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BIOMOD is a computer platform for ensemble forecasting of species distributions, enabling the treatment of a range of
methodological uncertainties in models and the examination of species-environment relationships. BIOMOD includes
the ability to model species distributions with several techniques, test models with a wide range of approaches, project
species distributions into different environmental conditions (e.g. climate or land use change scenarios) and dispersal
functions. It allows assessing species temporal turnover, plot species response curves, and test the strength of species
interactions with predictor variables. BIOMOD is implemented in R and is a freeware, open source, package.

Species distribution models (SDM, Guisan and Thuiller
2005) are being used in nearly all branches of life and
environmental sciences. A quick search in ISI Web of
Science (18/02/08) using “species distribution models” OR
“niche models” OR “habitat models” OR “bioclimatic
models” highlights 21 973 papers, 74% of which published
in the past 10 yr, in fields as varied as environmental
sciences (53% of the records), zoology (15%), marine and
freshwater biology (15%), life sciences and biomedicine
(9%), biodiversity and conservation (8%), evolutionary
biology (8%), fisheries (6%), forestry (6%), oceanography
(5%), genetics and heredity (5%), amongst others.
Advancement of knowledge in these fields is now inter-
twined with technical innovation in species distribution
modelling and dependent on the existence of suitable
software for fitting models and examining results. One
difficulty with the use of species distribution models is that
the number of techniques available is large and is increasing
steadily, making it difficult for “non-aficionados” to select
the most appropriate methodology for their needs (Elith et
al. 2006, Heikkinen et al. 2006). Recent analyses have also
demonstrated that discrepancies between different techni-
ques can be very large, making the choice of the appropriate
model even more difficult. This is particularly true when
models are used to project distributions of species into
independent situations, which is the example of projections
of species distributions under future climate change
scenarios (Thuiller 2004, Pearson et al. 2006). A possible
solution to account for this inter-model variability is to fit
ensembles of forecasts by simulating across more than one

set of initial conditions, model classes, model parameters,
and boundary conditions (for a review see Aratijo and New
2007) and analyse the resulting range of uncertainties with
bounding box, consensus and probabilistic methodologies
rather than lining up with a single modelling outcome
(Aratjo and New 2007, Thuiller 2007). BIOMOD offers
such a platform for ensemble forecasting (Fig. 1) using
freeware and open-source R software (R Development Core
Team 2008). It overcomes some of the limitations of
existing software (e.g. being able to fit and compare
different models) and incorporates several features for
testing models (e.g. k-fold cross validation) and for
examining species-environment relationships (e.g. using
randomization tests) (Fig. 2).

Earlier implementations of BIOMOD (Thuiller 2003,
2004) provided limited ensemble simulations across model
classes (i.e. four modelling techniques) and boundary
conditions (i.e. up to five climate scenarios). Currently,
BIOMOD enables larger simulations across initial condi-
tions (i.e. by randomly re-sampling species distribution data
and fitting different models for each sample), nine model
classes (generalised linear models (GLM, McCullagh and
Nelder 1989), generalised additive models (GAM, Hastie
and Tibshirani 1990), multivariate adaptive regression
splines (MARS, Friedman 1991), classification tree analysis
(CTA, Breiman et al. 1984), mixture discriminant analysis
(MDA, Hastie et al. 1994), artificial neural networks
(ANN, Ripley 1996), generalised boosted models (GBM,
Ridgeway 1999), random forests (Breiman 2001), and one
rectilinear envelope similar to BIOCLIM (SRE, Busby
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Ensemble forecasting and uncertainty analysis in BIOMOD
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Figure 1. Probabilistic approach for forecasting species potential d

1991)), a variable number of model parameterizations (e.g.
polynomials and smoothing splines of different orders in
general linear or additive models, nodes in classification
trees, hidden layers in neural nets), and a virtually unlimited
number of boundary conditions. Most modelling techni-

istributions (adapted from Thuiller 2007).

ques implemented in BIOMOD require that species
distribution data are presence and absence. When data are
presence-only, a simple solution is to generate random
pseudo-absences. This can be done in BIOMOD using
strategies of increasing complexity.
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Figure 2. Schematic representation of the modelling procedure in BIOMOD.
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Figure 3. A representation of species potential range changes. Species range changes (SRC) are represented by a 2 axes plot: the first axis
(x) represents the percentage of currently occupied sites projected to be lost; the second axis (y) represents the relative percentage —
according to the current distribution’s size — of currently unsuitable sites but projected to be suitable in future. For each dot, the sum of
these two values gives the SRC. Every dot is a projection (e.g. different climate change scenarios, different model parameterisations). (a)
Species range change projections for 3 species. Whilst species 2 keeps the majority of its current sites and gains around half of its potential
habitat surface, species 3 is projected to keep as many of its sites, but will gain very few new suitable sites. Species 1 will lose suitability in
many current sites but will also gain suitability in many new sites. (b) Species range change (SRC) according to different modellin
techniques. This type of plot enables visual exploration of the sources of uncertainty accrued from different methodological sources of
uncertainty, such as model algorithms, criteria to transform probabilities into presence and absence, climate change scenarios.

Evaluation of models in BIOMOD includes two sorts of
analysis: assessments of the goodness-of-fit (=explanatory
power) and of model accuracy (=predictive power). The
former uses standard approaches associated with each

technique; for example, ANOVA decomposition and AIC

are available for both GLM and GAM, whereas rate of
misclassification is used for CTA. The latter can be
performed with three different procedures: the area under

the relative operating characteristic curve (AUC, Hanley
and McNeil 1982), Cohen’s K (Monserud and Leemans
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1992), and the true skill statistic (TSS, Allouche et al.
2006).

In an ideal world, model accuracy (e.g. AUC/Kappa/TSS)
should always be evaluated with statistically independent
data, i.e. training data that are not spatially autocorrelated
with test data (Aragjo et al. 2005a). When independent data
are not available, an alternative is to use data-splitting
procedures, whereby a proportion of the original data are
used for training the models and the withheld data are used
for model evaluation. A single random splitting of data was
available in earlier implementations of BIOMOD (Thuiller
2003), but it proved to be a non-negligible source of
variability when making predictions. Currently, BIOMOD
allows much greater flexibility. Apart from the ability to
define the size of the training and test datasets, BIOMOD
also allows k number of data splitting runs to be computed. In
each run, a model is fitted on one part of the data and
evaluated on the left-out data. The evaluation values provided
by each of the k splitting runs are then averaged, ensuring the
final evaluation is quasi-independent of a particular realisa-
tion of random split. BIOMOD also provides a version of
“leave-one-out” resampling. Users simply need to define the
training sets as 100% of the data minus 1 record and then
repeat the procedure a user-defined number of times
(e.g. 1000 times). When non-independent data are used for
model evaluation, variability in model accuracy should be
interpreted as a measure of the sensitivity of model results to
the initial conditions rather than as a measure of predictive
accuracy (Aratjo and Guisan 2006).

Model evaluation can be used to investigate the
variability of predictions across modelling techniques. In
BIOMOD a table displaying the AUC/K/TSS values is
produced for each model and for each species. This table
can be used for selecting the “best” model, i.e. the model
providing greater accuracy on the test data for each species
(Thuiller 2003). Assuming that no modelling procedure is
always better, selecting the best model for each situation
might be a useful option. The alternative ensemble
forecasting paradigm draws on the assumption that model
accuracy on non-independent test data is not representative
of model accuracy on independent situations. In such cases,
committee averaging of model predictions (giving the same
weight to all predictions) can be implemented to derive a
consensus prediction; an alternative is to combine models
using some form of weighting (e.g. using PCA score value,
Thuiller 2004, Aratjo et al. 2006). There are a range of
approaches to do this (for review see Aratjo and New
2007), but in BIOMOD weights are currently calculated on
the basis of models’ predictive accuracy on test data (i.e. a
form of “stacking”). Empirical testing of consensus fore-
casting under climate change has shown that weighted
approaches are promising (Aradjo et al. 2005b, Marmion
et al. 2008).

When using models to predict potential distributions in
other regions, or times, it is often useful to visually examine
species response curves (Austin and Gaywood 1994). To do
so, BIOMOD uses an implementation of the “evaluation
strip” procedure (Elith et al. 2005), making it possible to
extract species’ response curves independently of the
model’s algorithm.

There are some techniques available for characterising
variable contribution in model predictions. However, these
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techniques are model-specific, so are the conclusions that
one may extract from them. To overcome this limitation,
BIOMOD uses a randomisation procedure to estimate the
importance of each variable. The procedure is independent
of the modelling technique, thus enabling direct compar-
ison across models. This procedure uses Pearson correlation
between the standard predictions (i.e. fitted values) and
predictions where the variable under investigation has been
randomly permutated. If the correlation is high, i.e. it is
showing little difference between the two predictions, the
variable permutated is considered not important for the
model. This is repeated a user-defined number of times for
each variable, and the mean correlation coefficient over the
runs is kept. BIOMOD then gives a ranking of the variables
for each of the model selected.

Finally, when projecting potential distributions of species
into future environmental conditions, different dispersal
assumptions can be made: no dispersal; unlimited dispersal;
and user-defined species-specific dispersal. Measures of
temporal turnover in potential species richness can then be
calculated for each period (Thuiller et al. 2005), as well as
species habitat change (Fig. 3a), and visualized according to
the different models used (Fig. 3b) to emphasize the
potential uncertainty coming from modelling technique or
climate change scenarios’ choice.

The BIOMOD R-package and a detailed user’s guide of
BIOMOD is available at the R-Forge website <biomod.
r-forge.r-project.org>. To cite BIOMOD, or acknowledge
its use, cite this Software Note as follows, substituting the
version of the application that you used for “Version 0”:

Thuiller, W., Lafourcade, B., Engler, R. and Aragjo, M. B. 2009.
BIOMOD - a platform for ensemble forecasting of species
distributions. — Ecography 32: 369-373 (Version 0).
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