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that of the macrobenthos. Meiofaunas 
also are a crucial trophic connection 
between microbes and higher levels of 
production. With their short generations 
and high microhabitat selectivity, these 
communities are also starting to be 
seen as useful ecological indicators. 

What do they have to say about 
early animal evolution? Seven animal 
phyla are exclusively meiofaunal, 
several of which, like the “jewel animal” 
Loricifera or the Micrognathozoa, 
were fi rst described only in the last 
40 years. Some lineages, like the 
relatively morphologically simple 
Acoelomorpha, have been the subject 
of intense and continuing debate 
in molecular phylogenetics. A key 
question concerns whether disparate 
meiofaunal phyla like gastrotrichs, 
gnathostomulids, and acoels are small 
and simple because early bilaterians 
were also meiofaunal or whether they 
are secondarily miniaturized from 
extinct ancestors — a process that 
clearly does occur, with vivid examples 
like the hemichordate Meioglossus 
psammophilus. Recent macrofossil 
discoveries reminiscent of meiofaunal 
taxa have begun to change the debate 
but equally important is the need 
to hammer down the phylogenetic 
positions of the extant meiofaunal 
phyla, which has proven a frustrating 
challenge.

What are we learning about 
meiofauna in the 21st century? 
With the advent of new techniques 
from genomics, and of new problems 
such as widespread microplastic 
contamination, it’s an exciting time for 
meiobenthologists. Metabarcoding 
in particular has promise as a tool for 
rapidly characterizing communities, 
although database incompleteness and 
the universality of taxonomically useful 
primer-pairs remain major issues. 
Metabarcoding has also cracked open 
the door on two previously inscrutable 
areas: meiofaunal microbiomes and 
diet preferences. The advent of new 
amplifi cation techniques suitable for 
long reads also promises to fi nally 
enable routine genome assembly from 
these tiny, heterozygous creatures. 
New imaging modes such as light-
sheet microscopy or nanoscale 
computed tomography also promise 
to reveal the adaptations of these 

creatures at unprecedented resolution. 
One happily constant tradition in the 
meiofauna community is the habit 
of holding workshops in biodiverse 
places including taxonomic experts 
from all meiofaunal groups — a natural 
approach given the sheer diversity but 
shared habitat of these creatures, and 
a sure-fi re approach to inspire the next 
generation with a lifelong fascination 
for these enigmatic, ubiquitous 
creatures. 
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One of the central research questions 
in ecology and biogeography revolves 
around understanding the spatial 
distribution patterns of organisms, the 
factors infl uencing species abundance, 
and why in certain areas there are more 
species or individuals than in others. 
Addressing these questions not only 
forms the bedrock of scientifi c research 
in ecology and evolution but also has 
critical implications for biodiversity 
conservation and management. To 
safeguard species, restore habitats, 
prevent invasions and anticipate 
future impacts, it is imperative to 
identify optimal areas for species or 
biodiversity under current and future 
conditions, such as changes in climate 
or land use. Ecologists have long tried 
to discern which conditions enable 
species to maintain viable populations 
in a given area (Figure 1). Broadly 
speaking, three main conditions must 
be met for a species to inhabit a site: 
successful dispersal throughout its 
biogeographic history; environmental 
conditions suitable for sustaining 
a population; and biotic conditions 
conducive to species persistence, 
including resource availability and 
absence of strong competitors. 
Ecological niche modelling, also known 
as species distribution modelling or 
habitat suitability modelling, primarily 
focuses on environmental factors, 
though models are increasingly 
integrating dispersal and biotic 
interactions. In the following sections, 
we will delve into the basic structure 
and hypotheses of ecological niche 
modelling, their applications and 
potential future improvements.

A step-by-step approach to niche 
modelling 
Ecological niche models are 
computational tools that relate 
observed species occurrence, 
abundance or biomass data with 
selected environmental variables. 
These variables encompass climatic 
factors, soil conditions, vegetation 
cover, land use patterns and 
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Figure 1. Main conditions allowing a species to occupy a given site. 
The three main conditions determining a species’ occurrence at a site: dispersal limitation, en-
vironmental fi ltering and biotic fi lters and/or neutral processes, with corresponding geographic 
space at the successive scales, from global to regional to local (adapted from Guisan et al. (2017)).
disturbance regimes — collectively 
expressing the conditions supporting 
a species within a multi-dimensional 
space (Figure 2). The overarching goal 
is to predict these conditions both 
spatially and temporally. This process 
involves several key steps, outlined 
below.

Data collection
Species occurrence data (locations 
where a species has been observed) 
are collected, along with relevant 
environmental variables, such as 
temperature, humidity, aspect, 
soil type and vegetation cover. 
Species data could either be directly 
observed in situ or retrieved from 
georeferenced databases that collect 
and harmonize global records, such 
as the Global Biodiversity Information 
Facility (GBIF) or iNaturalist. The 
environmental variables can also 
be measured and quantifi ed in situ 
(e.g., soil temperature or soil pH from 
standard protocols) or extracted 
from georeferenced databases like 
CHELSA (climate layers at 1 km 
resolution), SoilGrid (soil information 
at global scale, 250 m resolution) 
or Copernicus (repository of remote 
sensing data at very high resolution, 
20 m to 1 km). Note here that as 
ecological niche models are statistical 
(correlative), the choice of the 
environmental variables is essential 
to avoid spurious or misleading 
statistical associations. Choice of the 
sampling design, bias detection, data 
R226 Current Biology 34, R217–R236, March
cleaning and curation are important 
parts of this process. 

Model training
Subsequently, a model is trained to 
establish a statistical relationship 
between the observed occurrences 
or abundances and the selected 
environmental variables. The most 
well-known statistical algorithm for 
such an endeavor is the general 
linear model that can accommodate 
various data inputs (presence-
absence, counts, percentage of 
cover). Nowadays, the toolbox of 
researchers has considerably increased 
with generalized additive models, 
regression tree-based models and their 
extension (boosting regression trees 
or randomForest) or neural networks. 
These models can accommodate 
non-linear relationships between 
species occurrences and the 
environment but also interactions 
between environmental predictors. 

Model testing
It is not a good practice to train and 
test a model on the same data as 
that can provide overly optimistic 
evaluation, something called 
‘over-fi tting’. Best practices imply 
using an independent dataset (different 
area, different protocol). Yet, as 
such data are rarely available, the 
original species–environment dataset 
is commonly divided into two sets: 
one for model training and one for 
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involve spatial or environmental 
stratifi cations to perform this data 
split, to test model predictions under 
various confi gurations. This split 
between training and testing is usually 
repeated several times to get an overall 
assessment of model quality. Common 
evaluation metrics include area under 
the curve of the receiver operating 
characteristic curve for 
presence–absence data or root mean 
square errors for abundance data. 

Model interpretation
If the models prove to be of good 
quality, variable importance and 
response curves are key diagnostic 
elements. Variable importance allows 
to extract which variables explain most 
of the variation in species occurrence 
or abundances. Some variables might 
not have any effect while others can 
be instrumental. This step is usually 
followed by extracting the response 
curves of the species along those 
important variables (Figure 2) to 
quantify the shape of the relationship. 
For instance, ecological theory predicts 
a bell-shaped relationship between 
species abundance and temperature 
for most endothermal species. In very 
stressful environments, a sigmoid or 
linear relationship might be expected 
instead. 

Model prediction
Once the model is trained, tested 
and interpreted, it can be used to 
predict the potential distribution of 
the species or habitats in other areas 
where occurrence data may be lacking, 
or in space when the environmental 
predictors are known and mapped (e.g., 
CHELSA climate). The model generates 
a suitability map that indicates the 
likelihood of the species being present 
across the study area, or the spatial 
variation in abundance (in function of 
what has been modelled, presence-
absence, abundance or counts). 
When environmental variables are also 
available into the future (e.g., IPCC 
scenarios), notably for climate and 
land use, models can then be used to 
forecast where suitable areas might be 
in the future. The prediction assumes 
the estimated relationship holds 
wherever the environmental parameters 
are known. This assumption is also 
important when considering projecting 
into future conditions, because it 
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Figure 2. Schematic representation of ecological niche modelling. 
It starts from observed presence (and absence) data together with either in situ environmental 
information or an available spatial database. Then, statistical models are built to relate the observa-
tions to the environmental information. This implies model calibration, tuning, validation on hold-
out data, model checking. If models are robust, they are then used to predict back onto space the 
potential distribution of the species under current conditions. Models built are also used to predict 
potential future distributions under different scenarios, like climate or land-use change scenarios. 
implies that the current response of 
species to a variable, such as annual 
mean temperature, will remain the 
same in the future.

Ensemble modelling
As different data collection, sets of 
environmental variables, algorithms 
and climate or land use scenarios 
can lead to different predictions, a 
common practice is to build ensemble 
models and predictions. In other words, 
different algorithms with different 
parameters are trained on various 
subsets of the original data, tested and 
interpreted, and then used to make 
an ensemble of predictions in space 
or in time. Such an approach allows 
extraction of uncertainty parameters, 
confi dence intervals and consensus 
predictions (i.e., similar to the climatic 
diagrams showing plausible future 
climates).

From species distribution models to 
biodiversity models
Interestingly, while they are commonly 
usually termed ‘species distribution 
models’, the overall approach 
of statistically relating biological 
observations to environmental 
conditions can be applied more 
broadly. With a twist in the underlying 
ecological assumptions, the same 
strategy could be applied to directly 
model genes, ecotypes, habitat types, 
aggregated biodiversity measures, 
such as species richness or functional 
diversity, and even ecosystem 
functions and services.

For instance, when modelling habitat 
type, it is assumed that a habitat type 
behaves like a super-organism that has 
specifi c environmental requirements 
or preferences that can be measured, 
quantifi ed and then mapped spatially. 
When modelling genes or alleles, 
here again, the basic assumption is 
that individuals or populations show 
local adaptations to environmental 
conditions that can be observed in the 
expression of genes that can be further 
quantifi ed and mapped. In essence, the 
comprehensive statistical framework 
remains unchanged, involving relating 
a vector of observations (species, 
traits or genes) with a matrix of 
environmental variables.

With the advent of increased 
computational capabilities, recent 
advances have facilitated the 
concurrent modelling of multiple 
species, habitats or traits. This enables 
the model to potentially glean insights 
from other species and capture the 
residual correlation structure among 
the modeled species. More precisely, 
for each species prediction, we can 
also extract the errors (i.e., how far 
is the modelled prediction from the 
truth), commonly called ‘prediction 
residuals’. When modelling multiple 
species altogether, we can thus extract 
prediction residuals for all species 
and analyze their correlation. This can 
help diagnose whether they are some 
specifi c patterns in the errors, whether 
most species are badly modelled under 
various environmental conditions, or 
whether there is some spatial structure 
in those residuals. Examining these 
residual correlations presents an 
opportunity to delve into the co-
structure among species, revealing 
potential missing key environmental 
variables, spatial constraints and biotic 
relationships. 

Applications of ecological niche 
models
Ecological niche models have 
demonstrated their versatility for 
understanding and predicting species 
or habitat distributions across 
various dimensions. Following the 
establishment of statistical relationships 
Current Bio
between species occurrence or 
abundance and pivotal environmental 
variables, several statistical tools 
facilitate the estimation of the 
marginal or conditional importance 
of these input variables. Variable 
importance is traditionally obtained 
from the standardized effect sizes 
from regression-based models or from 
variable permutations from machine-
learning algorithms. Subsequently, 
partial response plots depict the 
species’ response to the selected 
variable. This can help understand how 
a specifi c factor like soil pH infl uences 
the abundance of species bacteria or 
fungi, or whether there are some critical 
thresholds enhancing or prohibiting 
the survival of a given species 
(Figure 3). This knowledge might prove 
to be particularly useful for biodiversity 
management.

Regarding invasive exotic species, 
ecological niche modelling is also 
employed to compare how an 
invasive species uses the available 
environmental space in its native range 
compared to its invasive range. Such 
a comparison helps understand where 
invasive species might spread to given 
their known native environmental 
niches, but also whether invasive 
species tend to use a different set 
of environmental conditions than in 
their native ranges. Such deviations 
logy 34, R217–R236, March 25, 2024 R227
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Figure 3. Variable importance and response curves for bacterial communities. 
Variable importance and response curves of bacterial trophic groups in the French Alps in function of sets of climate, soil, phenology, habitat and hy-
drological variables. On the left panel, the relative importance for each broad environmental class to explain the change in abundance of the trophic 
groups. The two right panels show the partial responses of selected bacterial groups to soil carbon–nitrogen ratio and soil pH. 
may arise if the environmental niche 
in the native range was constrained 
by factors, such as predation or 
disturbance, that might not exist in the 
new range. Trained models are also 
used to predict the potential spread of 
exotic invasive species or to highlight 
areas that might soon become 
invaded. 

In a broader context, ecological 
niche models are often used to 
predict the geographical distribution 
of species. This includes mapping 
the probability of species occurrence 
or variations in abundance within a 
specifi ed area. With the capability 
to generate high-resolution maps 
depending on input environmental 
variables (ranging from a few meters to 
kilometers), these maps play a pivotal 
role in conservation and restoration 
efforts. This is particularly crucial for 
safeguarding rare species or preventing 
the spread of invasions. Amidst 
the ongoing global change crisis, 
ecological niche models are also widely 
employed to forecast potential species 
or habitat distributions under future 
conditions. Climate, land use and 
pollution scenarios are employed to 
illustrate how various plausible futures 
may impact species, habitats and 
overall biodiversity. These projections 
are then used to test the relevance of 
existing protected area networks into 
the future, to reveal future restoration 
areas or as input of systematic 
conservation planning to prioritize 
future areas. 
R228 Current Biology 34, R217–R236, March
Future improvements
The future of ecological niche models 
lies in refi ning their ecological realism 
by incorporating factors such as biotic 
interactions and dispersal mechanisms. 
It is crucial to acknowledge that the 
environmental variables used to defi ne 
a species’ ecological niche span both 
abiotic components, like temperature 
or pH, and biotic components, such 
as the presence of resources or the 
infl uence of strong competitors. Yet, 
the inclusion of biotic factors is not 
yet common practice, largely due to 
the requisite prior knowledge about 
the resources or competitors specifi c 
to the species under consideration. 
Addressing this limitation, the growing 
availability of trophic interaction data, 
which are sourced from observations, 
expert knowledge or trait-based 
inference (e.g., considering two species 
as interacting if the foraging traits of 
the predator align with the vulnerability 
traits of the prey), holds signifi cant 
promise.

A key aspect involves rigorous 
error propagation along the trophic 
chain, enhancing the effectiveness of 
multi-species modelling. For instance, 
one approach could involve initially 
modelling and predicting herbivore 
species based on climatic and 
vegetation variables. Subsequently, 
the modelling of secondary consumers 
could incorporate climate, vegetation, 
and the predicted abundances of 
the herbivores, and so on until the 
top predators. In this case, it is 
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imperative to integrate prediction 
errors made at each level into the 
subsequent modelling stages. In 
this complex modelling framework, 
Bayesian computing or bootstrap 
approaches emerge as crucial tools. 
These methodologies play a pivotal 
role in handling uncertainties and 
refi ning predictions, ensuring a more 
robust and accurate representation of 
ecological patterns and processes.

An additional avenue for 
improvement lies in addressing 
dispersal movement, particularly in the 
context of predicting species range 
shifts resulting from environmental 
changes or invasion spread. Early 
models predominantly entertained two 
extreme scenarios, no dispersal and 
full dispersal. The former scrutinized 
current suitable areas and their 
potential contraction or expansion, 
while the latter assumed that the 
modeled species could migrate to 
any newly suitable area in the future. 
The reality, however, lies somewhere 
in between, prompting a shift towards 
sophisticated ecological niche models 
equipped with tools that account for 
ecological continuities, landscape 
connectivity and dispersal limitations. 
Novel advances extend to utilizing 
ecological niche models to constrain 
process-based models, concentrating 
on population demography, dispersal 
events, and occasionally biotic 
interactions. These hybrid models 
are poised to emerge as a focal 
point in research in the forthcoming 
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The overlooked 
role of unisensory 
precision in 
multisensory 
research
Haocheng Zhu1, Ulrik Beierholm2, 
and Ladan Shams3,*

In a recent study of perceptual processing 
in professional football players, Quinn 
et al.1 compared the susceptibility to 
the sound-induced fl ash illusion2 (SiFI) 
of goalkeepers, outfi eld players and a 
control group to investigate whether 
goalkeepers have a better multisensory 
temporal integration. They found that 
the goalkeepers perceived the illusion 
less frequently and had a narrower 
temporal binding window, and suggested 
that they had an enhanced tendency 
to segregate the multisensory signals. 
The authors attributed the decreased 
degree of perceived illusions solely to 
the reduction in the prior tendency of 
audiovisual integration. Here we present 
an alternative explanation through 
a Bayesian causal inference model, 
suggesting that better unisensory 
precision in goalkeepers can also account 
for the observed behavioral outcomes.

Several previous studies have 
demonstrated that the Bayesian causal 
inference (BCI) model3 can account for 
multisensory temporal numerosity tasks 
such as SiFI very well4,5. While Quinn 
et al.1 suggested that the differences 
between groups is due to the difference 
in the prior integration tendency as per 
the BCI model, no quantitative analysis 
was performed to test or verify this 
hypothesis. This interpretation may 
overlook the role of unisensory precision 
for the following two reasons. First, BCI is 
a normative Bayesian model that makes 
an inference based on the congruency 
between sensory inputs as well as prior 
expectation of a common cause6, and 
the perceived sensory congruence would 
be impacted by noise in each modality 
(A and V, representing the standard 
deviations of likelihood distributions 
associated with auditory and visual 
representations, respectively)3,7,8 . And 
second, a prior study of auditory–visual 
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years, offering a comprehensive and 
integrative approach to elucidate the 
intricacies of ecological systems.

Integration of artifi cial intelligence
The integration of artifi cial intelligence 
holds great promise in advancing 
ecological niche models, particularly in 
handling large datasets and extracting 
complex patterns. Broadly speaking, 
there are two principal avenues through 
which artifi cial intelligence, specifi cally 
machine learning and deep learning 
algorithms, can enrich ecological niche 
models.

The fi rst avenue leverages the 
prowess of machine learning and deep 
learning in handling extensive datasets 
and navigating complex relationships. 
Models such as Multilayer Perceptron 
demonstrate the capacity to 
accommodate a large number of 
species (e.g., several thousand) within 
a single model, spanning millions 
of pixels in a matter of hours — a 
capability barely fathomed in ecology 
just a few years ago. This effi cacy 
enhances the utility of burgeoning 
citizen datasets like eBird, iNaturalist or 
GBIF, enabling the extension of model 
applications beyond the traditional 
focus on vertebrate species to 
encompass invertebrates. 

The second avenue is the use of 
images instead of tabular information. 
Historically, researchers related 
observed samples with vectors of 
environmental measures (e.g., pH, 
humidity), either obtained in situ or 
sourced from extensive databases. 
In contrast, deep-learning models 
can profi ciently use images from 
remote sensing. In this paradigm, 
the model transcends learning 
from singular pieces of information, 
instead assimilating insights from 
a comprehensive spatial and 
environmental context around a 
given point. Convolutional neural 
networks, predominantly employed 
in face recognition, emerge as the 
most relevant tool for this application, 
because they excel in reducing the 
complex, multilayer information inherent 
in datasets like multispectral imageries 
or radar data collected from observed 
samples. This innovative approach 
inaugurates a nascent realm of research 
dedicated to unraveling how landscape 
structure and complexity can elucidate 
species and habitat distributions.
Ecological niche modelling or 
species distribution modelling 
has evolved into a cornerstone of 
ecological research, offering valuable 
insights into the understanding of 
species–environment relationships. As 
we move forward, the incorporation 
of biotic interactions and dispersal 
dynamics and the integration of 
artifi cial intelligence technologies will 
undoubtedly increase the precision 
and applicability of ecological niche 
models, reinforcing their role as key 
tools for guiding conservation efforts 
and unraveling the mysteries of the 
natural world.
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