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Do we need land-cover data to model
species distributions in Europe?

Wilfried Thuiller1,2*, Miguel B. Araújo1,2 and Sandra Lavorel1,3

INTRODUCTION

It is widely accepted that distributions of plants and animals

are broadly constrained by their physiological tolerances to

climatic factors (Woodward, 1987, 1990). This generalization

is held to be true for species at a variety of spatial scales

(Whittaker et al., 2001), although there is a wide recognition

that the importance of climate is best expressed at large spatial

scales (Rahbek & Graves, 2001; Willis & Whittaker, 2002).

Following this recognition, bioclimatic models are being used
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ABSTRACT

Aim To assess the influence of land cover and climate on species distributions

across Europe. To quantify the importance of land cover to describe and predict

species distributions after using climate as the main driver.

Location The study area is Europe.

Methods (1) A multivariate analysis was applied to describe land-cover

distribution across Europe and assess if the land cover is determined by climate

at large spatial scales. (2) To evaluate the importance of land cover to predict species

distributions, we implemented a spatially explicit iterative procedure to predict

species distributions of plants (2603 species), mammals (186 species), breeding

birds (440 species), amphibian and reptiles (143 species). First, we ran bioclimatic

models using stepwise generalized additive models using bioclimatic variables.

Secondly, we carried out a regression of land cover (LC) variables against residuals

from the bioclimatic models to select the most relevant LC variables. Finally, we

produced mixed models including climatic variables and those LC variables selected

as decreasing the residual of bioclimatic models. Then we compared the explanatory

and predictive power of the pure bioclimatic against the mixed model.

Results (1) At the European coarse resolution, land cover is mainly driven by

climate. Two bioclimatic axes representing a gradient of temperature and a

gradient of precipitation explained most variation of land-cover distribution.

(2) The inclusion of land cover improved significantly the explanatory power of

bioclimatic models and the most relevant variables across groups were those not

explained or poorly explained by climate. However, the predictive power of

bioclimatic model was not improved by the inclusion of LC variables in the

iterative model selection process.

Main conclusion Climate is the major driver of both species and land-cover

distributions over Europe. Yet, LC variables that are not explained or weakly

associated with climate (inland water, sea or arable land) are interesting to

describe particular mammal, bird and tree distributions. However, the addition of

LC variables to pure bioclimatic models does not improve their predictive

accuracy.

Keywords
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to predict the distribution of plant and animal species at large

spatial scales (for a review see Guisan & Zimmermann, 2000).

However, bioclimatic models may produce inaccurate predic-

tions when important local or regional factors are missing

from input data in the models (Iverson et al., 1999; Thuiller

et al., 2003b). As bioclimatic models assume species distribu-

tions to be at equilibrium with current environmental

conditions, they are bound to over-predict distributions of

species that are highly affected by human activities and that,

consequently, may be missing from potentially suitable areas

(Loehle & LeBlanc, 1996; Araújo, 2003). This problem should

be particularly severe in regions where a positive relationship

between species occurrence and human population density has

been reported (e.g. Araújo, 2003).

For example, in Europe, land use changes, in particular

agricultural intensification, have led to widespread changes in

the distribution and abundance of many different taxa (Benton

et al., 2003). More specifically, numerous studies have revealed

how important land use and other human activities affect

mammal (Mladenoff et al., 1999), bird (Chamberlain et al.,

1999), herptiles (Shenbrot et al., 1991) and plant (Duckworth

et al., 2000) species distributions at regional scales.

As human management activities alter natural dynamics of

species within ecosystems, bioclimatic models are expected to

provide increasingly inefficient predictions of species distribu-

tions (e.g. Araújo et al., 2001). A possibility to compensate for

such human-induced factors is to include within-species

distribution models additional variables expected to summar-

ize important factors affecting local distributions of species.

The inclusion of these variables should be expected to improve

the accuracy of bioclimatic models (Loehle & LeBlanc, 1996;

Midgley et al., 2003). In this paper, we analyse the usefulness

of land cover (LC) variables to predict plant, bird, mammal

and herptile species distributions over Europe. We also

distinguish between the explanatory and predictive power of

land cover. Variables with high explanatory value help to

understand the determinants of species distribution, whereas

variables with predictive value play an important role for

model development without necessary being ecologically

relevant. Some variables can play both roles, whereas others

are more orientated toward one role. The distinction between

both components has thus serious implication in practice.

We address the following questions:

1. How much of land-cover distribution is explained by

climate?

2. How does land cover increase the explanatory power of

bioclimatic models at large spatial scales?

3. How does land cover increase the predictive power of

bioclimatic models at large spatial scales?

METHODS

Species data

Original species data included 2294 plant (Jalas & Suominen,

1972–1996), 186 mammal (Mitchell-Jones et al., 1999), 143

amphibian and reptile (Gasc et al., 1997) and 440 breeding

bird species (Hagemeijer & Blair, 1997). Terrestrial vertebrates

include all known species (Araújo et al., 2001) whereas plants

comprise only c. 20% of the European flora (Humphries et al.,

1999). The grid used is based on the Atlas Floraeae Europaeae

(AFE; Lahti & Lampinen, 1999), with cells boundaries typically

following the 50 km lines of the Universal Transvers Mercator

(UTM) grid. The remaining atlases use slightly different grid-

systems, including different rules to represent data on islands

and coasts. Hence, vertebrate data were converted to the AFE

grid system by identifying unique correspondence between

cells in these grids (Williams et al., 2000). The mapped area

(2434 grid cells) includes western, northern and southern

Europe, but exclude most of the eastern European countries

where recording effort was both less uniform and less intensive

(Williams et al., 2000).

As plants are by far the largest including a great variety of

responses, we divided them into three life-form-based groups

according to Tutin et al. (1964–1993): herbs, shrubs and trees.

Bioclimatic data

We used a comprehensive set of bioclimatic variables for

analyses (T.D. Mitchell, 2002, unpublished data): mean

annual, winter and summer precipitation, mean annual

temperature and minimum temperature of the coldest month,

growing degree days (> 5�) and an index of humidity (mean

ratio of annual actual evapotranspiration over annual potential

evapotranspiration). Mean values are averaged from 1960 to

1990. These data were supplied on a 10¢ grid, covering Europe

and then aggregated by averaging to 50 · 50 km UTM in

order to match with the resolution of species data.

Land-cover data

The land-cover data were developed at a spatial resolution of

10¢ for grid cells based on the ATEAM project geographical

window (http://www.pik-potsdam.de/ateam/). The 10¢ grid

cells were derived by aggregation from the PELCOM land-

cover data base. PELCOM is a 1-km pan European land cover

data base developed mainly from remotely sensed data. The

classification methodology is based on a regional and integ-

rated approach of the NOAA-AVHRR satellite data and

ancillary information such as topographic features (Mücher,

2000). Although finer spatial resolution data bases exist such as

CORINE (CEC, 1993), PELCOM was selected due to its

complete spatial coverage of the European window, and

because of the homogeneity of the methodology used for the

land-cover classification. PELCOM is also the most up-to-date

of pan-European land-cover data bases.

The percentages of each land-cover class were calculated

for the individual 10¢ grid cells from the 1 km PELCOM cells.

The data comprised four classes of land cover: forest,

agriculture, urban (perurban) and others. Forests were

further subdivided into three classes: percentage of decidu-

ous, coniferous and mixed forest (respectively named perdeci,
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perconi and permixf). Agriculture was also divided into three

classes: the percentage of arable lands, grasslands and

permanent crops (respectively named perara, pergrass and

prepermc). The ‘other’ land-cover class comprised: percent-

age of semi-natural areas (divided into areas of shrubland,

and barrenland, respectively named pershrub and perbarrenl),

inland waters (perinwater), wetlands (perwetland), permanent

ice and snow (perpice) and sea (persea). Similarly to climate,

we aggregated 10¢ grid data in 50 · 50-km grid to match with

species data by calculating the percentage of each class in the

new grid system.

Model

Bioclimatic distribution of land cover in Europe

Given that climate governs global patterns of land cover (Dale,

1997), land cover and climate are not fully independent.

Hence, before implementing predictive models of species

distributions we investigated patterns of co-variation between

land-cover and climate variables. This was performed with the

Outlying Mean Index (OMI), a co-inertia analysis recently

developed by Doledec et al. (2000). This analysis is similar to

the well-know canonical correspondence analysis (CCA: ter

Braak, 1986), but allows to separate land-cover classes and to

measure the distance between the mean bioclimatic conditions

used by each land-cover class and the mean bioclimatic

conditions across Europe. Moreover, unlike CCA, this method

has the advantage of making no assumptions about the shape

of land-cover response curves to the bioclimate. We applied

OMI to separate land-cover classes in Europe by performing a

normalized PCA on the bioclimatic table and linking the land-

cover table to the PCA output table using the adequate

diagonal and metric matrices (Thuiller et al., 2003c).

The first two selected axes explained 96% of the total inertia,

or variation in the data. The first axis was mainly related to

temperature and the second to precipitation (Fig. 1). Project-

ing land cover (LC) variables on the two-dimensional biocli-

matic space allows describing their distributions (Fig. 1). For

instance, permanent crops occurred mainly at cooler temper-

atures, whereas grasslands were mainly located in mid-altitude

mountains less intensively disturbed by human management.

However, some LC variables were found to be widespread

within climatic space. This was the case, for example, of

percentage of sea, inland water, arable lands, urban area or

coniferous forests (Fig. 1).

Given these patterns of co-variation between land cover and

bioclimatic variables, if we modelled species distribution with

both kinds of variables and with a stepwise variable-selection

procedure (Chambers & Hastie, 1997) we would rarely select

LC variables as bioclimatic variables explains the most

important components of their distributions. However, LC

variables may still contribute significantly to model species

distribution in Europe when more regional patterns of LC,

corresponding to the residual part of the OMI, may influence

distributions of particular species.
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% coniferous

d = 2  

% urban area
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Figure 1 Centre: Canonical weight of bio-

climatic variables and relationships with the

first two axes of the OMI. Sides: Distribution

of land-cover variables on the first two axes

of the OMI analysis. Crosses identify the

position of the land-cover variables in the

bioclimatic space using the canonical weights

of bioclimatic variables. Ellipses represent the

land cover inertia representing at least 90% of

points for each variable. The dashed lines

emanating from the centroids of each ellipse

represent the major and minor axes of the

ellipse.
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Including land-cover variables into bioclimatic models

In order to explore for the potential residual contribution of

land cover explaining current regional distributions of species,

we implemented an iterative framework (Table 1) based on a

particular implementation of Generalized Additive Models

(GAM). Here we first run stepwise GAM with bioclimatic

variables and then assessed if the inclusion of LC variables

improved the explanatory and predictive performance of

bioclimatic models.

Original data were randomly divided into a calibration

(70%) and an evaluation (30%) data set. Species with more

than 10 occurrences in the calibration data were selected for

model calculations (165 mammals, 117 herptiles, 387 breeding

birds and 1527 plants remaining). Stepwise GAMs were then

run using selected bioclimatic variables. Then we ran stepwise

GAM of residuals against LC variables. Selected LC variables

for each species were then added to the set of bioclimatic

variables to produce mixed bioclimatic models including land

cover. To assess the explanatory power of land cover,

comparative anovas were performed between the pure

bioclimatic and the mixed models. To assess the importance

of land cover as predictive variables a test of accuracy was

performed on the evaluation data using the relative operating

characteristic (ROC) curve (Pearce & Ferrier, 2000; Thuiller

et al., 2003a). The ROC curve was applied to pure bioclimatic

models and to the mixed models. Subjective guidelines (Swets,

1988) suggest very good agreement for AUC above 0.9

(Table 1). All analyses were performed with Splus (Anon.,

1999).

RESULTS

How does land cover improve the explanatory power

of bioclimatic models at a large spatial scale?

The inclusion of land cover increased the explanatory power of

bioclimatic models for species of all groups (Table 2). This was

particularly true for mammals, birds and trees, where the

inclusion of land cover increased the explained deviance of

bioclimatic models by more than 60%.

In order to explore the additional effects of land cover after

bioclimatic models have been adjusted, we selected a few

species with established relationships with land cover at lower

spatial scales. This was the case for wolf Canis lupus, whose

populations are known to be inversely correlated with human

population and activities (Breitenmoser, 1998; Massolo &

Meriggi, 1998). In our analysis, the LC variables retained for

this species were percentage of urban areas and percentage of

grasslands. The response curves to these two variables were

exponential negative and linearly negative, respectively, show-

ing that even at large spatial scales important LC variables can

be detected by models. Overall, the three LC variables most

often retained by models for mammals were the percentages of

arable land, permanent crops and mixed forests (Fig. 2,

mammals). For birds, we analysed models for the grey

partridge Perdix perdix. Robinson et al. (2001) showed that

the grey partridge has declined in Britain as a consequence of

the intensification of agricultural practices and the decrease of

available arable land. In support of this study, our analysis

selected arable land as the most important LC variable for the

species (Table 1). More generally, the inclusion of the

percentage of arable land into models of distributions for

Table 1 Descriptive steps of the iterative

procedure
Rule of procedure

Step 1 Stepwise GAM using only bioclimatic variables (GAM-clim)

Step 2 Stepwise GAM on residuals from step 1 using only land-cover variables

Step 3 GAM using bioclimate variables retained in step 1 and land-cover variables retained

in step 2 (GAM-clim-LC)

Step 4 Evaluation of GAM-clim accuracy on evaluation data using ROC curve

Step 5 Comparative anova between GAM-clim and GAM-clim-lu (test)

Step 6 If test is significant: evaluation of GAM-clim-lu on evaluation data using ROC curve

Else, evaluation of GAM-clim on evaluation data (same as step 3)

Step 7 Averaging of ROC curve from GAM-clim on all species

Step 8 Averaging of ROC curve from GAM-clim-lu (if test is significant) and GAM-clim

(if test is not significant)

Table 2 Explanatory power of land-cover variables. Number of

species corresponds to the number of species studied in this

analysis. Step 2 corresponds to the number of species where land-

cover variables were retained as decreasing residuals of bioclimatic

models (step 2, Table 1). Step 5 corresponds to the number of

species for which mixed models had a higher explained deviance

than pure bioclimatic models (step 5, Table 1). Percentage cor-

responds to the percentage of cases where the inclusion of land

cover increased the explanatory power of bioclimatic models

No. of species Step 2 Step 5 Percentage

Mammals 165 162 107 65

Birds 387 377 241 62

Trees 71 71 43 61

Shurbs 78 78 43 55

Herptiles 117 110 62 53

Herbs 1378 1265 624 45

W. Thuiller et al.
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farmland birds increased significantly the explanatory power of

models. As a whole, agriculture (percentage of arable land and

permanent crops) and presence of sea were the most important

LC variables accounting for residuals in bird distributions

(Fig. 2, birds). For trees, we focused on Quercus petraea, a

Euro-Siberian species with wide distribution (Tutin et al.,

1964–1993). The only selected LC variable was the percentage

of deciduous forest, with a strong positive relationship. This is,

indeed, a deciduous tree dominant in central European

deciduous forests. Another example is Q. pedunculifora, which

was negatively correlated to permanent crops and positively

related to the percentage of shrublands. For trees, in general,

there were no unequivocally dominant LC variables explaining

residuals, although presence of sea, inland water and shrubs

appeared often as useful to explain distributions (Fig. 2,

plants–trees).

For herptiles and shrubs, the inclusion of land cover

increased the explanatory power of bioclimatic models for

more than half of the species (Table 2). Herptiles responded

mainly to percentage of deciduous, coniferous forests and

arable land (Fig. 2, herptiles), while shrubs were more related

to percentage of sea, arable land and mixed forests (Fig. 2,

plants–shrubs). These observations are consistent with other

published records. For instance, Martı́n & Lopez (2002)

showed that the lizard Lacerta lepida occurred mainly under

Quercus forest and understorey low bushes and avoided

croplands. Here, the two retained variables were percentage

of mixed forest (positive relation) and permanent crops

(negative relation). For shrubs, we chose to investigate the

response of the pioneer white willow Salix alba and found that

the percentage of arable land (positive relationship) was the

only additional variable selected for the species.

Finally, herbs were the group for which the inclusion of land

cover produced the least improvement over pure bioclimatic

models (Table 2). The most relevant variables selected were the

percentage of inland water, sea and shrubs (Fig. 2, plants–

herbs). We focused on the woodland herbs group, which are

mainly correlated to percentage of deciduous and mixed forest.

For instance, the yellow anemone Anemone ranunculoides that

typically occurs under beech forests (Tutin et al., 1964–1993)

has a positive unimodal relationship with percentage of

deciduous and a negative relationship with mixed forests and

permanent crops. The superb pink Dianthus superbus, which

occurs principally under open forests (Tutin et al., 1964–

1993), was as expected positively related to mixed forests and

negatively to arable land.

How does land cover improve the predictive power of

bioclimatic models at a large spatial scale?

The predictive power of models was assessed using AUC on

evaluation data. We concluded that models, on average,

provided very good results for all groups (Table 3).

Shrubs and herptiles were the species best predicted by

models with an average AUC of 0.95 for evaluation. Con-

versely, mammals had the lowest (although still rather high)

mean AUC values with 0.914. The lowest values of AUC were

generally comprised 0.66 and 0.80 while maximum values of

AUC were equal or very close to 1 (Table 3).

Predictions using bioclimatic and LC data showed very

similar results to predictions using bioclimatic data alone.

Although there were no significant differences between AUC

for both analyses, some general trends can be outlined. First,

the overall minimum AUC was generally higher (but not for

trees) for models using LC data than for models that did not

use it (Table 3). Secondly, standard deviations of AUC for

models using bioclimatic and LC data were lower than for

models using only bioclimatic variables (Table 3). The last two
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Figure 2 Percentage of models using each land-cover variable as

one of the first three land-cover variables selected in step 2 for

decreasing the residuals of pure bioclimatic models. Dark grey,
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second most and the third most explanatory selected variables

during the process for each group of taxa.
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points support the idea that the inclusion of LC variables may

help improve predictions for species where bioclimatic models

yielded poorer predictions.

Amongst the examples provided, there is no species for

which the inclusion of land cover increased significantly the

predictive accuracy of bioclimatic models. However, land

cover improved bioclimatic models (on evaluation data) only

for a limited number of species: 34% of mammals, 40% of

herptiles, 34% of birds and 21% of plants. Animals appeared to

be more related to land cover, but differences between AUC on

evaluation data are too narrow to draw clear conclusions on

the benefit from including land cover to predict animal species

distributions at large scales.

DISCUSSION

Distribution of land cover in Europe

The OMI multivariate analysis of environmental data revealed

that, over Europe, the spatial variation of land cover is highly

correlated to spatial variation among bioclimatic variables.

This is an important result given that it explains why including

both types of information into species distribution models may

bring redundant information. The degree to which this is the

consequence of the large spatial scale and coarse resolution of

data remains unknown, but it is possible that models of species

distributions using a smaller spatial extent and using finer

resolution data might produce a different pattern (Franklin,

1995; Collingham et al., 2000). Indeed, a hierarchical scheme

of environmental controls on species distributions has been

suggested (but not demonstrated), in which climatic variables

are large-scale determinants, followed by geology, land cover

and topography, which moderate many of the effects of

macroclimatic variables (Franklin, 1995). In our analysis,

although a large proportion of the variability of land-cover

distribution was described by climate, there were residuals

related to regional land cover patterns that could not be

explained by climate. There were indeed some LC variables

either weakly or not related to climatic factors, such as inland

water, sea, arable land and coniferous forests. Sea is present

around a large proportion of Europe and is obviously not

dependent on climate. Similarly to sea, in Europe, inland water

is not restricted by climate and is present across all regions.

More surprisingly the distribution of coniferous forests did not

appear to be influenced by climate. The reason for this is that

this class brings together a variety of species with a large range

of climatic and ecological requirements, which makes it

difficult to find a general pattern (Richardson, 1998). For

instance, the Pinus genus is present in the Siberian plains

(Pinus sibirica), in the Alps mountains (P. cembra), in

restricted areas of the Mediterranean region (P. halepensis)

and in the Euro-Siberian region (P. sylvestris). Such a variety of

chorotypes explains why the conifer distributions do not

appear to be controlled by climate in our analysis, although the

species making-up this class are indeed related to climate at

European scale (Richardson, 1998). Arable lands occur across

Table 3 Statistical summary of AUC from the ROC curve procedure displaying the standard deviation (SD), the minimum (min), the

average (mean) and maximum (max) for each group according to the models (bioclimatic model against mixed including land-cover

variables). Difference correspond to the net difference between mean AUC from bioclimatic and mixed models

Bioclimatic model Mixed model

DifferenceSD Min Mean Max SD Min Mean Max

Herptiles

Cali 0.0467 0.8017 0.9573 0.9999 0.0413 0.8099 0.9627 0.9999 )0.0054

Eval 0.0505 0.7791 0.9497 0.9988 0.0487 0.7933 0.9504 0.9988 )0.0007

Mammals

Cali 0.0582 0.7457 0.9277 0.9992 0.0522 0.7812 0.9358 0.9992 )0.0081

Eval 0.0632 0.7267 0.9140 0.9987 0.0603 0.7552 0.9133 0.9975 0.0007

Birds

Cali 0.0459 0.7853 0.9388 0.9990 0.0421 0.8227 0.9447 0.9990 )0.0059

Eval 0.0525 0.7592 0.9254 0.9980 0.0512 0.7592 0.9260 0.9980 )0.0006

Herbs

Cali 0.0419 0.7341 0.9568 1.0000 0.0419 0.7341 0.9567 1.0000 0.0001

Eval 0.0503 0.6628 0.9313 1.0000 0.0503 0.6628 0.9313 1.0000 0.0000

Shrubs

Cali 0.0314 0.8692 0.9708 1.0000 0.0256 0.8950 0.9743 1.0000 )0.0035

Eval 0.0421 0.8041 0.9530 1.0000 0.0406 0.8046 0.9558 1.0000 )0.0028

Trees

Cali 0.0277 0.8950 0.9642 0.9993 0.0327 0.8482 0.9615 0.9993 0.0027

Eval 0.0347 0.8188 0.9436 1.0000 0.0384 0.8136 0.9414 1.0000 0.0032

W. Thuiller et al.

358 Journal of Biogeography 31, 353–361, ª 2004 Blackwell Publishing Ltd



the whole of Europe mainly because this class embeds adequate

lands suitable for agriculture independently of the type of

cultures.

These widespread LC variables that are little related, or even

unrelated, to climate at the European scale are, however,

influenced by multiple regional or local factors such as soil

type, slope, aspect or groundwater distribution and availability,

that were not taken into account in our analysis.

Explanation of current species distributions

As widespread LC variables are not restricted by climate, it

was not surprising to find that they were often retained by

GAM models (Table 1, step 2), and decreased significantly

the residual from pure bioclimatic models for many species.

Arable lands and permanent crops improved significantly the

explanatory power of bioclimatic models for several breeding

birds and mammals. Our results corroborate previous

studies showing the importance, positive or negative, of

arable land for birds, mammals and plants from regional to

local scales (e.g. Robinson et al., 2001; Robinson &

Sutherland, 2002; Benton et al., 2003). These authors

showed that the intensification of agriculture and the

contraction of arable cultivations have produced important

local extinctions of birds and mammals (Robinson et al.,

2001). Our study emphasized that even at large spatial scales

and coarse resolutions, human-related variables could be

useful to describe and explain species distributions

(e.g. Perdix perdix).

However, our approach is only correlational and the

ecological meaning of the observed relationships between land

cover and species distributions is not always obvious. Although

bioclimatic models identify correlational relationships, there

have been a number of studies investigating causal relation-

ships between species and bioclimatic variables (at least for

plants) (Woodward, 1987, 1992). This kind of analysis has not

been developed, as far as we are aware, for species and land

cover at large spatial scales. The causal relationships between

variables such as land cover and species distributions are not

always easy to uncover since they are often indirect. This is the

case for plants as land cover can be seen more as a limiting

factor (at least for human-oriented variables) than a factor

having direct physiological impact. However, for vertebrates

the relationship can be more direct. For instance, high quality

habitats for winter farmland birds (stubble, game cover and

game feeders) occur principally in arable lands (Benton et al.,

2003). Granivorous passerines and small rodents are obviously

strongly related to permanent crops and arable land where they

find refuges and food.

Prediction of species distribution ranges

From a predictive standpoint, LC variables did not improve

significantly the predictive performance of our models built on

evaluation data. Several non-exclusive hypotheses can be

proposed to explain this pattern:

(1) Goodness-of-fit does not make an assessment of predic-

tive performance (although their failure underscores aspects of

the relationship between the modelled species distributions and

the explanatory variables used in the model) (Hosmer &

Lemeshow, 1989). Even if some LC variables improve the

explanatory power of bioclimatic models, this does not imply

that they would also improve the predictive performance.

(2) Climate explains almost all LC variation and the

residuals are not large enough to improve the predictive

performance of bioclimatic models. The residuals of the

climate–LC relationships may have a strongly regional distri-

bution and therefore do not provide a strong underlying

gradient affecting species distributions. Hence they may not be

relevant for predictive purposes.

(3) In modelling species against bioclimatic variables it is

often assumed that variables can be grouped into three

important groups: direct, resources and indirect variables

(Austin & Smith, 1989). Direct or resource gradients provide

mechanistic and physiological explanations for distributions of

species. Models that use such variables are supposed to have

greater predictive performance than models using indirect

variables, hence they should be more accurate when predicting

distributions over large areas or at other times in the future

(Guisan & Zimmermann, 2000). Indirect variables, such as

land cover, are supposed to have little direct physiological

relevance for species. Hence they should only be applied within

a limited geographical extent without significant errors,

because in a different region, or time, the same LC variables

can correspond to a different combination of direct and

resource gradients (Guisan & Zimmermann, 2000).

(4) Using the 50 · 50-km grid cell resolution across Europe,

we demonstrated that LC distribution was driven mainly by

climatic gradients. However, inside each grid cell there is an

underlying high heterogeneity of LC that is lost (see the

PELCOM data base), while this heterogeneity is a crucial factor

for predicting current species occurrences (Cowling &

Lombard, 2002; Benton et al., 2003). This constrain by the

data combines two potential problems. First, the problem of

using data with insufficient resolution to explain observed

patterns (Robinson et al., 1992; Pearson, 1993). Secondly, the

possibility that LC variables used may not include all relevant

factors. For example, variables representing the indices of

agricultural intensification (Mader, 1984), habitat heterogen-

eity (Bascompte & Solé, 1996; Allen & O’Connor, 2000; Gaston

et al., 2002), frequency and intensity of perturbation

(Croonquist & Brooks, 1993), density of roads (Mader,

1984) could be more relevant to improve the predictive ability

of bioclimatic models for some species, even at a 50 · 50-km

resolution.
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