	 where	 predictive	 inference	 is	 desired	 but	
the	link	between	predictors	and	response	is	poorly	understood	and	
the	shape	of	the	response	function	may	be	irregular	and	nonlinear.	
Often	the	relationship	between	climate	and	diversity	is	strong,	but	
acts	 indirectly	 via	 unknown	 intermediates	 (e.g.,	 climate	may	 influ-
ence	 the	 physiological	 behaviour	 of	 individuals,	 which	 may	 then	
scale	to	population-		and	species-	level	performance).	GPs	have	been	
suggested	 for	 similar	 reasons	 for	 modelling	 species	 distributions	
(Golding	&	Purse,	2016).

2.1 | Model structure

Our	general	 approach	 is	 to	estimate	β-	diversity	 indices	 for	pairs	
of	sites	and	to	use	these	indices	as	responses	in	a	GP	regression	
on	a	set	of	predictor	variables.	These	predictors	can	vary,	but	will	
always	 include	 a	 pairwise	 measure	 of	 environmental	 distance.	
As	with	 a	GLM,	 it	 is	 important	 to	 consider	 the	 structure	 of	 the	
response	 variable	 and	 choose	 an	 appropriate	 likelihood	 and	 link	
function;	we	discuss	these	issues	further	in	the	case	study.	Once	
the	model	form	is	chosen,	we	estimate	the	model	parameters	and	
the	mean	 and	 covariance	 functions	 of	 the	GP	 using	 Laplace	 ap-
proximation	 {implemented	 in	 a	 Python	 package,	GPy;	 gpy2014}.	
Because	GPs	are	fit	to	data,	the	prior	mean	function	μ(x)	has	little	
influence	on	the	posterior	mean	of	the	 latent	function	when	the	
data	 coverage	 is	 adequate.	Thus,	 in	 general,	we	 fit	 a	prior	mean	

μ(x)	=	0.	However,	when	 extrapolating	 or	when	data	 coverage	 is	
poor,	this	can	lead	to	undesired	behaviour	as	the	GP	will	tend	to	
revert	to	the	mean;	therefore	it	may	be	desirable	to	fit	an	alterna-
tive	prior	mean.	We	discuss	selection	of	the	mean	function	in	more	
detail	in	the	case	study.

For	 the	covariance	 function,	GP	regression	uses	a	kernel	 func-
tion	centred	around	each	data	point	xi	to	describe	covariance	in	the	
latent	function	based	on	the	predictor	variables.	Thus,	the	shape	of	
the	underlying	kernel	will	determine	the	shape	of	the	predicted	re-
lationship	between	 the	predictor	variables	and	 the	 responses.	For	
all	of	our	examples,	we	have	selected	a	negative	exponential	kernel	
(also	sometimes	called	the	radial	basis	function),	which,	assuming	the	
most	basic	case	of	a	single	predictor	variable	x,	defines	the	covari-
ance	between	two	points	xi and xj	as:

The	hyperparameters	σ2
k
 and l	 indicate	the	kernel	variance	 (i.e.,	

variance	in	the	latent	function	f(x))	and	the	length	scale,	respectively.	
This	kernel	has	the	desirable	property	that	the	strength	of	covari-
ance	 decreases	 as	 sites	 become	more	 dissimilar	 in	 their	 predictor	
variables	and	is	widely	used	in	GP	regression.	We	therefore	expect,	
for	most	biodiversity	modelling	applications,	that	this	kernel	will	be	
the	most	useful,	and	it	is	presently	the	only	kernel	implemented	in	
the	mbm	package.	Other	kernels	are	discussed	in	detail	in	Rasmussen	
and	Williams	(2005).

In	order	to	fit	the	latent	function,	it	is	necessary	to	provide	the	
hyperparameters	 to	 the	 kernel.	 If	 known,	 they	 can	be	 supplied	 as	
fixed	constants,	but	generally	users	will	wish	to	estimate	these	pa-
rameters	from	the	data.	For	many	problems,	 it	will	be	sufficient	to	
use	maximum	 likelihood	estimation	to	 find	point	estimates	 for	 the	
hyperparameters.	 Otherwise,	 hyperparameter	 posterior	 distribu-
tions	can	be	estimated	by	supplying	appropriate	prior	distributions	
and	using	a	Markov	chain	Monte	Carlo	(MCMC)	sampler.

A	common	issue	when	modelling	β-	diversity	is	that	the	relation-
ship	between	β-	diversity	and	environmental	distance	 is	not	con-
stant	across	an	environmental	gradient	 (Ferrier	&	Guisan,	2006).	
For	 example,	 turnover	may	 be	more	 rapid	 on	 the	 cold	 end	 of	 a	
temperature	gradient	than	on	the	warm	end.	To	address	this	issue,	
mbm	by	default	 includes	both	environmental	distance	(computed	
as	the	multivariate	Euclidean	distance	in	environmental	space	be-
tween	each	pair	of	survey	points)	along	with	the	average	position	
on	 the	 environmental	 gradient	 for	 each	 environmental	 variable,	
resulting	in	a	model	with	n + 1	predictors	for	n environmental vari-
ables.	By	default,	mbm	centres	and	scales	all	predictor	variables	to	
zero	mean	and	unit	variance	before	computing	the	environmental	
distance	among	points.	The	multivariate	kernel	used	is	anisotropic,	
where	the	kernel	function	k	is	defined	in	n + 1	dimensions	(with	a	
corresponding	length	scale	hyperparameter	l	for	each	dimension).	
Having	 a	 single	 compound	 anisotropic	 kernel	 provides	 consider-
able	 flexibility	 in	 fitting	 a	model	 to	 various	 combinations	 of	 the	

k(xi,xj)=σ
2
k
exp (−

1

2
r2)

r=
xi−xj

l
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predictors	and	allows	the	shape	of	the	response	of	β-	diversity	to	
environmental	 distance	 to	 vary	 at	 different	 locations	 in	 the	 pa-
rameter	space.	A	second	issue	is	that	it	may	be	desirable	in	some	
cases	to	enforce	additional	constraints;	for	instance,	although	we	
may	lack	the	data	on	distant	sites	to	fit	such	a	constraint,	we	may	
have	 the	 prior	 expectation	 that,	 above	 a	 certain	 environmental	
distance,	taxonomic	dissimilarity	saturates	at	1	and	does	not	de-
cline.	We	suggest	the	use	of	a	prior	mean	function	in	these	cases	
and	demonstrate	this	in	the	case	study.

Because	 β-	diversity	 is	 defined	 between	 site	 pairs,	 the	 size	 of	
the	 input	 dataset	 of	 site	 pairs	 can	 become	 very	 large.	Models	 of	
such	datasets	 can	be	 infeasible	 to	 fit	with	 Laplace	 approximation,	
particularly	if	it	is	necessary	to	optimize	hyperparameters.	In	these	
cases,	we	suggest	employing	a	stratified	subsampling	scheme	prior	
to	fitting	the	GP,	where	the	model	is	then	fit	with	β-	diversity	indices	
computed	only	for	the	selected	sites.	In	addition	to	improving	com-
putation	time,	subsampling	sites	reduces	non-	independence	among	
data	points	and	provides	holdout	data	against	which	models	can	be	
evaluated	 to	 guard	 against	 overfitting.	 The	 nature	 of	 the	 stratifi-
cation	will	 naturally	 depend	 on	 the	 characteristics	 of	 the	 dataset,	
but	it	should	be	constructed	to	ensure	that	full	ranges	of	both	the	
environmental	 gradient	 and	 the	 response	 variable	 are	 adequately	
represented.

2.2 | Case study: French Alps plants

We	 demonstrate	 the	 method	 using	 an	 intensive	 dataset	 (4,417	
sites	and	2,863	plant	species)	from	a	well-	studied	ecosystem	in	the	
French	 Alps.	 We	 used	 a	 2.5	km-	resolution	 database	 of	 plant	 oc-
currences	in	the	French	Alps	(Figure	1)	(Thuiller,	Pollock,	Gueguen,	
&	Münkemüller,	 2015)	with	 climatic	 covariates	 selected	 from	bio-
climatic	 rasters	 derived	 from	WorldClim	 data	 (Hijmans,	 Cameron,	
Parra,	 Jones,	 &	 Jarvis,	 2005).	 We	 upscaled	 the	 climatic	 data	 to	
2.5	km	(to	match	the	resolution	of	the	occurrence	data)	by	taking	the	
area-	weighted	average	of	cells	at	the	starting	resolution	(30	s).	We	
used	four	variables:	temperature	seasonality	(i.e.,	the	coefficient	of	

variation	of	monthly	average	temperatures),	minimum	temperature	
of	 the	 coldest	month,	 annual	 temperature	 range	and	precipitation	
seasonality.	 These	 variables	 were	 selected	 based	 on	 exploratory	
analyses	that	identified	variables	with	strong	univariate	correlations	
to β-	diversity,	ruling	out	any	variables	with	correlations	greater	than	
0.7	with	other	predictor	variables.	We	centred	all	variables	to	zero	
mean	 and	 scaled	 to	 unit	 variance	 before	 analysis.	 Because	 of	 the	
high	degree	of	 redundancy	 inherent	 in	 a	 full	 pairwise	dissimilarity	
matrix	(i.e.,	where	all	possible	site	pairs	are	represented)	and	to	make	
computational	time	reasonable,	we	stratified	the	cells	by	elevation	
and	by	sampling	effort.	First,	we	removed	cells	with	fewer	than	five	
samples,	with	 the	exception	of	 cells	 above	3,000	m	elevation	 (be-
cause	high-	elevation	regions	were	less-	intensively	sampled,	and	we	
wanted	to	ensure	adequate	coverage	of	high	alpine	areas).	Then,	we	
divided	the	study	area	into	fifteen	250-	m	elevational	bands	and	ran-
domly	selected	a	maximum	of	eight	cells	from	each	band	(chosen	to	
yield	 a	 final	 sample	 size	of	 approximately	100	 cells,	which	 testing	
indicated	would	 provide	 reasonable	 computational	 time).	 Because	
there	were	few	cells	in	the	highest	elevation	band,	we	ended	with	a	
final	sample	size	of	106	cells	from	the	4,417	raster	cells	in	the	origi-
nal	dataset,	with	an	identical	number	of	sites	selected	for	validation.

Traits	 for	 all	 species	 were	 also	 extracted	 from	 (Thuiller	 et	al.,	
2015).	We	used	four	traits,	mean	maximum	vegetative	height,	 leaf	
dry	matter	content	(LDMC),	seed	mass	and	specific	leaf	area	(SLA),	
that	had	the	greatest	coverage	 in	the	database	and	that	represent	
classic	plant	strategies	that	are	strongly	tied	to	response	to	climate	
(Westoby,	1998).	Of	2863	species	in	the	occurrence	dataset,	1054	
had	data	for	all	four	traits.	All	FD	analyses	were	based	on	this	subset	
of	species.	Seed	mass,	SLA	and	height	were	strongly	right	skewed,	so	
we	log-	transformed	them	before	analysis.	All	traits	were	then	scaled	
to	0	mean	and	unit	variance	before	computing	functional	distance.	
For	phylogenetic	diversity,	we	used	a	tree	of	European	alpine	flora	
resolved	to	the	genus	level	(Thuiller	et	al.,	2014).	For	our	analyses,	we	
selected	the	maximum	a	posteriori	tree	from	100	posterior	samples.

For	 taxonomic	 β-	diversity,	we	 used	 the	 Sørensen	 dissimilarity,	
defined	for	a	given	pair	of	sites	i and j	as:

F IGURE  1 Map	of	study	area,	showing	
raster	cells	selected	for	calibration	and	
validation.	Empty	(white)	cells	were	
excluded	due	to	insufficient	sampling.	
Right	panel	shows	the	location	of	the	
study	area	within	Europe
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where	ni	is	the	number	of	species	in	site	i,	nj	is	the	number	of	species	
in	 site	 j,	 and	 nij	 is	 the	 number	 of	 species	 shared	 between	 the	 sites.	
Functional	and	phylogenetic	β-	diversity	were	computed	as	the	mean	
pairwise	distance	(MPD)	among	all	possible	site	pairs	(Mouchet,	Villéger,	
Mason,	&	Mouillot,	2010;	Webb,	Ackerly,	McPeek,	&	Donoghue,	2002).	
MPD	is	simply	the	average	distance	(either	phylogenetic	or	functional)	
between	 all	 possible	 pairs	 of	 species	 among	 two	 sites.	We	 selected	
MPD	because	it	is	simple	to	compute	and	interpret	and,	because	it	is	
based	on	the	distance	matrix,	it	facilitates	comparison	between	FD	and	
PD.	 It	has	also	been	shown	that	MPD	is	sensitive	to	deep	branching	
structure	in	phylogenetic	trees	and	is	thus	less	sensitive	to	poorly	re-
solved	phylogenies	(Mazel	et	al.,	2016).	Unlike	traditional	measure	like	
Faith’s	phylogenetic	diversity,	MPD	is	independent	of	species	richness	
or	species	turnover	(Mazel	et	al.,	2016).	Functions	for	computing	MPD	
and	Sorensen	dissimilarity	are	included	in	the	mbm	package.

2.3 | GP model

We	selected	a	Gaussian	likelihood	for	the	error	distribution	of	all	di-
versity	indices;	this	likelihood	is	the	most	computationally	simple	in	
GP	regression,	but	it	does	require	an	additional	hyperparameter,	σ2

N
,	

representing	the	standard	deviation	of	the	error	distribution.	For	TD,	
the	Sørensen	index	is	bounded	between	0	and	1,	so	we	used	a	probit	
link	to	enforce	this	restriction.	We	fit	a	total	of	four	TD	models.	The	
first	used	all	of	the	default	settings,	with	all	parameters	estimated	
via	maximum	likelihood.	To	demonstrate	the	effect	of	changing	the	
length	scale	on	the	model,	we	fit	 identical	models	with	the	 length	
scale	fixed	to	either	2.0×	or	0.2×	the	maximum	likelihood	estimate.	
Finally,	 to	 demonstrate	 how	 the	mean	 function	 of	 the	GP	 can	 be	
used	to	enforce	prior	expectations	about	the	relationship	between	
β-	diversity	and	climatic	distance,	we	fit	a	model	with	a	linear	mean	
function	with	the	slope	(on	the	link	scale)	constrained	to	be	greater	
than	0.	This	 represents	a	prior	expectation	 that	dissimilarity	 satu-
rates	to	1	at	 large	climatic	distances.	This	also	allowed	for	an	easy	
comparison	 to	 the	GDM	package,	which	makes	 a	 similar	 assump-
tion	(Ferrier	et	al.,	2007).	For	FD	and	PD,	we	used	no	link	function,	
and,	because	we	had	no	prior	expectation	about	the	mean	functions	
for	FD	and	PD,	we	used	 the	default	μ(x)	=	0.	For	 comparison	with	
GDM,	we	built	GDMs	for	all	 three	diversity	 facets	using	the	same	
calibration	data	and	set	of	predictors.	We	used	the	default	options	
in	GDM	and	dropped	any	predictors	that	had	no	effect	(i.e.,	that	had	
all	I-	spline	parameters	fixed	to	0).	We	then	computed	the	root	mean	
square	error	(RMSE)	of	the	MBM	and	GDM	models	for	both	the	cali-
bration	and	validation	datasets	 to	compare	both	 fit	 to	 the	data	as	
well	as	the	ability	to	predict	to	new	data.

2.4 | Case study: simulated communities

We	used	 simulations	 in	 order	 to	 compare	MBM	with	GDM	when	
the	 underlying	 “true”	 relationship	 between	 β-	diversity	 and	 the	

environment	is	known,	and	to	explore	how	computational	time	and	
model	performance	for	both	methods	change	as	sample	sizes	change.	
Our	general	approach	was	to	generate	a	simulated	landscape	using	
randomly	generated	species’	niches	along	two	environmental	axes,	
then	“sample”	this	landscape	at	intensities	ranging	from	25	to	2,025	
sites,	then	compare	how	well	a	model	trained	on	these	sites	predicts	
β-	diversity	at	the	remaining	unsampled	sites.

To	generate	the	landscape,	we	first	generated	random	niches	for	
300	species	along	two	environmental	axes.	Niches	were	described	
by	a	bivariate	Gaussian	distribution,	where	the	ps,i,	the	probability	of	
occurrence	of	species	s	at	site	i,	is	given	by:

where	 	is	the	bivariate	normal	density	function	given	the	location	
vector xi	(i.e.,	environmental	values)	and	the	species-	specific	mean	
vector μs	 and	 covariance	matrix	�s	 (i.e.,	 the	 centre	 and	widths	 of	
the	niche	in	the	two	environ	mental	dimensions).	Finally,	the	scale	
parameter	ρs	was	included	to	allow	for	species-	specific	variation	in	
overall	 probability	 of	 occurrence.	 These	 species-	specific	 parame-
ters	were	drawn	at	random	from	hyperdistributions	as	follows:	μs 
bivariate	Gaussian	with	mean	 (0,0),	 standard	 deviation	 of	 (12,12)	
and no covariance; �s:	diagonal	entries	(i.e.,	standard	deviation	for	
each	 environmental	 axis)	 drawn	 from	 two	 independent	 Gamma	
distributions	with	 shapes	 (4,7)	 and	 rates	 (1.2,	 1.2)	 and	 off	 diago-
nals	(i.e.,	covariance)	set	to	0;	ρs:	Beta	distribution	with	parameters	
(15,5).	These	hyperparameters	were	chosen	via	exploration	to	pro-
duce	 landscapes	 with	 per-	site	 species	 richness	 varying	 between	
approximately	5	and	50	when	both	environmental	variables	varied	
from	−5	to	5.

We	then	defined	the	landscape	as	a	100	×	100	grid	of	sites,	with	
each	dimension	defined	by	an	environmental	gradient	varying	uni-
formly	 between	 the	 arbitrarily-	chosen	 values	 −5	 and	 5.	 Each	 site	
was	populated	with	 species	by	computing	 the	probability	of	pres-
ence	 for	 all	 species,	 then	 conducting	Bernoulli	 trials	where	 a	 suc-
cess	indicated	that	a	species	was	present.	For	simplicity,	we	do	not	
consider	 species	 interactions;	 thus,	 all	 species	 distributions	 were	
independently	drawn.	This	procedure	generated	a	landscape	where	
β-	diversity	 increased	 smoothly	 and	monotonically	 with	 increasing	
environmental	distance;	 this	 relationship	 is	commonly	observed	 in	
studies	of	taxonomic	β-	diversity	and	is	the	case	for	which	GDM	is	
built	(Ferrier	et	al.,	2007).

To	 simulate	 a	 sampling	 process,	 we	 used	 a	 random	 starting	
location	 and	 then	 selected	n	 evenly	 spaced	 locations	 from	 that	
start.	We	used	sample	 sizes	of	25,	49,	100,	225,	529,	1024	and	
2025	 (sample	 sizes	 are	 perfect	 squares,	 so	 that	 both	 environ-
mental	 dimensions	 were	 sampled	 with	 the	 same	 intensity).	We	
then	ran	both	MBM	and	GDM	to	predict	β-	diversity	as	a	function	
of	 environmental	 distance	 on	 the	 selected	 sites.	 For	MBM,	we	
used	the	GP	as	described	in	the	case	study	(which	is	appropriate	
for	smaller	sample	sizes)	when	the	number	of	sites	was	less	than	
100.	For	 larger	sample	sizes,	we	used	an	approximation	method	
(Hemsman,	 Fusi,	 &	 Lawrence,	 2013)	 implemented	 in	 the	 mbm 
package	 via	 the	 svgp	 option	 (Supporting	 information	 Appendix	

Si,j=1−
2nij

ni+nj

ps,i=ρs× (xi,�s,�s)
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S2).	We	recorded	the	computational	time	for	each	model	run;	al-
though	these	values	will	vary	greatly	depending	on	the	computa-
tional	 resources	available,	we	used	widely	available	hardware	 (a	
laptop	with	a	2-	core	3.3	GHz	CPU	and	16	GB	of	RAM)	and	thus	

they	can	provide	some	guidance	to	users	as	to	the	size	of	mod-
els	that	can	be	run.	Additionally,	we	computed	predictive	perfor-
mance	 at	 each	 sample	 size	 using	 the	RMSE	 computed	 for	 a	 set	
of	 5,000	 sites	 that	were	 not	 included	 in	 the	model	 calibration.	

F IGURE  2 Comparison	of	model	fits	of	MBM	(a,	c,	e)	and	GDM	(b,	d,	f)	for	taxonomic	(top),	functional	(middle),	and	phylogenetic	
(bottom)	β-	diversity	for	the	French	Alps	data.	Also	shown	from	MBM	is	the	effect	of	including	a	mean	function	(panel	A,	in	red)	compared	
with	no	prior	expectation	(panel	A,	in	blue).	All	MBM	curves	assume	that,	at	a	given	distance,	sites	are	equally	spaced	around	the	centre	
of	the	environmental	gradient.	GDM	Ecological	Distance	refers	to	the	distance	between	site	pairs	after	applying	the	basis	functions	to	the	
environmental	data;	see	(Ferrier	et	al.,	2007)	for	details.	Note	that	the	response	variable	for	PD	has	been	scaled	between	0	and	1	for	GDM	
fits.	Uncertainty	envelopes	for	MBM	fits	show	95%	credible	intervals.	Uncertainty	estimates	were	not	available	for	GDM	fits
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Finally,	we	ran	each	scenario	ten	times	and	report	the	mean	and	
range	of	RMSE	and	computing	time.

3  | RESULTS

We	found	a	trend	of	increasing	β	TD	with	climatic	distance	for	the	
French	Alps	dataset	(Figure	2).	However,	due	to	sparse	data	at	the	
largest	distances,	the	default	model	predicted	a	sharp	decrease	in	
β-	diversity	at	 large	distances	 (i.e.,	 reverting	 to	 the	prior	mean	of	
0),	contrary	to	our	expectations.	 In	contrast,	fitting	a	model	with	
a	 prior	 mean	 resulted	 in	 a	 curve	 that	 saturated	 to	 high	 dissimi-
larity	 at	 large	 ecological	 distances	 (Figure	2a).	 FD	 also	 increased	
with	climatic	distance,	while	PD	decreased.	Visualizing	spatial	pat-
terns	in	β-	diversity	revealed	clear	clusters	of	similar	communities	
(Figure	3).	The	 influence	of	 the	Mediterranean	region	was	appar-
ent	in	all	three	metrics	as	a	cluster	of	differentiated	communities	
in	 the	south.	 In	 the	high	mountains	 in	 the	eastern	portion	of	 the	
study	area,	TD	and	PD	were	divided	among	northern	and	southern	
regions,	while	 communities	were	 functionally	 similar	 throughout	
high	elevation	regions.

Both	MBM	and	GDM	predicted	 similar	 trends	 for	 TD	 and	FD,	
although	 the	MBM	models	 showed	 increased	 curvature	 (Figure	2,	
Supporting	 information	Figure	S1).	With	 respect	 to	 fit	 to	 the	 cali-
bration	data,	GDM	performed	 slightly	better	 for	TD	and	 substan-
tially	better	for	FD	(Table	1).	For	out-	of-	sample	prediction	(i.e.,	with	
the	validation	dataset),	MBM	performed	better	for	all	three	facets	
(Table	1).	 Increasing	the	 length	scale	of	the	MBM	model	produced	
a	model	 response	 curve	 that	 was	 very	 similar	 to	 the	 GDM	 curve	
(Figure	4).	For	PD,	GDM	performed	poorly;	all	environmental	vari-
ables	except	precipitation	seasonality	failed	to	converge;	thus	we	fit	
a	model	with	only	this	one	variable.	Thus,	for	PD,	MBM	provided	a	
better	fit	than	GDM	for	both	the	calibration	and	validation	datasets	
(Table	1).

For	the	simulations,	both	MBM	and	GDM	produced	qualitatively	
similar	 fits	 to	the	subsampled	sites	 (Supporting	 information	Figure	
S1).	 In	 terms	 of	 out-	of-	sample	 root	 mean	 square	 prediction	 error	
(RMSE),	 predictions	 from	 both	 MBM	 and	 GDM	 in	 our	 simulated	
datasets	 improved	 as	 sample	 sizes	 increased	 up	 to	 n = 225,	 after	
which	prediction	accuracy	was	approximately	constant	 (except	 for	
the	largest	sample	size,	where	MBM	predictions	performed	worse).	
MBM	outperformed	GDM	at	all	tested	sample	sizes	except	the	larg-
est	(n = 2,025),	where	GDM	performed	slightly	better	on	average	but	
was	within	the	range	of	variability	for	MBM	(Table	2).	Computational	
times	for	GDM	were	considerably	faster,	with	times	1–2	orders	of	
magnitude	faster	than	MBM	at	all	sample	sizes.

4  | DISCUSSION

Overall,	we	found	MBM	to	be	a	robust	approach	to	modelling	β-	
diversity.	Performance	was	similar	to	the	existing	method	(GDM),	
with	MBM	generally	 performing	 slightly	worse	when	 predicting	

calibration	data	but	slightly	better	for	validation	data	 in	both	an	
empirical	dataset	from	the	French	Alps	(Table	1)	and	a	simulated	
dataset	(Table	2).	Moreover,	MBM	provides	some	notable	advan-
tages.	 Namely,	MBM	 allows	more	 varied	 relationships	 between	
turnover	and	the	environment,	better	captures	prediction	uncer-
tainty,	and	 is	extensible	 to	 incorporate	a	wider	variety	of	model	
structures.	 In	particular,	GDM	performed	very	poorly	modelling	
PD,	likely	due	to	the	decreasing	trend	of	PD	with	climatic	distance	
(Figure	2).	Although	we	were	able	to	obtain	convergence	with	one	
predictor,	 it	 is	 clear	 from	 plots	 that	 the	 model	 is	 mis-	specified	
(Figure	2).	Moreover,	the	I-	spline	transformation	of	the	predictor	
in	GDM	obscures	the	decrease	 in	PD	with	climatic	distance	that	
we	observed	using	MBM.	Such	patterns	may	occur	 if	 important	
traits	evolve	easily	within	a	clade,	leading	to	high	intra-	clade	func-
tional	divergence	and	thus	greater	phylogenetic	similarity	among	
highly	dissimilar	 environments	 (Graham	&	Fine,	2008).	 Similarly,	
within-	community	phylogenetic	clustering	can	 increase	with	 the	
scale	 of	 communities,	 reflecting	 the	 inclusion	 of	 entire	 clades	
within	communities	(Cavender-	Bares,	Keen,	&	Miles,	2006).	Thus,	
for	 local	 or	 regional	 analyses,	 we	 may	 expect	 decreasing	 PD	
with	 increasing	distance,	particularly	 if	 the	overall	extent	of	 the	
analysis	is	not	very	large	relative	to	the	resolution.	In	such	cases,	
we	expect	GDM	and	phylogenetic	extensions	of	GDM	to	 strug-
gle	 to	 correctly	 predict	 how	PD	 changes	with	 the	 environment.	
Our	 approach	 offers	 an	 improved	 tool	 for	modelling	 β-	diversity	
when	the	assumptions	of	GDM	may	be	violated;	the	flexibility	of	
the	covariance	functions	plus	the	prior	mean	function	allow	for	a	
model	that	makes	similar	assumptions	as	GDM,	but	also	allow	for	
relaxing	these	assumptions	when	they	are	not	appropriate.	Other	
methods	with	potential	applications	to	β-	diversity	modelling,	such	
as	gradient	forests	(Ellis	et	al.,	2012),	may	also	overcome	some	of	
these	issues.

Another	advantage	of	MBM	is	the	fully	Bayesian	core	underlying	
the	analysis,	meaning	that	robust	uncertainty	estimation	is	a	funda-
mental	part	of	the	method.	By	comparison,	uncertainty	analysis	in	
GDM	requires	permutation	testing	or	embedding	the	analysis	 in	a	
Bayesian	 simulation	 (Woolley,	 Foster,	O’Hara,	Wintle,	&	Dunstan,	
2017),	 eliminating	 computational	 time	 as	 one	 of	 the	 principle	 ad-
vantages	 to	 GDM.	 To	 improve	 computational	 time,	 we	 have	 pre-
sented	 parametric	 confidence	 intervals	 (based	on	 standard	 errors	
estimated	 with	 Laplace	 approximation),	 and	 this	 is	 the	 default	 in	
the	 mbm	 package.	 However,	 posterior	 simulations	 are	 also	 pos-
sible,	which	will	 yield	more	 robust	 uncertainty	 estimates	 and	 can	
also	propagate	modelling	uncertainty	to	additional	analyses	based	
on	the	predictions.	However,	 there	 is	a	cost	 to	 this	 flexibility,	and	
mbm	has	two	principal	disadvantages.	First,	because	it	depends	on	
third-	party	 libraries,	 installation	 is	more	complex	 than	 is	 standard	
for	 R	 packages	 and	 requires	 the	 user	 to	 install	 Python	 and	 addi-
tional	 libraries	 before	 the	 package	 will	 function.	 Second,	 as	 with	
many	 Bayesian	 methods,	 performance	 can	 be	 much	 slower	 than	
non-	Bayesian	methods	(Table	2).	Thus,	very	large	problems	will	re-
quire	 significant	 computational	 resources	or	may	be	better-	suited	
to	other	methods.	However,	the	mbm	package	includes	options	that	
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have	been	optimized	for	large	datasets.	Although	slower	than	other	
options,	 even	 with	 large	 sample	 sizes	 (e.g.,	 2,025	 sites	 resulting	
in	 2	×	106	 unique	 site	 pairs)	we	 obtained	 results	 in	 under	 15	min.	
Finally,	 as	with	 any	 new	method,	 it	will	 be	 necessary	 to	 continue	
to	evaluate	MBM	in	terms	of	performance	and	prediction	accuracy	
across	a	wide	range	of	datasets.

The	 application	 of	 MBM	 presented	 here	 has	 been	 relatively	
straightforward,	 as	 it	 is	 based	 on	what	 can	 be	 accomplished	with	
a	simple	installation	of	the	mbm	R	package	(and	thus	will	be	acces-
sible	 to	 the	widest	 range	of	 users).	However,	 the	 flexibility	of	 the	

underlying	 method	 allows	 for	 a	 number	 of	 possible	 extensions	
to	MBM.	 In	particular,	 although	our	dataset	had	good	coverage	 in	
all	 three	 facets	 of	 diversity,	 it	will	 often	 be	 the	 case	 that	more	 is	
known	about	 (for	example)	 taxonomic	diversity	 than	 functional	or	
phylogenetic	 diversity,	 and	 that	 these	 gaps	 in	 knowledge	 are	 spa-
tially	 congruent,	 such	 as	where	 traits	 are	 sampled	well	 in	 one	 re-
gion	but	poorly	in	another.	Although	not	presently	implemented,	it	
is	possible	to	extend	MBM	to	multiresponse	models.	These	models	
use	 a	 coregionalization	 kernel	 for	 the	 covariance	 function,	 which	
models	a	given	response	as	a	function	of	both	the	covariates	as	well	

F IGURE  3 Spatial	MBM	predictions	for	three	facets	of	diversity.	In	the	upper	row,	similar	colours	depict	similar	communities	(as	
measured	by	predicted	Sørensen	dissimilarity).	The	colours	result	from	computing	all	possible	predicted	pairwise	(among	pixels)	dissimilarity	
values,	performing	a	principal	components	analysis	on	the	resulting	dissimilarity	matrix,	and	using	the	first	three	axes	(which	described	
70%–89%	of	the	variance)	as	red,	green	and	blue	colour	channels.	For	each	pixel,	MBM	predicts	β-	diversity	for	that	pixel	compared	to	every	
other	pixel	as	well	as	a	standard	error	for	each	prediction.	The	average	spatial	uncertainty	for	each	pixel	(lower	row)	is	then	the	mean	of	the	
standard	errors	of	all	predictions	for	that	pixel

TABLE  1 Root	mean	square	error	for	MBM	and	GDM	models	for	calibration	data	(with	RMSE	for	validation	data	in	parentheses);	smaller	
errors	within	columns	(bolded)	indicate	better	performance

Calibration dataset Validation dataset

Taxonomic Functional Phylogenetic Taxonomic Functional Phylogenetic

MBM 0.113 0.0143 18.5 0.107 0.0469 32.6

GDM 0.091 0.0019 21.0 0.129 0.0654 34.5
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as	 the	other	 response	variables	 in	 the	model	 (Álvarez,	Rosasco,	&	
Lawrence,	2012).	In	this	way,	responses	that	are	known	poorly	from	
some	portions	of	environmental	space	can	borrow	strength	from	the	
response	variables	that	are	known	well.

Multifaceted	 Biodiversity	 Modelling	 is	 particularly	 well	 suited	
for	modelling	in	environments	where	the	relationship	between	com-
munity	composition	(loosely	defined	to	 include	whatever	facets	of	
diversity	 are	 of	 interest)	 and	 the	 environment	 is	 complex.	 Along	
simple	 environmental	 gradients	 or	 when	 community	 assembly	 is	
largely	driven	by	environmental	filtering,	we	expect	that	β-	diversity	
increases	 both	 with	 geographic	 and	 environmental	 distance,	 and	
this	 increase	 should	 be	 accompanied	 by	 a	 reduction	 in	 variance	
(e.g.,	Supporting	information	Figure	S1).	Modelling	in	these	environ-
ments	is	likely	to	be	straightforward,	regardless	of	the	tool	used.	In	
contrast,	an	ecological	or	biogeographic	process	leading	to	conver-
gence	of	widely	spaced	communities	will	lead	to	non-	increasing	re-
lationships	between	turnover	and	distance,	potentially	 resulting	 in	

“spikes”	in	variance	at	intermediate	distances,	such	as	if	some	com-
munities	continue	 to	diverge	with	distance	while	others	converge.	
Examples	 of	 such	 processes	 include	 succession,	where	 early-		 and	
mid-	successional	 communities	 may	 show	 convergence	 across	 en-
vironments	 even	 when	 late-	successional	 communities	 diverge	
(Christensen	&	Peet,	1984;	Halpern,	1988;	Romme,	Whitby,	Tinker,	
&	Turner,	2016).	Similar	convergence	in	FD	can	occur	whenever	sim-
ilar	trait	values	adapt	species	to	different	environmental	conditions	
(e.g.,	 small	 leaves	 can	 be	 adaptive	 in	 both	 very	 cold	 and	 very	 dry	
environments).	We	can	also	expect	to	see	flat	or	complex	relation-
ships	between	β-	diversity	and	the	environment	in	communities	that	
are	structured	by	strong	competition	and	dispersal	limitation	(Myers	
et	al.,	2013).	In	such	situations,	modelling	the	variability	in	β-	diversity	
may	be	as	 interesting	as	 the	mean,	especially	 for	comparison	with	
other	environments.	Finally,	evolutionary	processes	that	lead	to	high	
functional	divergence	within	clades	can	produce	nonlinear	and	even	
decreasing	relationships	between	phylogenetic	β-	diversity	with	the	
environment	(Graham	&	Fine,	2008).	The	flexible	model	forms	and	
robust	 uncertainty	 estimation	 provided	 by	MBM	may	 better	 cap-
ture	these	patterns	and	help	illuminate	underlying	processes	driving	
β-	diversity.

Due	to	the	current	biodiversity	crisis,	there	is	a	critical	need	for	
new	models	 targeted	 at	 understanding	 the	 distribution	 of	 diver-
sity	and	the	response	of	diversity	to	climate,	change	in	human	land	
use,	and	other	environmental	factors.	This	challenge	is	being	met	
with	an	explosion	in	the	availability	of	biological	and	environmen-
tal	datasets,	thus	providing	an	opportunity	to	meet	the	crisis	with	
new	methods.	Multifaceted	biodiversity	modelling	is	an	extension	
to	 other	 common	 methods	 for	 modelling	 aggregate	 biodiversity	
(Ferrier	 &	 Guisan,	 2006;	 Ferrier	 et	al.,	 2007;	 Guisan	 &	 Rahbek,	
2011)	that	is	well-	suited	for	phylogenetic	and	functional	diversity	
in	particular.	MBM	 is	also	a	Bayesian	analysis;	 thus	 it	 is	 compati-
ble	with	specifying	prior	knowledge,	provides	robust	estimates	of	
uncertainty,	and	can	be	used	in	downstream	analyses	that	require	
propagation	 of	 uncertainty.	 Finally,	 the	 method	 is	 highly	 exten-
sible	 at	 its	 core,	 allowing	new	 theoretical	 developments	or	 alter-
native	model	 structures	 to	 be	 easily	 incorporated	 into	 the	 larger	
framework.

F IGURE  4 The	effect	of	fitting	different	length	scales	(l).	The	
maximum	likelihood	value,	l	=	0.74,	represents	the	best	fit	of	the	
model	to	the	data.	Reducing	the	length	scale	allows	for	greater	
flexibility	in	the	curve,	whereas	increasing	it	results	in	a	smoother	
relationship

TABLE  2 Comparison	of	MBM	and	GDM	on	simulated	data	at	varying	sample	sizesa

Sample size (# of sites)b

RMSEc Computational time (seconds)

MBM GDM MBM GDM

25	(300) 0.061	(0.059–0.064) 0.070	(0.064–0.077) 2.2	(1.6–3.6) 0.020	(0.013–0.032)

49	(1176) 0.060	(0.057–0.061) 0.064	(0.061–0.068) 10	(8.3–16) 0.020	(0.016–0.024)

100	(4950) 0.061	(0.058–0.065) 0.062	(0.060–0.064) 27	(25–30) 0.040	(0.032–0.055)

225	(25200) 0.058	(0.057–0.061) 0.060	(0.060–0.061) 32	(29–41) 0.16	(0.13–0.19)

529	(139656) 0.057	(0.055–0.060) 0.060	(0.060–0.060) 85	(80–83) 0.86	(0.80–0.93)

1024	(523776) 0.058	(0.056–0.062) 0.060	(0.060–0.060) 159	(125–231) 3.7	(3.1–4.6)

2025	(2049300) 0.062	(0.057–0.065) 0.060	(0.060–0.060) 761	(536–925) 14	(12–17)

aValues	given	are	the	means	of	10	runs	with	the	range	in	parentheses,	bParenthetical	values	are	the	number	of	unique	site	pairs,	cRoot	mean	square	
error.
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