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Abstract

A new computation framework (BIOMOD: BIOdiversity MODelling) is presented,

which aims to maximize the predictive accuracy of current species distributions and the

reliability of future potential distributions using different types of statistical modelling

methods. BIOMOD capitalizes on the different techniques used in static modelling to

provide spatial predictions. It computes, for each species and in the same package, the

four most widely used modelling techniques in species predictions, namely Generalized

Linear Models (GLM), Generalized Additive Models (GAM), Classification and

Regression Tree analysis (CART) and Artificial Neural Networks (ANN). BIOMOD

was applied to 61 species of trees in Europe using climatic quantities as explanatory

variables of current distributions. On average, all the different modelling methods

yielded very good agreement between observed and predicted distributions. However,

the relative performance of different techniques was idiosyncratic across species,

suggesting that the most accurate model varies between species. The results of this

evaluation also highlight that slight differences between current predictions from

different modelling techniques are exacerbated in future projections. Therefore, it is

difficult to assess the reliability of alternative projections without validation techniques

or expert opinion. It is concluded that rather than using a single modelling technique to

predict the distribution of several species, it would be more reliable to use a framework

assessing different models for each species and selecting the most accurate one using

both evaluation methods and expert knowledge.
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Introduction

Recently documented biotic responses to possible

climate and land-use change (Walther et al., 2002,

Peterson et al., 2002b; Midgley et al., 2003) raise a

crucial question for ecologists and conservationists: Are

projected climate and land-use change likely to threaten

biodiversity and conservation of species? Several meta-

analyses have demonstrated that there is a globally

coherent ‘fingerprint’ of climate change impacts across

natural systems and particularly on biodiversity

(Parmesan & Yohe, 2003; Root et al., 2003). Static

modelling techniques have been used to assess the

impacts of global change on biodiversity distribution,

by predicting current species distributions and apply-

ing statistical models from current distributions to

project future distributions under global change sce-

narios (for a review, see Pearson & Dawson, 2003).

Static modelling relates the current observed distribu-

tion of species to a pool of available environmental

variables using statistical or rule-based models. Differ-

ent modelling techniques are commonly applied to

project potential future species distributions. Although

Generalized Linear Models (GLM) are the most

common (Hill et al., 1999; Bakkenes et al., 2002),

Generalized Additive Models (GAM) are being used

increasingly (Leathwick, 1995; Frescino et al., 2001).
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Alternative rule-based approaches have also emerged

as interesting tools to predict current and future

potential distributions. These include Classification

and Regression Tree analysis (CART) (Rouget et al.,

2001; Thuiller et al., 2003b) or Artificial Neural Net-

works (ANN) (Pearson et al., 2002; Moisen & Frescino,

2002). Modellers have observed that different model-

ling techniques for the same species may give different

results and that different methods tend to vary

idiosyncratically across species (Thuiller et al., 2003a).

While some comparative studies may guide me-

thodological choices (e.g. Manel et al., 1999; Thuiller

et al., 2003a), it may be obscure for non-statisticians

or inexperienced users to select a modelling tech-

nique to predict species distributions for a specific

application.

The purpose of this paper is therefore to present a

modelling application, BIOMOD, that allows spatial

predictions maximizing the model accuracy and pro-

jected future species distributions. Indeed, to predict

current species distributions and to project them into

the future, it may be necessary to consider more than

one modelling technique and use the most accurate one

for each species rather than the most accurate across

species. In addition, models with similar accuracies for

current distributions could have very different beha-

viour when applying them to future environmental

parameter sets. The general framework that is proposed

uses different modelling techniques from parametric

statistical to non-parametric rule-based (GLM, GAM,

CART and ANN) for each species, to predict current

species distributions, to evaluate them and then either

choose only the most accurate model to make future

projections for each species, or keep all the predictions

from the different models and project all of them into

the future.

Methods

Species data

Sixty-one native tree taxa distributed across Europe

were considered for modelling. This covers most of the

important timber taxa of Europe, including all the

gymnosperm softwoods (Pinales, Taxales and Gnetales)

and some hardwoods (Myricales, Juglandales and

Fagales) (Humphries et al., 1999). Trees were chosen

because: (i) their distribution and ecology is relatively

well known compared with other plant taxa; (ii) their

richness is correlated (Spearman correlation r5 0.80,

Po0.001) with the overall richness of the Atlas Flora

Europaeae (AFE) data set (Araújo & Williams, 2000);

and (iii) they are long-lived organisms and their

distribution is relatively stable in comparison with

some other groups. The species presence–absence data

are a subset of AFE (Jalas & Suominen, 1972–1996),

which was digitized by Lahti & Lampinen (1999). Data

are located in 4419 UTM (Universal Transverse Merca-

tor) 50� 50-km2 grid cells. We used only 2089 grid cells,

excluding most of the eastern European countries

(except for the Baltic States) because of low recording

efforts in these areas (Williams et al., 2000).

Environmental data

The climate data used for analyses are a comprehensive

set of bioclimatic variables for Europe from the Climatic

Research Unit (http://www.cru.uea.ac.uk/) (Mitchell,

2002) (http://www.pik-potsdam.de/ateam/): mean an-

nual, winter and summer precipitation, mean annual

temperature and minimum temperature of the coldest

month, growing degree days (451) and an index of

humidity (mean ratio of annual actual over annual

potential evapotranspiration). Means are averaged for

the period of 1961–1990. These data sets are supplied on

a 100 grid, covering Europe. Then data were aggregated

by averaging to 50� 50-km2 UTM in order to match the

resolution of species data.

To examine future species distributions, I used the

climate data obtained in a 100 resolution for 2050 based

on the GCM experiments conducted at the UK Hadley

Centre for Climate Prediction and Research using the

HadCM3 model (Mitchell, 2002) under the SRES

scenario A1FI (Nakicenovic & Swart, 2000).

BIOMOD – model calibrations

In order to evaluate the quality of predictions, we

divided databases into two subsets: calibration and

evaluation. The first, a random sample from 70% of the

total database, was used to calibrate (train) the models,

whereas the second, comprising the remaining data,

was used to evaluate (test) model predictions (Fielding

& Bell, 1997). The methods included in the testing

framework were GLM, GAM, CART and ANN. GLM

are the most commonly used technique in species

distribution modelling and have shown good ability to

predict current species distributions (Austin & Meyers,

1996; Brito et al., 1999). However, the inability of GLM

to deal with complex response curves (Yee & Mitchell,

1991) has stimulated the use of GAM in ecological

modelling (Lehmann et al., 2003; Thuiller et al., 2003a).

CART are less commonly used than the previous two

methods, but are accurate and useful to describe

hierarchical interactions between species (Franklin,

1998; Rouget et al., 2001; Thuiller et al., 2003). ANN

are being increasingly used (Pearson et al., 2002), but

they are still limited by the difficulty in identifying
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causal relationships and dominant input variables from

the network structure. However, their ability to deal

with non-normal statistical distributions and their

adequacy to determine environmental envelopes that

have non-linear responses to environmental variables

offer considerable advantages.

For each species, the following procedures were

used:

(1) GLM (McCullagh & Nelder, 1989) with linear,

second and third order and polynomial terms

(second and third order) with the possibility of

interactions only for the linear terms. A stepwise

procedure was used to select the most significant

variables using the AIC criterion (Akaike, 1974;

Anon, 1999).

(2) GAM (Hastie & Tibshirani, 1990) with smooth

splines. The degree of smoothness was automati-

cally selected by cross-validation and bounded to 4

for each variable. As for GLM, a stepwise procedure

was used to select the most parsimonious model

using the AIC criterion (Akaike, 1974; Anon, 1999).

GAM being, by definition, additive, interaction

terms were not included.

(3) CART (Breiman et al., 1984) using the rpart library of

Splus (Therneau & Atkinson, 1997). This procedure

runs a 10-fold cross-validation to select the best

trade-off between the number of leaves of the tree

and the explained deviance.

(4) ANN using the library nnet of Splus (Venables &

Ripley, 2002). This ANN is a feed-forward neural

network. ANN was parameterized using seven

hidden units in a single hidden layer (selected by

cross-validation), with a weight decay equal to 0.03.

As each simulation gave slightly different results,

the ANN was run 10 times and the mean was used

to provide predictions and projections (Ripley,

personal communication).

BIOMOD – model evaluations

The accuracy of models was evaluated using two

different methods according to their specificity between

‘liberal’ and ‘conservative’ approaches, which have

rather different implications in practice (Thuiller et al.,

in review-b). First, the area under the relative operating

characteristic curve (AUC) was computed (for more

details, see Thuiller et al., 2003a). This does not require

the calculation of a threshold to transform probability

values from models to binary presence–absence form

(Pearce & Ferrier, 2000; Thuiller et al., in review-b).

Second, the k statistics (Cohen, 1960) was calculated

using a threshold optimizing this statistic (Monserud &

Leemans, 1992; Thuiller et al., in review-b).

BIOMOD – model predictions and projections

Each model was run for every species, compared and

used to derive spatial predictions on the original data

(2089 grid cells). Then calibrated models were used to

project species distributions using the set of climatic

variables for entire Europe at 100 � 100. Potential future

distributions were also projected by changing climate

as predicted by the HadCM3 GCM under one SRES

scenario (A1FI).

To transform probability values from each model,

either of the following were used: the threshold maxi-

mizing the k statistics, or the threshold maximizing

simultaneously the number of presences and absences

correctly predicted (Thuiller et al., in review-b).

Results

Model evaluations

A test of the models was provided by evaluating their

accuracy in predicting observed species distributions

(Table 1). According to Monserud & Leemans (1992)’

Table 1 Mean and standard deviation of AUC and k statistics for the 61 species for each model, according to the data used

AUC k

Cal Eval Pred Cal Eval Pred

min me max min me max min me max min me max min me max min me max

GLM 0.82 0.95 0.99 0.82 0.94 1.00 0.82 0.95 0.99 0.39 0.69 0.88 0.36 0.66 0.86 0.38 0.68 0.87

GAM 0.84 0.96 0.99 0.84 0.94 1.00 0.84 0.95 0.99 0.35 0.70 0.88 0.40 0.66 0.95 0.38 0.68 0.88

CART 0.83 0.94 0.99 0.54 0.87 0.96 0.82 0.92 0.98 0.45 0.72 0.88 0.27 0.59 0.84 0.45 0.68 0.86

ANN 0.87 0.97 1.00 0.82 0.95 0.99 0.85 0.96 0.99 0.54 0.79 0.94 0.34 0.68 0.84 0.50 0.75 0.89

Cal: calibration data; Eval: evaluation data; Pred: original data (calibration1 evaluation). min, me and max are, respectively,

minimum, mean and maximum values of AUC or k statistics.
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subjective guidelines, k values above 0.7 can be

considered to indicate very good agreement. On

average, predicted distributions on both calibration

and evaluation data were thus found to exhibit high

levels of agreement with observed distributions. Con-

clusions are similar according to AUC, where subjective

guidelines (Swets, 1988) suggest a very good agreement

for AUC above 0.9. According to the guidelines

presented for the two methods, ANN appeared slightly

better than the other methods, while classification trees

appeared as the weakest method in terms of discrimi-

nation ability. Comparing the results for calibration,

evaluation and the entire data, the tendency for CART

to over-fit during the calibration process resulted in a

generally poor agreement for evaluation data (Table 1).

ANN also tended to over-fit during the calibration

process, but the predictions on evaluation data still

showed good agreement. On the other hand, GAM or

GLM displayed very small differences in fit between

calibration and evaluation data, and thus did not

appear to over-fit.

Even if ANN exhibited a higher mean accuracy

according to both the ROC curve and k statistics, there

were noticeable differences across species (Table 2).

GLM or GAM had a higher accuracy than ANN in

several cases, supporting the idea that there is no

universal ‘best’ modelling technique.

Model predictions and projections

Predictions for the 61 modelled species revealed

responses that were highly species- and modelling

technique-dependent. Generally, the expected trend of

Table 2 Percentage of best models across the 61 tree species

according to both AUC and k statistics carried out on

evaluation data

AUC k

GLM 14.75 21.31

GAM 24.59 31.15

CART 00.00 00.00

ANN 60.66 47.54

Fig. 1 Observed and predicted distribu-

tion for Quercus petraea according to the

modelling technique used. The ROC curve

and k statistics on evaluation data are the

following: GLM (AUC5 0.939; k5 0.74),

GAM (AUC5 0.945; k5 0.77), CART

(AUC5 0.927, k5 0.76) and ANN (AUC5

0.960; k5 0.79).
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over-fitting by CART was quite obvious, and for a

number of species GLM, GAM and ANN differed

noticeably. Concerning the projections into the future,

the expected trend of northward expansion was

apparent for a number of species, but especially for

northern native species (e.g. Betula nana). However, for

many species, changes in potential distribution tended

to be multidirectional. To illustrate the study, four

species were selected to represent different chorological

status in Europe: a Euro-Siberian species (Quercus

petraea), a continental species (Castanea sativa), a

Mediterranean species (Pinus halepensis) and a Siberian

species (B. nana).

Predictions of current distribution for Q. petraea

showed interesting differences according to the model-

ling technique (Fig. 1). First, even if both AUC and k
yielded similar results across models, they resulted in

non-negligible differences in terms of spatial predic-

tions. This indicates that small differences according to

the evaluating statistic might translate into significant

differences for spatial predictions.

Projections into the future highlighted that small

differences for predicting current distributions are

exacerbated in the future (Fig. 2). Future distribution

projected by CART showed a northward expansion of

Q. petraea similar to the other three modelling techni-

ques. However, CART predicted a stable distribution in

Spain and southern France while the other three

methods showed a decrease of suitable conditions in

these regions. Even if GLM, GAM and ANN showed

similar trends, there were differences in the UK,

northern France and Poland. According to the ranking

provided by AUC and k, the future potential distribu-

tion of Q. petraea projected by ANN should be the most

accurate.

Differences between future potential species distribu-

tions according to the modelling technique used had a

crucial impact to assess the sensitivity of a given species

to climate change. For instance, the four models did not

result in the same spatial projections in terms of

suitable sites lost or gained to the future (Figs 3–5).

The impact of climate change for C. sativa was different

Fig. 2 Projected potential future distribution for Quercus petraea according to the modelling techniques. The thresholds used to

transform probability values into binary presence–absence form are the same as for Fig. 1.
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according to the modelling technique (Fig. 3). CART

projected a stable distribution of C. sativa, while ANN,

GAM and GLM projected a northward expansion and a

contraction from southern Europe. For this species,

according to the evaluating methods, ANN appeared to

be the most accurate model to predict the current

distribution and would therefore be the most reliable to

generate future projections. Results for P. halepensis, a

Mediterranean tree, also exhibit substantial discrepan-

cies according to the models used (Fig. 4). For this

species, there was a large difference between statistical

and rule-based methods. GLM and GAM projected a

slight northward expansion with contraction from the

extreme southeast and southwest of its current range,

while CART and ANN projected only a strong north-

ward expansion without southern contraction. Accord-

ing to the evaluating methods, projection by GAM was

the most reliable.

When modelling techniques yield very similar results

in terms of accuracy, the results of sensitivity of species

to climate change show similar patterns. This was the

case, for example, for B. nana, a Euro-Siberian species

that was projected to lose a considerable amount of

suitable habitat in the southern part of its distribution

almost identically by all modelling techniques (Fig. 5).

Discussion

Results presented in this study suggest that the

reliability of future potential species distributions

depends strongly on the modelling technique used. A

small difference between two modelling techniques in

terms of AUC or k can result in a large difference in

projections of future potential habitat. It is worth noting

that only a subsample of possible forms for GLM,

GAM, CTA and ANN was used. The way in which the

different modelling techniques in BIOMOD were

parameterized is explained and detailed here and in

other papers (Thuiller et al., 2003a, b). However, there

are different methods to parameterize these models; for

Fig. 3 Comparison of current projected distribution of Castanea sativa and its future potential distribution in 2050. Dark grey colour

corresponds to stable suitable sites, grey to loss of suitable sites, black to gain of suitable sites and clear grey to stable unsuitable sites.
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instance, using lowess smoother for GAM instead of

spline, using only linear terms in GLM, or using a

higher number of hidden network units in ANN. A

sensitivity analysis would be worthy to assess the

importance of such parameters, but this was clearly

beyond the scope of this paper. Moreover, if differences

also exist according to the methods to fit a single model,

it enhances the use of a framework such as BIOMOD

that tests different models and chooses the most

accurate one. BIOMOD could be used to test the same

modelling technique, but with different forms and

parameterizations. Readers interested in more detailed

discussions and model comparisons could refer to

Brotons et al. (in review), Franklin (1998), Guisan et al.

(1999), Vayssières et al. (2000) and Thuiller et al. (2003a).

All these papers compared several methods and aimed

to identify the most accurate overall. Even when using

three sets of data at different locations, scales and

resolutions, there was no evidence that any particular

technique was consistently better than any other

(Thuiller et al., 2003a). Here, an alternative approach

that uses different modelling techniques within a single

framework has been proposed, where running all of

them provides accurate current predictions and reliable

future projections. Other modelling techniques could be

added to this framework. For instance, genetic algo-

rithms as used by Peterson and co-workers (Stockwell

& Peters, 1999; Peterson et al., 2001, 2002a) could be

integrated into this framework to cover an even larger

spectrum of modelling techniques.

If the aim of a study is to perform only predictions on

current data, BIOMOD is useful because it selects the

most accurate modelling technique for each species. In

this sense, predictions are optimized as compared with

other approaches using only one a priori modelling

technique. Of course, for some species and locations,

the different modelling techniques could give exactly

the same results, and thus extra calculation time to run

Fig. 4 Comparison of current projected distribution of Pinus halepensis and its future potential distribution in 2050. Dark grey colour

corresponds to stable suitable sites, grey to loss of suitable sites, black to gain of suitable sites and clear grey to stable unsuitable sites.
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different models would be unnecessary (for instance,

GLM, GAM and ANN for B. nana).

Another advantage of BIOMOD is with respect to

projections of species distributions under climate

change scenarios. Indeed, it is impossible to gate

whether projected future potential distributions are

accurate or not, or if one method is better than another,

even if expert knowledge could help to assess the

reliability of projections. Two alternatives are then

possible:

� Either, decide to trust the evaluation process, select

for each species the most powerful modelling

technique to predict current distributions and project

future potential distributions.
� Or, carry out predictions and derive projections of

future potential distributions using all the modelling

techniques employed (i.e. Figs 2–5) and draw

conclusions by comparisons across outputs. These

conclusions and validations could be based on expert

knowledge or published studies. A complementary

way is to analyse projected future response curves to

environmental gradients to identify unrealistic pat-

terns generated by particular modelling techniques

(Thuiller et al., in review-a).

Alternatively, the best approach to assess a model’s

accuracy in the future would be to evaluate models

retrospectively to produce projections of the present-

day distribution for data gathered in the past. Unfortu-

nately, accurate past data of species and climate are not

readily available for Europe at this point.

Projections of potential future distributions also need

to be interpreted with caution. If any model is used to

project outside the range over which it has been fitted,

projections could be less reliable (Thuiller et al., in

review-a). Even if models presented in this study are

quite accurate and commonly used to assess the impact

of global change (Sykes, 2001; Bakkenes et al., 2002;

Pearson et al., 2002), particular care should be taken for

Fig. 5 Comparison of current projected distribution of Betula nana and its future potential distribution in 2050. Dark grey colour

corresponds to stable suitable sites, grey to loss of suitable sites, black to gain of suitable sites and clear grey to stable unsuitable sites.
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species at the edge of their distributions in the study

area and for which models can therefore not capture the

entire suitable environmental range.

I conclude by proposing to use a large spectrum of

methodological approaches (parametric, non-para-

metric, rule-based or machine learning) to have a wide

array of possible future species distributions and assess

their reliability using (i) the evaluation methods and (ii)

expert knowledge and ecological validation. BIOMOD

could also be used to assess the uncertainty of

projections of future species distributions. At least

three sources of uncertainties are inherent to the

modelling process presented in this paper and other

published studies (Bakkenes et al., 2002; Berry et al.,

2002; Midgley et al., 2002; Peterson et al., 2002b): the

uncertainty based on the climate change scenarios,

the uncertainty based on the modelling techniques and

the uncertainty based on the selection of the threshold

to transform probability values into presence–absence

form. The framework presented in this paper could

measure the prevalence of these three sources of

uncertainties and in this sense evaluate the reliability

of projections of future species distributions.
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