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Abstract

Although bioclimatic modelling is often used to estimate potential impacts of likely

climate changes, little has been done to assess the reliability and variability of

projections. Here, using four niche-based models, two methods to derive probability

values from models into presence–absence data and five climate change scenarios, I

project the future potential habitats of 1350 European plant species for 2050. All 40

different projections of species turnover across Europe suggested high potential species

turnover (up to 70%) in response to climate change. However variability in the potential

distributional changes of species across climate scenarios was obscured by a strong

variability in projections arising from alternative, yet equally justifiable, niche-based

models. Therefore, projections of future species distributions and derived community

descriptors cannot be reliably discussed unless model uncertainty is quantified

explicitly. I propose and test an alternative way to account for modelling variability

when deriving estimates of species turnover (with and without dispersal) according to a

range of climate change scenarios representing various socio-economic futures.
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Introduction

Significant effects of global climate change are already

observed for a variety of ecosystems, especially with

evidence for shifts in species ranges (Parmesan & Yohe,

2003; Root et al., 2003). Because different species

respond idiosyncratically to various ecological forces,

ecological communities may disassemble as individual

species shift their ranges in different directions. Recent

insights into consequences of climate change on

biodiversity have been gained from niche-based models

that describe the potential responses of individual

species to climate change. These models relate pre-

sent-day distributions to current climate, and then

project spatial shifts in species’ climatic envelopes

according to climate change scenarios (Bakkenes et al.,

2002; Peterson et al., 2002; Thuiller, 2003; Thomas et al.,

2004). The percentage of species turnover (defined as an

index of dissimilarity between the current and future

species composition within a given area) and the

percentage of species that could persist in, disappear

from, and colonize that area are often considered as a

good measures of the degree of ecosystem perturbation,

and have been used to assess the potential impact of

climate change at regional to continental scales (Peter-

son et al., 2002). Using climate change scenarios and

niche-based models that project future suitable habitat

from current distributions, several studies have sug-

gested that species turnover may be very high in some

regions, potentially resulting in modifications of com-

munity structure strong enough to lead to ecosystem

disruption (Bakkenes et al., 2002; Erasmus et al., 2002;

Peterson et al., 2002).

However, to be able to highlight precisely where

strong modifications of species diversity are expected to

occur, projections of species turnover must be reliable

and robust. Although niche-based models have been

extensively assessed in their effectiveness to predict

present-day distributions of various taxa from regional

to continental scales (Moisen & Frescino, 2002; Thuiller

et al., 2003; Brotons et al., 2004), their accuracy in

predicting future conditions has not been evaluated yet.

Because of the obvious fact that future realized

Correspondence: present address: W. Thuiller, Climate Change

Research Group, Kirstenbosh Research Center, National Botanical

Institute, P/Bag x7, Claremont 7735, Cape Town, South Africa,

e-mail: wilfried.thuiller@cefe.cnrs-mop.fr or Thuiller@nbi.ac.za

Global Change Biology (2004) 10, 2020–2027, doi: 10.1111/j.1365-2486.2004.00859.x

2020 r 2004 Blackwell Publishing Ltd



distributions are unknown, reliability of niche-based

models for projecting species distributions for future

hypothetical conditions should not be taken for granted

(Thuiller et al., 2004). Recently, Thuiller (2003) showed

that a range of niche-based models with similar

accuracy for predicting species’ present-day distribu-

tions could predict alarmingly different future distribu-

tions. Such results have critical implications when

results for individual species are aggregated to derive

turnover or extinction rates as used by Bakkenes et al.

(2002), Peterson et al. (2002) or Thomas et al. (2004).

Indeed, if projections from different models differ

significantly for each individual species, then uncer-

tainties will be accumulated when deriving species

turnover by accumulating projections for large num-

bers of species. Hence, there is an urgent need to assess

the impact of variability across modelling methods

used to derive conclusions about the impacts of global

change on biodiversity. This need increases when

projections into the future are carried out according to

a range of climate change scenarios as provided by the

last report of the Intergovernmental Panel on Climate

Change (IPCC) (Nakicenovic & Swart, 2000).

Here, using five climate change scenarios and four

different niche-based models, I project the future

climatic envelopes of 1350 European plant species for

the middle of this century. Combinations of individual

species envelopes for a given method and scenario

were used to project the associated species turnover

and percentage of stable/gained habitats. I then

analysed the relative contributions of modelling meth-

ods and climate change scenarios to variability across

these projections. Based on these results, I propose a

method to incorporate methodological uncertainty into

the modelling process and derive robust estimates of

species turnover across a range of climate scenarios.

Methods

The general approach to modelling climate change

effects on species distributions used herein is devel-

oped in detail elsewhere (Thuiller, 2003).

Plant species data sets

I used a subset (20%) of the Atlas Florae Europeae

(Lahti & Lampinen, 1999), which contains digitized

maps for more than 2600 species across Europe. Species

with less than 20 records in the data set were excluded

from the analysis, so as to reduce errors associated with

excessively small sample sizes (Stockwell & Peterson,

2002). Retained species included all European pterydo-

phytes and a sample of spermatophytes comprising of

all gymnospermae families (Coniferales, Taxales and

Gnetales), a fraction of angiospermae dycotyledones

(Salicales, Myricales, Juglandales, Fagales, Urticales,

Proteales, Santales, Aristolochiales, Balanophorales,

Polygonales, Centrospermae and Ranales), but no

monocotyledones. Species data were located in 4419

UTM (Universal Transverse Mercator) 50� 50 km2 grid

cells. I used only 2089 grid cells excluding most of the

eastern European countries (except for the Baltic States)

because of low recording efforts in these areas

(Williams & Araújo, 2000).

Bioclimatic data sets

I used seven climatically derived variables considered

critical to plant physiological function and survival

(Bartlein et al., 1986; Woodward, 1987). Data were

obtained from the Climatic Research Unit (http://

www.cru.uea.ac.uk/) for: mean annual, winter, and

summer precipitation, mean annual temperature and

minimum temperature of the coldest month, growing

degree days (GDD451) and an index of humidity

(AET/PET: mean ratio of annual actual over annual

potential evapotranspiration). Mean values were

averages for the period of 1961–1990. These data sets

are supplied on a 100 grid, covering Europe. Then data

were aggregated by averaging to 50� 50 km2 UTM in

order to match the resolution of species data.

Climate change scenarios

Future projections for the 2050 time slice (averages for

2020–2050) were derived using two general circulation

models (GCMs) experiment (Carson, 1999) made

available in the context of the EC-funded ATEAM

project and conducted, respectively, at the UK Hadley

Centre for Climate Prediction and Research (HadCM3)

and Australia’s Commonwealth Scientific and Indus-

trial Research Organization (CSIRO2). These GCMs

included different storylines according to the IPCC’s

(Nakicenovic & Swart, 2000). The A1 storyline describes

a future world of very rapid economic growth, global

population that peaks by mid-century and then

declines, and the rapid introduction of new and more

efficient technologies. The A2 storyline describes a very

heterogeneous world. The underlying theme is self-

reliance and preservation of local identities. Economic

development is primarily regionally oriented and per

capita economic growth and technological changes are

more fragmented and slower than in the other story-

lines. The B1 storyline describes a convergent world

with the same global population as the A1 storyline that

peaks by mid-century and declines thereafter, but with

rapid change in economic structures towards a service

and information economy, with the introduction of
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clean and resource-efficient technologies. The B2 story-

line describes a world in which the emphasis is on local

solutions to economic, social, and environment sustain-

ability. It is a world with continuously increasing global

population at a rate lower than A2, intermediate levels

of economic development, and less rapid and more

diverse technological change than in the B1 and A1

storylines (Nakicenovic & Swart, 2000). I used the four

storylines under HadCM3 GCM experiments and only

A2 for CSIRO2 because of data availability (see Table 1

for more details on expected mean temperature

increase and variation of precipitation between 1990

and 2050).

Niche-based models

Current habitats at 50� 50 km2 and 100 resolution, and

future potential habitats at 100 resolution were pro-

jected for each plant species using the BIOMOD

framework (Thuiller, 2003). For each species, general-

ized linear models (GLMs), generalized additive

models (GAMs), classification tree analysis (CTA), and

artificial neural networks (ANNs) were calibrated on a

random sample of the initial data (70%) and tested on

the remaining data sets with both the receiver–operat-

ing characteristic (ROC) curve and the k statistic

(Pearce & Ferrier, 2000; Thuiller et al., 2003).

Projected distributions of presence–absence were

derived from probability values generated by niche-

based models using two methodological approaches

(cut-off methods hereafter): first, by maximizing the k
statistic, and second by maximizing the percentage of

presence and absence correctly predicted for present

conditions (Manel et al., 2001). The last one is done by

estimating the number of presence and absence

correctly predicted for a range of cut-off values and

by selecting the cut off that maximizes both presence

and absence jointly (Pearce & Ferrier, 2000, Thuiller

et al., 2003).

Each species was predicted to lose or gain suitable

habitat according to each combination of modelling and

cut-off methods on one hand, and climate change

scenarios on the other. To evaluate geographic patterns

of numbers of species potentially lost or gained across

Europe, I summed the number of species gained (G) or

lost (L) by pixel for each model. I summed simulated

present-day distributions across all species to deter-

mine the simulated species richness (SR) and estimated

the percentage of species turnover as: 100� (G1 L)/

(SR1G). As this process implied unlikely universal

dispersal for species to track suitable bioclimatic

conditions, I also derived species turnover without

dispersal as: 100� (L/SR).

Quantifying uncertainties

The three factors tested here (4 niche-based models� 2

cut-off methods� 5 climate change scenarios) resulted

in 40 projections of species turnover. To assess and

account for the differences in sources of variability

among projections, I used a consensus analysis (Wes-

terhuis et al., 1998). This is based on a multivariate

approach in order to search among a set of variables for

the one that summarizes the highest amount of

information. I used a principal component analysis

(PCA consensus) on the different combinations of

modelling methods and scenarios to run a consensus

analysis on projections of species turnover. The first

axis (called consensus axis hereafter) of PCA captured

consistent spatial patterns in turnover rate across the

different projections. If the 40 projections were exactly

similar (i.e. only one axis would be retained explaining

100% of the variation), there would be no variability

across projections. If the 40 projections were randomly

simulated and completely unrelated to each other, 40

axes would be retained, each of them explaining 1/

405 2.5% of the variation. Based on the basic expecta-

tion that at least climate change scenarios would differ,

the variability explained by the first axis should be

comprised between 2.5% and 100%. If the consensus

axis explains less than 100% of the variability, then the

subsequent axes (termed variability axes hereafter)

would explain the orthogonal variation because of

variability across models, cut-off methods or/and

Table 1 Variation of mean annual temperature and precipitation over Europe across the different GCMs and storylines used in the

study between 2050 and 1990

HadCM3

A2 CSIRO2A1 A2 B1 B2

Annual temperature ( 1C) 2.16 1.90 1.89 1.95 1.76

Annual precipitation (mm) �10.1 �7.99 �10.6 �5.5 10.5

GCM, general circulation model; HadCM3, Hadley Centre for Climate Prediction and Research; CSIRO2, Commonwealth Scientific

and Industrial Research Organization.
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scenarios of climate change. I analysed these variability

axes using CTA(Breiman et al., 1984) to measure the

proportion of variability explained by each of factor. I

used CTA because this method is not perturbed by

interrelated components and make it possible to

separate variation within each factor (for instance

between scenario A1 and scenario A2).

Results

Quantifying uncertainties

The first five axes of the consensus PCA explained 90%

of the total variability across projections (Table 2). The

consensus axis accounted for 56.1% of variability (i.e.

the 40 projections were 56.1% similar). Hence, the

variability across the three experimental factors was

43.9% and described by the variability axes of the PCA.

The position of each projection and associated

sources of variation (models� cut-off method� scenar-

ios) along each of the four variability axes was extracted

and used to run CTA (Fig. 1). The second, third, and

fourth orthogonal axes were essentially explained by

the model and cut-off method used, while the fifth axis,

which accounted only for 4% of the variability, was

mainly driven by variability across scenarios. The

second axis (Fig. 1a), which explained the greatest part

of variability across turnover projections (18.3%), was

mainly driven by differences between rule-based and

generalized regression methods. The projection scores

on the second PCA axis, plotted on the European map,

showed that this variability across methods was

spatially explicit. High scores (darker colours) showed

high species turnover predicted by generalized models

(GAM and GLM) and low scores (lighter colours)

showed high species turnover predicted by rule-based

models (ANN and CTA) but not by the generalized

models. The third and fourth axes, which explained

noticeably less variability, were also mainly determined

by variability across models and then by cut-off

methods.

Variability across climate change scenarios was

discernable only for the fifth axis separating broadly

the GCM (CSIRO2 vs. HadCM3) and then the storylines

(global vs. regional economy). The PCA fifth axis

scores, plotted on the European map, displayed higher

species turnover predicted under HadCM3 than under

CSIRO2.

Integrating modelling uncertainties

To decrease the uncertainty among projection methods,

an alternative approach is followed here. For each

species and for each selected climate change scenario, a

PCA consensus was run on the coupled model� cut-off

method (eight projections by species). The projections

that were the most correlated with the PCA consensus

axis were selected. This represents the projections that

best captures shared information among the whole set

of projections for a given climate change scenario. This

approach was carried out for the 1350 plants species to

derive one set of projections for the four climate change

scenarios (Table 3). Species turnover under universal

and no dispersal hypothesis were then derived for each

climate change scenario and compared (Figs 2 and 3)

Percentage of species turnover in each pixel under

universal and no dispersal hypothesis showed contrasts

across the range of climate change scenarios. The A1

storyline that represents economic and global world

appeared the most critical for species distributions in

many regions, while the other storylines showed

similar patterns. For instance, the Pannonian region

was the biogeographical region most affected by

climate change in terms of species turnover under all

storylines, whether no or universal species dispersal

ability was assumed. Across all GCMs and storylines,

rates of species turnover were noticeably lower for

western and northern biogeographic regions than for

southern and eastern regions.

While the regions where high rate of species turnover

were predicted consistently across the five climate

change scenarios, turnover values under universal and

no dispersal hypothesis differed between biogeogra-

phical regions. Under the more likely ‘no dispersal’

hypothesis, Scandinavia should be the least affected by

climate change with a very low rate of species turnover,

except for extreme northern part. Conversely, under

universal dispersal, this region could be prone to high

Table 2 Summary of the PCA consensus carried out on the 40 projections

Axis 1 Axis 2 Axis 3 Axis 4 Axis 5

Variance 4.747 2.704 1.637 1.424 1.241

Proportion of variance 0.561 0.183 0.067 0.057 0.039

Cumulative proportion� 100 56.1 74.4 81.1 86.2 90.0

PCA, principal component analysis.
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species turnover with high rates of colonization per

pixel. At the same time, the Atlantic region and Central

Europe (e.g. Germany) were the least affected by

climate change under almost all scenarios.

Discussion

Modelling uncertainty

Limitations of niche-based modelling methods are not

discussed here, as recent papers have provided

insightful comments, descriptions and critiques (Peter-

son et al., 2002; Pearson & Dawson, 2003; Thuiller, 2003,

Thuiller et al., 2004). In this present study, I analysed the

impact of variability across niche-based models and the

impact of cut-off method used to derive probability

values from niche-based models into presence–absence

form. Although cut-off methods are largely under-

studied, their impact on the quality of projections

appeared crucial as both methods (maximizing k
statistic and maximizing % of presence and absence

correctly predicted) could lead to very different

projected distributions, a result that could be proble-

matic for biodiversity risk assessment and conservation

purpose (Manel et al., 2001).

Here, I demonstrated that even when using common

niche-based modelling and cut-off methods, the varia-

bility across projections was large and may even hide

the variability of using a range of climate change

scenarios as recommended by the IPCC (Nakicenovic &

Swart, 2000). My aim here is not to deny the suitability

of niche-based models to derive broad estimates of

sensitivity of biodiversity to climate change, but to

argue that care must be taken before deriving any

conclusion about future impacts on species diversity.

Recently, several authors have published interesting

results on species sensitivity to climate change and

derived geographic values of species extirpation,

colonization or turnover (Bakkenes et al., 2002; Erasmus

et al., 2002; Peterson et al., 2002; Thomas et al., 2004).

Using GLM, and the same models as Bakkenes et al.

(2002), for the same flora except Russia, I estimated that

on average up to 41% of the plant species present in a

pixel in 1990 would disappear by 2050, which was

slightly higher than the 32% they obtained, but much

higher than the 29% I estimated using artificial neural

networks. This example shows the strong variability of

species turnover estimates from different niche-based

models applied on the same data. In addition,

differences in estimated rates of species extinction or

colonization across niche-based models appeared to be

spatially structured, showing that different models

have different abilities to deal with particular species

or geographic locations with specific environmental

conditions.

Since there is no way currently to assess which

universal niche-based model is most appropriate

(Franklin, 1998; Thuiller et al., 2003), one could argue

the use for each species of the model with the highest

predictive accuracy for present-day conditions, and

project future distributions according to a range of

climate change scenarios. However, there are at least

two problems: First, there are several methods to assess

predictive accuracy (e.g. ROC curve or k statistic) and

they do often not provide the same estimates as they are

|

|

|

|

ANN/CTA GAM/GLM

  CTA  ANN  GAM GLM

ROC �

ROC �

ROC � ROC �

ROC �

CTA/GAM/GLM  ANN

CTA   GAM/GLMCTA

GAM  GLM CTA

ANN/GAM CT A/GLM 

  ANN GAM  ANN GAM 

GLM  CTA  CTA   GLM 

CSIR O HadC M3

CTA/GAM  ANN/GLM

A2/B2    A1/B1    A2/B2 A1/B1

(d)

(c)

(b)

(a)

GAM/GLM  

Fig. 1 Details of the classification trees carried out on the

position of each triplet (niche-based model� cut-off method�
scenarios) on principal component analysis axes 2(a), 3(b), 4(c)

and 5(d) and the mapped scores of each axes. The trees showed

the factors that explained the proportion of explained deviance.
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based on different algorithms and assumptions (Manel

et al., 2001). Second, it is not certain that the model with

the highest predictive accuracy for present-day condi-

tions will be the best to estimate future distributions

(Thuiller, 2003). Therefore, I suggest here that it is most

appropriate to choose a projection (one niche-based

model� one cut-off combination) into the future that

conservatively summarizes agreements among projec-

tions generated by different modelling techniques. The

projection most correlated with the first PCA axis

represents such a consensus by extracting shared

variations among future projections. It does not mean

Table 3 Percentage of best combination model� cut-off selected by the consensus analysis to project future species distribution

across the 1350 species

HadCM3

A2 CSIRO2A1 A2 B1 B2

GLM

ROC 15.3 15.1 15.4 15.3 15.9

k 9.30 8.10 8.70 8.90 10.5

GAM

ROC 38.6 40.0 40.0 38.9 40.1

k 22.0 23.0 21.5 21.7 21.7

CTA

ROC 5.30 5.10 5.00 4.80 4.40

k 1.50 1.50 1.20 1.60 1.10

ANN

ROC 4.80 4.10 5.00 5.00 3.40

k 3.20 3.10 3.20 3.80 2.90

HadCM3, Hadley Centre for Climate Prediction and Research; CSIRO2, Commonwealth Scientific and Industrial Research

Organization; GLM, generalized linear model; GAM, generalized additive model; CTA, classification tree analysis; ANN, artificial

neural network; ROC, receiver–operating characteristic.
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Fig. 2 Rate of plant species turnover in Europe estimated using the consensus approach and assuming no species dispersal across a

range of climate change scenarios. (a) A1 HadCM3; (b) A2 CSIRO2; (c) A2 HadCM3; (d) B1 HadCM3; (e) B2 HadCM3.
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that it will necessarily be the most accurate projection

into the future but it is at least the most consensual and

therefore conservative.

Integrating modelling uncertainties

Across the emission scenarios describing different

societal responses to climate change (Nakicenovic &

Swart, 2000), the A1 storyline appeared as the most

threatening plant species diversity and enhanced

species turnover across some specific regions such as

southeast France or northern Italia. The A2 appeared

less harmful for plant diversity than B1 and B2

representing a more environmentally minded world.

Indeed, climate is changing continuously and incidence

of present pollution will be effective at least one or two

decades later. That means that in average from 2020 to

2050, there are lower CO2 and NO2 emissions under A2

than B1 and B2 storylines but that the trend is reversed

from 2050 to 2080 (Nakicenovic & Swart, 2000). That

trend explains why A2 could be considered as safer for

species diversity than B1 and B2 scenarios, although it

is considered as one of the most negative scenarios for

global equilibrium (Nakicenovic & Swart, 2000).

It is often stressed that under climate change, north-

ward and upslope migration of species is expected

(Parmesan & Yohe, 2003) but little attention has been

given to which regions would be the most affected by

high species turnover and community changes. Under

the presented simulations it appears that Pannonian

and Continental biogegraphical regions could undergo

dramatic rate of species turnover (under universal and

no dispersal hypotheses) that could strongly modify

existing ecological communities. However, results high-

light that species dispersal could strongly moderate

future species turnover. The simulations presented here

show the possible range between no dispersal and

universal dispersal ability. For instance, the Boreo-

Alpine region could be the least affected by climate

change assuming no dispersal, but one of the most

affected assuming universal dispersal. Such a phenom-

enon is expected in a region that could undergo

massive immigrations from neighbouring regions as

Boreo-Alpine or Pannonian regions.

To conclude, the methodological uncertainty asso-

ciated to niche-based models is problematic for fore-

casting impact of global climate change on biodiversity.

This uncertainty hides the effects of using different

GCMs and different emissions scenarios as recom-

mended by IPCC (2001). There is an inherent un-

certainty for forecasting anthropogenic climate change

and so predictions of current and future species

distributions should be exempt of uncertainty in order

to produce relevant patterns of extinctions, coloniza-

tions and species turnover. In this paper, I propose

an alternative method based on consensus among
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Fig. 3 Rate of plant species turnover in Europe estimated using the consensus approach and assuming universal dispersal across a

range of climate change scenarios. (a) A1 HadCM3; (b) A2 CSIRO2; (c) A2 HadCM3; (d) B1 HadCM3; (e) B2 HadCM3.
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modelling methods to incorporate species modelling

uncertainty in order to produce more reliable estimates

of biodiversity risk under global climate change.
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Sandra Lavorel, Miguel B. Araújo and Guy Midgley for their
valuable comments on the manuscript.

References

Bakkenes M, Alkemade RM, Ihle F et al. (2002) Assessing effects

of forecasted climate change on the diversity and distribution

of European higher plants for 2050. Global Change Biology, 8,

390–407.

Bartlein PJ, Prentice IC, Webb T (1986) Climatic response

surfaces from pollen data for some eastern North American

taxa. Journal of Biogeography, 13, 35–57.

Breiman L, Friedman JH, Olshen RA et al. (1984) Classification and

Regression Trees. Chapman & Hall, New York.
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