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Abstract
Aim: Modelling the response of β-diversity (i.e., the turnover in species composition 
among sites) to environmental variation has wide-ranging applications, including in-
forming conservation planning, understanding community assembly and forecasting 
the impacts of climate change. However, modelling β-diversity is challenging, espe-
cially for multiple diversity facets (i.e., taxonomic, functional and phylogenetic diver-
sity), and current methods have important limitations. Here, we present a new 
approach for predicting the response of multifaceted β-diversity to the environment, 
called Multifaceted Biodiversity Modelling (MBM). We illustrate the approach using 
both a plant diversity dataset from the French Alps and a set of simulated data. We 
also provide an implementation via an R package.
Location: French Alps.
Methods: For both the French Alps and the simulated communities, we compute β-
diversity indices (e.g., Sørensen dissimilarity, mean functional/phylogenetic pairwise 
distance) among site pairs. We then apply Gaussian process regression, a flexible 
nonlinear modelling technique, to predict β-diversity in response to environmental 
distance among site pairs. For comparison, we also perform similar analyses using 
Generalized Dissimilarity Modelling (GDM), a well-established method for modelling 
β-diversity in response to environmental distance.
Results: In the Alps, we observed a general increase in taxonomic (TD) and functional 
(FD) β-diversity (i.e., site pairs were more different from each other) as the climatic 
distance between site pairs increased. GDM performed better for TD and FD when 
fitting to calibration data, whereas MBM performed better for both when predicting 
to a validation dataset. For phylogenetic β-diversity, MBM outperformed GDM in 
predicting the observed decrease in phylogenetic β-diversity with increasing climatic 
distance.
Main conclusions: Multifaceted Biodiversity Modelling provides a flexible new ap-
proach that expands our capacity to model multiple facets of β-diversity. Advantages 
of MBM over existing methods include simpler assumptions, more flexible modelling, 
potential to consider multiple facets of diversity across a range of diversity indices, 
and robust uncertainty estimation.
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1  | INTRODUC TION

Recent increases in the availability of biodiversity data have driven 
interest in understanding how biodiversity varies in response to en-
vironmental variables, land use and human impact (D’Amen, Rahbek, 
Zimmermann, & Guisan, 2017; Granger et al., 2015; Newbold et al., 
2016). Modelling these relationships and projecting them into space 
have varied applications, including conservation planning, illuminat-
ing community assembly processes, understanding how evolution-
ary history shapes contemporary communities, and climate change 
planning (Bässler et al., 2015; Kraft et al., 2015; Lavergne, Mouquet, 
Thuiller, & Ronce, 2010; Yuan et al., 2016).

Historically, community-level diversity models have focused 
on species diversity, applying metrics such as species richness or 
Simpson’s diversity that relates to taxonomic diversity within a 
single site (i.e., α-diversity) (D’Amen et al., 2017). However, recent 
studies have demonstrated that taxonomic diversity (TD) alone is 
insufficient to capture all aspects of biodiversity (Cadotte, Albert, & 
Walker, 2013; Cadotte et al., 2010). Instead, adding consideration of 
functional diversity (FD) and phylogenetic diversity (PD) provides a 
more holistic view of biodiversity by capturing elements of ecologi-
cal processes and evolutionary history.

Additionally, compared to α-diversity, β-diversity—repre-
senting turnover in diversity among sites—can provide more de-
tailed information regarding how biodiversity structure varies in 
space, and can better capture the diversity of an entire landscape 
(Weinstein et al., 2014). For instance, contrasting functional β-
diversity patterns to expectations from neutral evolutionary 
models can illuminate the historical processes producing species’ 
ecological niches, which is important for understanding the ori-
gins of biodiversity (Mazel et al., 2017). Modelling and analysing 
the response of β-diversity to key environmental drivers has a 
strong role to play in providing important new insight into these 
biodiversity patterns and processes. However, while modelling 
the distribution of α-diversity has a long history of theoretical 
development and strong statistical models (D’Amen et al., 2017; 
Thuiller, Midgley, Rougeti, & Cowling, 2006), understanding taxo-
nomic, phylogenetic and functional β-diversity (hereafter, we use 
“β-diversity” to refer to all 3 facets) is more challenging as it im-
plies pairwise comparisons among localities. These comparisons 
can introduce statistical non-independence among modelled data 
points (where each point represents a pair of sites). Moreover, 
there is little theoretical basis for understanding how ecological 
processes producing patterns of β-diversity should be related to 
the environment, which, for a pair of points, could be represented 
by the environment at either site or the difference in the environ-
ments between the sites.

A first challenge in modelling β-diversity is developing a robust 
statistical framework. The different facets of β-diversity can be 
expressed by a range of indices, most of which are derived from a 
combination of species presence/abundance, phylogenetic and trait 
data, and which generally do not have clear prior expectations re-
garding their statistical distribution (compared with, e.g., Poisson or 

negative binomial expectations for species richness). Further com-
plicating modelling may be lack of clear mechanistic connections 
between available environmental variables and the target index. 
This can make specifying the form of a regression difficult, and can 
result in poorly specified models, a poor fit to the data and violated 
assumptions when fitting indices that may have nonlinear and highly 
complex responses to the environment.

There are a number of techniques that have been developed 
to model pairwise β-diversity, though each has limitations. Most 
basic is linear matrix regression (Manly, 1986), which assumes 
a linear response of β-diversity to environmental distance, an 
assumption that is commonly violated in ecological datasets. To 
overcome this limitation, Ferrier, Manion, Elith, and Richardson 
(2007) developed generalized dissimilarity modelling (GDM), a 
powerful technique that accounts for nonlinearity in pairwise 
β-diversity across environmental gradients. However, the cur-
rent implementation of GDM enforces somewhat limited forms 
for the relationship between diversity and the environment, 
and in particular forces β-diversity to increase monotonically 
as a function of environmental distance. This assumption can 
be problematic when modelling FD and PD. Another technique 
currently used to model β-diversity is gradient forests (GF) 
(Ellis, Smith, & Pitcher, 2012), an extension of random forests 
(Breiman, 2001) which is a machine-learning regression tree ap-
proach. While GF is more flexible than GDM (for example, there 
is no a priori assumption of increasing diversity with increasing 
environmental distance) (Ellis et al., 2012), it has no means of 
incorporating geographic distance and may be susceptible to 
overfitting.

While existing approaches to modelling β-diversity have ad-
vanced our capacity to understand biodiversity patterns, there 
is significant scope for development of new techniques that help 
overcome current limitations. Here, we present a novel method 
for statistically modelling β-diversity: Multifaceted Biodiversity 
Modelling (MBM). The underlying approach is quite general, in that 
it is suitable for modelling both α- and β-diversity for all facets of 
diversity and for any choice of index. For simplicity, we focus here 
on modelling β-diversity (i.e., β TD, FD and PD). The foundation 
of MBM is Gaussian process regression, a highly flexible Bayesian 
approach to machine learning. This method improves on some of 
the shortcomings of other methods (e.g., assumptions of linearity, 
monotonicity). Computational time is reasonable, allowing for the 
application of MBM to large datasets. Furthermore, the analysis 
provides full conditional posterior estimates of all biodiversity 
metrics, allowing for a robust understanding of uncertainty that 
can be propagated when biodiversity metrics are used in down-
stream analyses. We present the general approach here, then de-
scribe specific modelling steps in detail with a case study of plant 
β-diversity in the French alps. To explore computational time and 
compare modelling performance with GDM, we also model a simu-
lated dataset constructed from virtual species. An implementation 
is provided via an R package, mbm, which is freely available (http://
github.com/mtalluto/mbm).

http://github.com/mtalluto/mbm
http://github.com/mtalluto/mbm
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2  | METHODS

The core of our method relies on Gaussian Process (GP) regression, 
a widely used Bayesian machine learning technique. A full discus-
sion of GPs is beyond the scope of this paper; we direct the reader 
to (Rasmussen & Williams, 2005) for a comprehensive mathematical 
treatment and to (Golding & Purse, 2016; Jones & Moriarty, 2012) 
for ecological examples. In general terms, a GP regression operates 
by estimating a smooth latent function f(x) of a set of predictor vari-
ables x, where the value of f(x) is defined by a multivariate normal 
distribution with mean function μ(x) and covariance function k(x). 
We can then estimate the probability of observing a response varia-
ble y (here a metric of β-diversity) as P(y) = D[f(x), σ], where D is some 
probability density function with expectation f(x) and (depending on 
the distribution) dispersion parameter σ. Much like generalized linear 
modelling (GLM), generalized additive modelling (GAM), and other 
methods, a variety of distributions are available, and the latent func-
tion can be connected to the response via a link function. Currently, 
the mbm package implements Gaussian likelihoods with options for 
identity, probit, and log links, although other options will be pos-
sible in future versions. Guidelines for installation and testing of 
basic functionality for the mbm package are provided in Supporting 
Information Appendix S1.

GP regressions produce latent functions (i.e., predictions for the 
mean of y) that smoothly vary as a function of the predictor variables 
and, depending on the covariance function used, can take flexible 
shapes that do not necessarily conform to, e.g., linear or quadratic 
relationships between y and x. This makes them a natural choice for 
biodiversity modelling, where predictive inference is desired but 
the link between predictors and response is poorly understood and 
the shape of the response function may be irregular and nonlinear. 
Often the relationship between climate and diversity is strong, but 
acts indirectly via unknown intermediates (e.g., climate may influ-
ence the physiological behaviour of individuals, which may then 
scale to population- and species-level performance). GPs have been 
suggested for similar reasons for modelling species distributions 
(Golding & Purse, 2016).

2.1 | Model structure

Our general approach is to estimate β-diversity indices for pairs 
of sites and to use these indices as responses in a GP regression 
on a set of predictor variables. These predictors can vary, but will 
always include a pairwise measure of environmental distance. 
As with a GLM, it is important to consider the structure of the 
response variable and choose an appropriate likelihood and link 
function; we discuss these issues further in the case study. Once 
the model form is chosen, we estimate the model parameters and 
the mean and covariance functions of the GP using Laplace ap-
proximation {implemented in a Python package, GPy; gpy2014}. 
Because GPs are fit to data, the prior mean function μ(x) has little 
influence on the posterior mean of the latent function when the 
data coverage is adequate. Thus, in general, we fit a prior mean 

μ(x) = 0. However, when extrapolating or when data coverage is 
poor, this can lead to undesired behaviour as the GP will tend to 
revert to the mean; therefore it may be desirable to fit an alterna-
tive prior mean. We discuss selection of the mean function in more 
detail in the case study.

For the covariance function, GP regression uses a kernel func-
tion centred around each data point xi to describe covariance in the 
latent function based on the predictor variables. Thus, the shape of 
the underlying kernel will determine the shape of the predicted re-
lationship between the predictor variables and the responses. For 
all of our examples, we have selected a negative exponential kernel 
(also sometimes called the radial basis function), which, assuming the 
most basic case of a single predictor variable x, defines the covari-
ance between two points xi and xj as:

The hyperparameters σ2
k
 and l indicate the kernel variance (i.e., 

variance in the latent function f(x)) and the length scale, respectively. 
This kernel has the desirable property that the strength of covari-
ance decreases as sites become more dissimilar in their predictor 
variables and is widely used in GP regression. We therefore expect, 
for most biodiversity modelling applications, that this kernel will be 
the most useful, and it is presently the only kernel implemented in 
the mbm package. Other kernels are discussed in detail in Rasmussen 
and Williams (2005).

In order to fit the latent function, it is necessary to provide the 
hyperparameters to the kernel. If known, they can be supplied as 
fixed constants, but generally users will wish to estimate these pa-
rameters from the data. For many problems, it will be sufficient to 
use maximum likelihood estimation to find point estimates for the 
hyperparameters. Otherwise, hyperparameter posterior distribu-
tions can be estimated by supplying appropriate prior distributions 
and using a Markov chain Monte Carlo (MCMC) sampler.

A common issue when modelling β-diversity is that the relation-
ship between β-diversity and environmental distance is not con-
stant across an environmental gradient (Ferrier & Guisan, 2006). 
For example, turnover may be more rapid on the cold end of a 
temperature gradient than on the warm end. To address this issue, 
mbm by default includes both environmental distance (computed 
as the multivariate Euclidean distance in environmental space be-
tween each pair of survey points) along with the average position 
on the environmental gradient for each environmental variable, 
resulting in a model with n + 1 predictors for n environmental vari-
ables. By default, mbm centres and scales all predictor variables to 
zero mean and unit variance before computing the environmental 
distance among points. The multivariate kernel used is anisotropic, 
where the kernel function k is defined in n + 1 dimensions (with a 
corresponding length scale hyperparameter l for each dimension). 
Having a single compound anisotropic kernel provides consider-
able flexibility in fitting a model to various combinations of the 

k(xi,xj)=σ
2
k
exp (−

1

2
r2)

r=
xi−xj

l
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predictors and allows the shape of the response of β-diversity to 
environmental distance to vary at different locations in the pa-
rameter space. A second issue is that it may be desirable in some 
cases to enforce additional constraints; for instance, although we 
may lack the data on distant sites to fit such a constraint, we may 
have the prior expectation that, above a certain environmental 
distance, taxonomic dissimilarity saturates at 1 and does not de-
cline. We suggest the use of a prior mean function in these cases 
and demonstrate this in the case study.

Because β-diversity is defined between site pairs, the size of 
the input dataset of site pairs can become very large. Models of 
such datasets can be infeasible to fit with Laplace approximation, 
particularly if it is necessary to optimize hyperparameters. In these 
cases, we suggest employing a stratified subsampling scheme prior 
to fitting the GP, where the model is then fit with β-diversity indices 
computed only for the selected sites. In addition to improving com-
putation time, subsampling sites reduces non-independence among 
data points and provides holdout data against which models can be 
evaluated to guard against overfitting. The nature of the stratifi-
cation will naturally depend on the characteristics of the dataset, 
but it should be constructed to ensure that full ranges of both the 
environmental gradient and the response variable are adequately 
represented.

2.2 | Case study: French Alps plants

We demonstrate the method using an intensive dataset (4,417 
sites and 2,863 plant species) from a well-studied ecosystem in the 
French Alps. We used a 2.5 km-resolution database of plant oc-
currences in the French Alps (Figure 1) (Thuiller, Pollock, Gueguen, 
& Münkemüller, 2015) with climatic covariates selected from bio-
climatic rasters derived from WorldClim data (Hijmans, Cameron, 
Parra, Jones, & Jarvis, 2005). We upscaled the climatic data to 
2.5 km (to match the resolution of the occurrence data) by taking the 
area-weighted average of cells at the starting resolution (30 s). We 
used four variables: temperature seasonality (i.e., the coefficient of 

variation of monthly average temperatures), minimum temperature 
of the coldest month, annual temperature range and precipitation 
seasonality. These variables were selected based on exploratory 
analyses that identified variables with strong univariate correlations 
to β-diversity, ruling out any variables with correlations greater than 
0.7 with other predictor variables. We centred all variables to zero 
mean and scaled to unit variance before analysis. Because of the 
high degree of redundancy inherent in a full pairwise dissimilarity 
matrix (i.e., where all possible site pairs are represented) and to make 
computational time reasonable, we stratified the cells by elevation 
and by sampling effort. First, we removed cells with fewer than five 
samples, with the exception of cells above 3,000 m elevation (be-
cause high-elevation regions were less-intensively sampled, and we 
wanted to ensure adequate coverage of high alpine areas). Then, we 
divided the study area into fifteen 250-m elevational bands and ran-
domly selected a maximum of eight cells from each band (chosen to 
yield a final sample size of approximately 100 cells, which testing 
indicated would provide reasonable computational time). Because 
there were few cells in the highest elevation band, we ended with a 
final sample size of 106 cells from the 4,417 raster cells in the origi-
nal dataset, with an identical number of sites selected for validation.

Traits for all species were also extracted from (Thuiller et al., 
2015). We used four traits, mean maximum vegetative height, leaf 
dry matter content (LDMC), seed mass and specific leaf area (SLA), 
that had the greatest coverage in the database and that represent 
classic plant strategies that are strongly tied to response to climate 
(Westoby, 1998). Of 2863 species in the occurrence dataset, 1054 
had data for all four traits. All FD analyses were based on this subset 
of species. Seed mass, SLA and height were strongly right skewed, so 
we log-transformed them before analysis. All traits were then scaled 
to 0 mean and unit variance before computing functional distance. 
For phylogenetic diversity, we used a tree of European alpine flora 
resolved to the genus level (Thuiller et al., 2014). For our analyses, we 
selected the maximum a posteriori tree from 100 posterior samples.

For taxonomic β-diversity, we used the Sørensen dissimilarity, 
defined for a given pair of sites i and j as:

F IGURE  1 Map of study area, showing 
raster cells selected for calibration and 
validation. Empty (white) cells were 
excluded due to insufficient sampling. 
Right panel shows the location of the 
study area within Europe
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where ni is the number of species in site i, nj is the number of species 
in site j, and nij is the number of species shared between the sites. 
Functional and phylogenetic β-diversity were computed as the mean 
pairwise distance (MPD) among all possible site pairs (Mouchet, Villéger, 
Mason, & Mouillot, 2010; Webb, Ackerly, McPeek, & Donoghue, 2002). 
MPD is simply the average distance (either phylogenetic or functional) 
between all possible pairs of species among two sites. We selected 
MPD because it is simple to compute and interpret and, because it is 
based on the distance matrix, it facilitates comparison between FD and 
PD. It has also been shown that MPD is sensitive to deep branching 
structure in phylogenetic trees and is thus less sensitive to poorly re-
solved phylogenies (Mazel et al., 2016). Unlike traditional measure like 
Faith’s phylogenetic diversity, MPD is independent of species richness 
or species turnover (Mazel et al., 2016). Functions for computing MPD 
and Sorensen dissimilarity are included in the mbm package.

2.3 | GP model

We selected a Gaussian likelihood for the error distribution of all di-
versity indices; this likelihood is the most computationally simple in 
GP regression, but it does require an additional hyperparameter, σ2

N
, 

representing the standard deviation of the error distribution. For TD, 
the Sørensen index is bounded between 0 and 1, so we used a probit 
link to enforce this restriction. We fit a total of four TD models. The 
first used all of the default settings, with all parameters estimated 
via maximum likelihood. To demonstrate the effect of changing the 
length scale on the model, we fit identical models with the length 
scale fixed to either 2.0× or 0.2× the maximum likelihood estimate. 
Finally, to demonstrate how the mean function of the GP can be 
used to enforce prior expectations about the relationship between 
β-diversity and climatic distance, we fit a model with a linear mean 
function with the slope (on the link scale) constrained to be greater 
than 0. This represents a prior expectation that dissimilarity satu-
rates to 1 at large climatic distances. This also allowed for an easy 
comparison to the GDM package, which makes a similar assump-
tion (Ferrier et al., 2007). For FD and PD, we used no link function, 
and, because we had no prior expectation about the mean functions 
for FD and PD, we used the default μ(x) = 0. For comparison with 
GDM, we built GDMs for all three diversity facets using the same 
calibration data and set of predictors. We used the default options 
in GDM and dropped any predictors that had no effect (i.e., that had 
all I-spline parameters fixed to 0). We then computed the root mean 
square error (RMSE) of the MBM and GDM models for both the cali-
bration and validation datasets to compare both fit to the data as 
well as the ability to predict to new data.

2.4 | Case study: simulated communities

We used simulations in order to compare MBM with GDM when 
the underlying “true” relationship between β-diversity and the 

environment is known, and to explore how computational time and 
model performance for both methods change as sample sizes change. 
Our general approach was to generate a simulated landscape using 
randomly generated species’ niches along two environmental axes, 
then “sample” this landscape at intensities ranging from 25 to 2,025 
sites, then compare how well a model trained on these sites predicts 
β-diversity at the remaining unsampled sites.

To generate the landscape, we first generated random niches for 
300 species along two environmental axes. Niches were described 
by a bivariate Gaussian distribution, where the ps,i, the probability of 
occurrence of species s at site i, is given by:

where   is the bivariate normal density function given the location 
vector xi (i.e., environmental values) and the species-specific mean 
vector μs and covariance matrix �s (i.e., the centre and widths of 
the niche in the two environ mental dimensions). Finally, the scale 
parameter ρs was included to allow for species-specific variation in 
overall probability of occurrence. These species-specific parame-
ters were drawn at random from hyperdistributions as follows: μs 
bivariate Gaussian with mean (0,0), standard deviation of (12,12) 
and no covariance; �s: diagonal entries (i.e., standard deviation for 
each environmental axis) drawn from two independent Gamma 
distributions with shapes (4,7) and rates (1.2, 1.2) and off diago-
nals (i.e., covariance) set to 0; ρs: Beta distribution with parameters 
(15,5). These hyperparameters were chosen via exploration to pro-
duce landscapes with per-site species richness varying between 
approximately 5 and 50 when both environmental variables varied 
from −5 to 5.

We then defined the landscape as a 100 × 100 grid of sites, with 
each dimension defined by an environmental gradient varying uni-
formly between the arbitrarily-chosen values −5 and 5. Each site 
was populated with species by computing the probability of pres-
ence for all species, then conducting Bernoulli trials where a suc-
cess indicated that a species was present. For simplicity, we do not 
consider species interactions; thus, all species distributions were 
independently drawn. This procedure generated a landscape where 
β-diversity increased smoothly and monotonically with increasing 
environmental distance; this relationship is commonly observed in 
studies of taxonomic β-diversity and is the case for which GDM is 
built (Ferrier et al., 2007).

To simulate a sampling process, we used a random starting 
location and then selected n evenly spaced locations from that 
start. We used sample sizes of 25, 49, 100, 225, 529, 1024 and 
2025 (sample sizes are perfect squares, so that both environ-
mental dimensions were sampled with the same intensity). We 
then ran both MBM and GDM to predict β-diversity as a function 
of environmental distance on the selected sites. For MBM, we 
used the GP as described in the case study (which is appropriate 
for smaller sample sizes) when the number of sites was less than 
100. For larger sample sizes, we used an approximation method 
(Hemsman, Fusi, & Lawrence, 2013) implemented in the mbm 
package via the svgp option (Supporting information Appendix 

Si,j=1−
2nij

ni+nj

ps,i=ρs× (xi,�s,�s)
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S2). We recorded the computational time for each model run; al-
though these values will vary greatly depending on the computa-
tional resources available, we used widely available hardware (a 
laptop with a 2-core 3.3 GHz CPU and 16 GB of RAM) and thus 

they can provide some guidance to users as to the size of mod-
els that can be run. Additionally, we computed predictive perfor-
mance at each sample size using the RMSE computed for a set 
of 5,000 sites that were not included in the model calibration. 

F IGURE  2 Comparison of model fits of MBM (a, c, e) and GDM (b, d, f) for taxonomic (top), functional (middle), and phylogenetic 
(bottom) β-diversity for the French Alps data. Also shown from MBM is the effect of including a mean function (panel A, in red) compared 
with no prior expectation (panel A, in blue). All MBM curves assume that, at a given distance, sites are equally spaced around the centre 
of the environmental gradient. GDM Ecological Distance refers to the distance between site pairs after applying the basis functions to the 
environmental data; see (Ferrier et al., 2007) for details. Note that the response variable for PD has been scaled between 0 and 1 for GDM 
fits. Uncertainty envelopes for MBM fits show 95% credible intervals. Uncertainty estimates were not available for GDM fits
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Finally, we ran each scenario ten times and report the mean and 
range of RMSE and computing time.

3  | RESULTS

We found a trend of increasing β TD with climatic distance for the 
French Alps dataset (Figure 2). However, due to sparse data at the 
largest distances, the default model predicted a sharp decrease in 
β-diversity at large distances (i.e., reverting to the prior mean of 
0), contrary to our expectations. In contrast, fitting a model with 
a prior mean resulted in a curve that saturated to high dissimi-
larity at large ecological distances (Figure 2a). FD also increased 
with climatic distance, while PD decreased. Visualizing spatial pat-
terns in β-diversity revealed clear clusters of similar communities 
(Figure 3). The influence of the Mediterranean region was appar-
ent in all three metrics as a cluster of differentiated communities 
in the south. In the high mountains in the eastern portion of the 
study area, TD and PD were divided among northern and southern 
regions, while communities were functionally similar throughout 
high elevation regions.

Both MBM and GDM predicted similar trends for TD and FD, 
although the MBM models showed increased curvature (Figure 2, 
Supporting information Figure S1). With respect to fit to the cali-
bration data, GDM performed slightly better for TD and substan-
tially better for FD (Table 1). For out-of-sample prediction (i.e., with 
the validation dataset), MBM performed better for all three facets 
(Table 1). Increasing the length scale of the MBM model produced 
a model response curve that was very similar to the GDM curve 
(Figure 4). For PD, GDM performed poorly; all environmental vari-
ables except precipitation seasonality failed to converge; thus we fit 
a model with only this one variable. Thus, for PD, MBM provided a 
better fit than GDM for both the calibration and validation datasets 
(Table 1).

For the simulations, both MBM and GDM produced qualitatively 
similar fits to the subsampled sites (Supporting information Figure 
S1). In terms of out-of-sample root mean square prediction error 
(RMSE), predictions from both MBM and GDM in our simulated 
datasets improved as sample sizes increased up to n = 225, after 
which prediction accuracy was approximately constant (except for 
the largest sample size, where MBM predictions performed worse). 
MBM outperformed GDM at all tested sample sizes except the larg-
est (n = 2,025), where GDM performed slightly better on average but 
was within the range of variability for MBM (Table 2). Computational 
times for GDM were considerably faster, with times 1–2 orders of 
magnitude faster than MBM at all sample sizes.

4  | DISCUSSION

Overall, we found MBM to be a robust approach to modelling β-
diversity. Performance was similar to the existing method (GDM), 
with MBM generally performing slightly worse when predicting 

calibration data but slightly better for validation data in both an 
empirical dataset from the French Alps (Table 1) and a simulated 
dataset (Table 2). Moreover, MBM provides some notable advan-
tages. Namely, MBM allows more varied relationships between 
turnover and the environment, better captures prediction uncer-
tainty, and is extensible to incorporate a wider variety of model 
structures. In particular, GDM performed very poorly modelling 
PD, likely due to the decreasing trend of PD with climatic distance 
(Figure 2). Although we were able to obtain convergence with one 
predictor, it is clear from plots that the model is mis-specified 
(Figure 2). Moreover, the I-spline transformation of the predictor 
in GDM obscures the decrease in PD with climatic distance that 
we observed using MBM. Such patterns may occur if important 
traits evolve easily within a clade, leading to high intra-clade func-
tional divergence and thus greater phylogenetic similarity among 
highly dissimilar environments (Graham & Fine, 2008). Similarly, 
within-community phylogenetic clustering can increase with the 
scale of communities, reflecting the inclusion of entire clades 
within communities (Cavender-Bares, Keen, & Miles, 2006). Thus, 
for local or regional analyses, we may expect decreasing PD 
with increasing distance, particularly if the overall extent of the 
analysis is not very large relative to the resolution. In such cases, 
we expect GDM and phylogenetic extensions of GDM to strug-
gle to correctly predict how PD changes with the environment. 
Our approach offers an improved tool for modelling β-diversity 
when the assumptions of GDM may be violated; the flexibility of 
the covariance functions plus the prior mean function allow for a 
model that makes similar assumptions as GDM, but also allow for 
relaxing these assumptions when they are not appropriate. Other 
methods with potential applications to β-diversity modelling, such 
as gradient forests (Ellis et al., 2012), may also overcome some of 
these issues.

Another advantage of MBM is the fully Bayesian core underlying 
the analysis, meaning that robust uncertainty estimation is a funda-
mental part of the method. By comparison, uncertainty analysis in 
GDM requires permutation testing or embedding the analysis in a 
Bayesian simulation (Woolley, Foster, O’Hara, Wintle, & Dunstan, 
2017), eliminating computational time as one of the principle ad-
vantages to GDM. To improve computational time, we have pre-
sented parametric confidence intervals (based on standard errors 
estimated with Laplace approximation), and this is the default in 
the mbm package. However, posterior simulations are also pos-
sible, which will yield more robust uncertainty estimates and can 
also propagate modelling uncertainty to additional analyses based 
on the predictions. However, there is a cost to this flexibility, and 
mbm has two principal disadvantages. First, because it depends on 
third-party libraries, installation is more complex than is standard 
for R packages and requires the user to install Python and addi-
tional libraries before the package will function. Second, as with 
many Bayesian methods, performance can be much slower than 
non-Bayesian methods (Table 2). Thus, very large problems will re-
quire significant computational resources or may be better-suited 
to other methods. However, the mbm package includes options that 
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have been optimized for large datasets. Although slower than other 
options, even with large sample sizes (e.g., 2,025 sites resulting 
in 2 × 106 unique site pairs) we obtained results in under 15 min. 
Finally, as with any new method, it will be necessary to continue 
to evaluate MBM in terms of performance and prediction accuracy 
across a wide range of datasets.

The application of MBM presented here has been relatively 
straightforward, as it is based on what can be accomplished with 
a simple installation of the mbm R package (and thus will be acces-
sible to the widest range of users). However, the flexibility of the 

underlying method allows for a number of possible extensions 
to MBM. In particular, although our dataset had good coverage in 
all three facets of diversity, it will often be the case that more is 
known about (for example) taxonomic diversity than functional or 
phylogenetic diversity, and that these gaps in knowledge are spa-
tially congruent, such as where traits are sampled well in one re-
gion but poorly in another. Although not presently implemented, it 
is possible to extend MBM to multiresponse models. These models 
use a coregionalization kernel for the covariance function, which 
models a given response as a function of both the covariates as well 

F IGURE  3 Spatial MBM predictions for three facets of diversity. In the upper row, similar colours depict similar communities (as 
measured by predicted Sørensen dissimilarity). The colours result from computing all possible predicted pairwise (among pixels) dissimilarity 
values, performing a principal components analysis on the resulting dissimilarity matrix, and using the first three axes (which described 
70%–89% of the variance) as red, green and blue colour channels. For each pixel, MBM predicts β-diversity for that pixel compared to every 
other pixel as well as a standard error for each prediction. The average spatial uncertainty for each pixel (lower row) is then the mean of the 
standard errors of all predictions for that pixel

TABLE  1 Root mean square error for MBM and GDM models for calibration data (with RMSE for validation data in parentheses); smaller 
errors within columns (bolded) indicate better performance

Calibration dataset Validation dataset

Taxonomic Functional Phylogenetic Taxonomic Functional Phylogenetic

MBM 0.113 0.0143 18.5 0.107 0.0469 32.6

GDM 0.091 0.0019 21.0 0.129 0.0654 34.5



     |  9TALLUTO et al.

as the other response variables in the model (Álvarez, Rosasco, & 
Lawrence, 2012). In this way, responses that are known poorly from 
some portions of environmental space can borrow strength from the 
response variables that are known well.

Multifaceted Biodiversity Modelling is particularly well suited 
for modelling in environments where the relationship between com-
munity composition (loosely defined to include whatever facets of 
diversity are of interest) and the environment is complex. Along 
simple environmental gradients or when community assembly is 
largely driven by environmental filtering, we expect that β-diversity 
increases both with geographic and environmental distance, and 
this increase should be accompanied by a reduction in variance 
(e.g., Supporting information Figure S1). Modelling in these environ-
ments is likely to be straightforward, regardless of the tool used. In 
contrast, an ecological or biogeographic process leading to conver-
gence of widely spaced communities will lead to non-increasing re-
lationships between turnover and distance, potentially resulting in 

“spikes” in variance at intermediate distances, such as if some com-
munities continue to diverge with distance while others converge. 
Examples of such processes include succession, where early-  and 
mid-successional communities may show convergence across en-
vironments even when late-successional communities diverge 
(Christensen & Peet, 1984; Halpern, 1988; Romme, Whitby, Tinker, 
& Turner, 2016). Similar convergence in FD can occur whenever sim-
ilar trait values adapt species to different environmental conditions 
(e.g., small leaves can be adaptive in both very cold and very dry 
environments). We can also expect to see flat or complex relation-
ships between β-diversity and the environment in communities that 
are structured by strong competition and dispersal limitation (Myers 
et al., 2013). In such situations, modelling the variability in β-diversity 
may be as interesting as the mean, especially for comparison with 
other environments. Finally, evolutionary processes that lead to high 
functional divergence within clades can produce nonlinear and even 
decreasing relationships between phylogenetic β-diversity with the 
environment (Graham & Fine, 2008). The flexible model forms and 
robust uncertainty estimation provided by MBM may better cap-
ture these patterns and help illuminate underlying processes driving 
β-diversity.

Due to the current biodiversity crisis, there is a critical need for 
new models targeted at understanding the distribution of diver-
sity and the response of diversity to climate, change in human land 
use, and other environmental factors. This challenge is being met 
with an explosion in the availability of biological and environmen-
tal datasets, thus providing an opportunity to meet the crisis with 
new methods. Multifaceted biodiversity modelling is an extension 
to other common methods for modelling aggregate biodiversity 
(Ferrier & Guisan, 2006; Ferrier et al., 2007; Guisan & Rahbek, 
2011) that is well-suited for phylogenetic and functional diversity 
in particular. MBM is also a Bayesian analysis; thus it is compati-
ble with specifying prior knowledge, provides robust estimates of 
uncertainty, and can be used in downstream analyses that require 
propagation of uncertainty. Finally, the method is highly exten-
sible at its core, allowing new theoretical developments or alter-
native model structures to be easily incorporated into the larger 
framework.

F IGURE  4 The effect of fitting different length scales (l). The 
maximum likelihood value, l = 0.74, represents the best fit of the 
model to the data. Reducing the length scale allows for greater 
flexibility in the curve, whereas increasing it results in a smoother 
relationship

TABLE  2 Comparison of MBM and GDM on simulated data at varying sample sizesa

Sample size (# of sites)b

RMSEc Computational time (seconds)

MBM GDM MBM GDM

25 (300) 0.061 (0.059–0.064) 0.070 (0.064–0.077) 2.2 (1.6–3.6) 0.020 (0.013–0.032)

49 (1176) 0.060 (0.057–0.061) 0.064 (0.061–0.068) 10 (8.3–16) 0.020 (0.016–0.024)

100 (4950) 0.061 (0.058–0.065) 0.062 (0.060–0.064) 27 (25–30) 0.040 (0.032–0.055)

225 (25200) 0.058 (0.057–0.061) 0.060 (0.060–0.061) 32 (29–41) 0.16 (0.13–0.19)

529 (139656) 0.057 (0.055–0.060) 0.060 (0.060–0.060) 85 (80–83) 0.86 (0.80–0.93)

1024 (523776) 0.058 (0.056–0.062) 0.060 (0.060–0.060) 159 (125–231) 3.7 (3.1–4.6)

2025 (2049300) 0.062 (0.057–0.065) 0.060 (0.060–0.060) 761 (536–925) 14 (12–17)

aValues given are the means of 10 runs with the range in parentheses, bParenthetical values are the number of unique site pairs, cRoot mean square 
error.
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