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      8.1  Context   

 Projecting the likely effect of environmental change 

on bird species’ distributions is one of the 

approaches developed to better understand and 

counteract negative impacts of climate change. 

Generally, modelling projections of future distribu-

tions can build on two different types of models: 

either on dynamic simulation models that explicitly 

describe demographic processes (e.g. population 

viability analysis, PVA) or on statistical models 

that, by defi nition, describe correlative—but not 

necessarily causal—relationships. Although PVAs 

have been proven powerful in modelling spatio-

temporal population responses to environmental 

change, they require extensive knowledge on 

demography and population processes. This know-

ledge is unavailable for the great majority of bird 

species and especially diffi cult to gain when study-

ing multi-species’ bird communities. Alternatives 

are less complex and less ‘information hungry’ sta-

tistical models called habitat suitability models 

(HSMs). These models aim at identifying both the 

most infl uential variables explaining presences, 

presence/absences, abundances, or even breeding 

success of birds and the optimal relationships 

between bird species’ distributions and these 

explanatory variables. In HSMs, future projections 

of bird species’ distributions do not depend on pro-

found prior knowledge of population processes but 

on environmental and species’ distribution data. 

Ultimately, the interpretation of the parameterized 

HSM can help to better understand the processes 

underlying the found correlative relationships. 

 In this chapter, we fi rst describe the conceptual 

idea of HSMs ( section  8.2  ) and give a rough 

 overview of commonly used methods ( section  8.3  ). 

Based on this introduction, we discuss problems 

and limits of HSMs and suggest possible validation 

tests ( section  8.4  ). Finally, we outline the latest 

developments and future directions that we fi nd 

especially promising ( section  8.5  ).  

     8.2  Theory and concept   

 HSMs aim at defi ning, for any chosen species, the 

‘envelope’ that best describes its spatial range limits 

by identifying those environmental variables that 

limit its distribution ( Figure  8.1  ;  Guisan and Thuiller, 

 2005  ;  Soberon and Peterson,  2005  ). They are built by 

relating current species’ distributions to current 

environments. Future species’ biogeographical 

ranges are modelled by projecting these relation-

ships to selected environmental change scenarios 

( Peterson,  2003b  ;  Thuiller  et al. ,  2005  ).  

 Note that these environmental variables can be 

anything important for the species of interest. For 

bird species, commonly used variables are measures 

of climate (e.g. temperature), landscape structure 

(e.g. connectivity indices), landscape heterogeneity 

(e.g. ecotone cover), resources (e.g. insect availabil-

ity), and biotic information (e.g. co-occurring com-

petitors). Environmental variables can exert direct 

or indirect effects on species and are optimally cho-

sen to refl ect the three main types of infl uences on 

the species: (1) limiting factors, defi ned as factors 

controlling species’ eco-physiology (e.g. minimum 

winter temperature) or appearance (e.g. competition 
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and facilitation), (2) disturbances, defi ned as all 

types of perturbations affecting environmental sy -

stems (e.g. fi re frequency), and (3) resources, defi ned 

as all materials that can be assimilated by organisms 

(e.g. availability of seeds or insects). The environ-

mental data related to these three main types of 

infl uence depict the environmental niche of the spe-

cies ( Hutchinson,  1957  ). In the majority of cases, the 

environmental niche is multi-dimensional and dif-

ferent dimensions may be important at different 

spatial scales. These scale-dependent relationships 

between niche characteristics and bird species’ dis-

tributions often result in hierarchical structures in 

the patterns of habitat use ( Thompson and 

McGarigal,  2002  ;  Graf  et al. ,  2005  ). In extreme cases, 

the niche characteristics that relate positively to spe-

cies’ performance at local scales can even have nega-

tive effects at larger scales. For instance,  Mueller 

 et al.  ( 2009 )  showed that common ravens  Corvus 
corax  in the primeval forest of Białowieża locally 

select coniferous dominated nesting habitats but at 

increasingly larger scales prefer deciduous domi-

nated foraging habitats.  

     8.3  Different modelling approaches and 
algorithms to deal with imperfect data   

 For many years, researchers have compared differ-

ent HSMs such as generalized linear models 

(GLMs), classifi cation tree analysis, neural net-

works, genetic algorithms, and maximum entropy 

(MAXENT) without reaching a consensus on which 

of these models perform best under which condi-

tions (e.g.  Elith  et al. ,  2006  ; cf.  Table  8.1  ). 

 From our point of view, the main problem of most 

of these comparative studies is that they validate 

model performance (measured as the fi t between 

predicted and observed species’ distributions) only 

against data sampled under current conditions, and 

that most of the models are more or less reliable in 
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    Figure 8.1  Diagram representing the concept of habitat suitability modelling. The observed distribution of a given species (e.g. from the European Bird 
Census Council atlas of European breeding birds, their distribution, and abundance) is related to relevant environmental data (e.g. climatic such as 
temperature (T°) of the coldest month and annual precipitation) using a statistical model (e.g. generalized additive model). Then, the niche of the species is 
projected back onto the geographic space to depict the potential current distribution (i.e. under current conditions) and the future potential suitable habitat 
(i.e. under future conditions). See Plate 7.     
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projecting distributions under current environmen-

tal conditions. However, seemingly small differ-

ences in predictions of current distributions may be 

caused by very different model structures that result 

in disturbingly dissimilar projections for new situa-

tions, e.g. for future climate change scenarios (e.g. 

 Thuiller,  2004  ;  Araújo  et al. ,  2005b  ;  Pearson  et al. , 
 2006  ;  Figure  8.2  ). This well-known but not always 

thoroughly considered shortcoming of HSMs is dis-

cussed in more detail in the following section.  

 The different approaches to model habitat suita-

bility differ in their underlying hypotheses and how 

they build the multi-dimensional environmental 

niche of the species. Some models assume linear 

relationships and/or parametric stochastic distri-

butions of the errors they make (e.g. GLM) while 

others can fi t more complex and non-parametric 

relationships (e.g. general additive models (GAM), 

MAXENT, boosted regression trees (BRT)). Most of 

the existing tools have different optimization proce-

dures, which are used to fi rstly select the best set of 

environmental variables and secondly to estimate 

their infl uence such that overall model performance 

is maximized (e.g. ‘step-wise selection’ in GAM or 

GLM, ‘out-of-bag’ selection in random forest, and 

‘cross-validation’ in neural networks). The underly-

ing idea is to fi nd a representation that fi ts the data 

well but avoids over fi tting (a model is over fi tted 

when it shows a very good fi t with the training data 

that were used to parameterize the model but a bad 

fi t with new independent test data). All models are 

susceptible to multi-collinearity, i.e. will most prob-

ably not fi nd a meaningful subset of variables if the 

initial set of variables is highly inter-correlated. This 

is because it is impossible to decide which variables 

exert a direct causal effect and which variables show 

high correlation just because they are correlated to 

the true causal variable as well. In general, there is 

no universal best model and most of the models 

have advantages and disadvantages.  

 In comparative studies more fl exible models like 

GAMs and BRTs frequently outperform other 

HSMs. If one prefers a single-model approach, these 

models may provide a good basis. However, if pos-

sible, we suggest applying more advanced multi-

model approaches (cf.  section  8.5  ). 

 Besides the choice of the right modelling 

approach, biases in data sets are common and 

well-acknowledged challenges of species distribu-

tion modelling. If the data are biased, the HSM and 

     Table 8.1  Published predictive habitat suitability modelling packages, reference paper, related modelling methods, and www link.   

  Tool  Reference  Methods implemented  URL  

  BIOCLIM  Busby (1991)  CE   www.arcscripts.esri.com   

  ANUCLIM  See BIOCLIM  CE   www.cres.anu.edu.au/outputs/anuclim.php   

  BIOMAPPER  Hirzel  et al . (2002)  ENFA   www.unil.ch/biomapper   

  BIOMOD  Thuiller (2003); Thuiller  et al . (2009)  ANN, BRT, CE, CTA, GAM, GLM, 

MARS, MDA, and RandomForest 

  www.r-forge.r-project.org/projects/biomod/   

  DIVA  Hijmans  et al . (2001)  CE   www.diva-gis.org   

  DOMAIN  Carpenter  et al . (1993)  CE   www.cifor.cgiar.org/docs/_ref/research_tools/domain/

index.htm   

  GARP  Stockwell and Peters (1999)  GA   www.lifemapper.org/desktopgarp   

  GDM  Ferrier  et al . (2007)  GDM   www.biomaps.net.au/gdm/   

  GRASP  Lehmann  et al . (2003)  GAM   www.cran.r-project.org/web/packages/grasp/index.html   

  MAXENT  Phillips  et al . (2006)  ME   www.cs.princeton.edu/~schapire/maxent/   

  OPEN MODELLER  Sutton  et al . (2007)  ANN, GARP, SVM, and CE   www.openmodeller.sourceforge.net/   

  SPECIES  Pearson  et al . (2002)  ANN  To the discretion of the author  

  WHY WHERE  David and Stockwell (2006)   www.landshape.org/enm/whywhere-20-server-2/   

  ANN, artifi cial neural networks; BA, Bayesian approach; BRT, boosted regression trees, CE, climatic envelop; CART, classifi cation and regression trees; ENFA, 
ecological niche factor analysis; GA, genetic algorithm; GAM, generalized additive models; GDM, generalized dissimilarity modelling; GLM, generalized linear 
models; MARS, multivariate adaptive regression splines; MDA, mixture discriminant analysis, ME, maximum entropy; SVM, support vector machine. 

 Statistical software such as R, Splus, or SAS provides most of these techniques.   
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its outcome will be biased. There are plenty of rea-

sons why data might be biased, and a comprehen-

sive review goes beyond the scope of this chapter. 

One particular problem with the data used to 

 calibrate HSMs for very mobile organisms like 

birds is in non-detectability. Whereas we can be 

rather confi dent about a recorded presence of a 

bird, its absence could stem from three different 

reasons: (1) the habitat is unsuitable, (2) the habitat 

is suitable but the species has not colonized it yet 

(limited dispersal), and (3) the species is present 

but is not detected. The last two cases are often 
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    Figure 8.2  Future potential suitable habitat of  Sylvia nisoria  using a scale from least (0) to most suitable (1) under the scenario A1FI (climatic model 
HadCM3) by 2080 (2070–2099) and according to different statistical models (see  Table  8.1   for abbreviations) implemented into the BIOMOD framework 
( Thuiller  et al. ,  2009  ) using four explanatory variables (growing degree days, annual precipitation, minimum temperature of the coldest month and moisture 
index). This set of fi gures highlights the potential discrepancies between different models once they are applied under future conditions. The ‘ensemble’ 
projections correspond to the weighted average of the eight other techniques.     



OUP CORRECTED PROOF – FINALS, 07/03/2010, SPi

 H A B I TAT  S U I TA B I L I T Y  M O D E L L I N G 81

named ‘false absences’ or ‘false negatives’. Models 

using presence data only, e.g. ENFA ( Hirzel  et al. , 
 2002  ), should not be very sensitive as soon as 

recorded presences are meaningful and span most 

of the niche of the species. HSMs using presence–

absence data are more seriously infl uenced by false 

negatives. Makenzie and other proposed methods 

to deal with false negatives in the case of co- 

occurrence data, counts of individuals, or abun-

dance data ( Mackenzie  et al. ,  2004  ;  Mackenzie, 

 2006  ;  Royle  et al. ,  2005  ;  Royle and Link,  2006  ). 

However, when dealing with atlas or museum 

data, sampling efforts, abundance, or individual 

counts are simply not available, and one needs to 

make inference on recorded presences and absences 

at a given spatial and temporal resolution. In cases 

where absence data are not trustable, different 

methods have been suggested. Among them are 

algorithms to correct for false negatives based on 

sampling efforts or counts of individuals (e.g. a 

weighting factor into the model to down-weight 

sites with low sampling efforts;  Vallecillo  et al. , 
 2009  ), multi-step selection procedures of absence 

data using a combination of expert knowledge and 

existing data ( Le Maitre  et al. ,  2008  ) and use of 

background data that allow to account for sam-

pling bias ( Phillips  et al. ,  2009  ).  

     8.4  Robustness and validation   

 It is important to note that species’ distribution 

models are not made to predict the future distribu-

tion of a target species but to project spatially the 

geographic area that might be suitable to the spe-

cies. The distinction between projections in time vs. 

space is subtle but becomes important once these 

models are used to infer conservation or manage-

ment guidelines. HSMs are only correlative and 

based on current observations. 

 In most cases, HSMs do not explicitly account 

for biotic interactions but assume that their infl u-

ence on realized species’ distributions is implicitly 

covered by the used predictor variables (cf. 

 Mueller  et al.  ( 2009 )  for an exception where they 

used success of breeding neighbours as an explan-

atory variable for breeding success of common 

ravens). They often ignore dispersal abilities of 

species. If the suitable climatic conditions of a 

given bird are projected to shift for about 100 km, 

the species will fi rst have to disperse into the 

shifted suitable habitat (100 km can be relatively 

far for some bird species) and then establish, given 

the existing (and newly forming) communities 

(e.g. potential competitors and different food 

resources) and the local availability of habitat. An 

additional diffi culty is that identifi ed infl uential 

climatic variables often relate only indirectly to 

species’ performance as they infl uence additional 

and directly important variables such as vegeta-

tion structure and food availability ( Beale  et al. , 
 2008  ; but see  Araújo  et al. ,  2009  ). Using these indi-

rect variables as predictors assumes constant rela-

tionships with directly infl uential variables over 

time. If these relationships change, models are 

prone to produce erroneous predictions. This may 

happen when utilizing models for spatial extrapo-

lation but is especially dangerous when extrapo-

lating in time. If available, the inclusion of the 

directly infl uential variables would most likely 

improve the robustness of models (e.g.  Hughes 

 et al. ,  2008  ;  Anderson  et al. ,  2009  ). However, if the 

directly infl uential variables are unknown or una-

vailable, it is good scientifi c practice to test the 

predictive power of the fi tted model across space 

(cf.  Beerling  et al. ,  1995  ;  Peterson,  2003a  ;  Randin 

 et al. ,  2006   for examples) and/or time (e.g. by 

extrapolating from a known distribution to 

another one at a different point in time ( Pearman 

 et al. ,  2008  ) or by comparing predictions with 

observed population trends ( Green  et al. ,  2008  ; 

 Gregory  et al. ,  2009  )). 

 For bird species, the utilization of retrospective 

data to calibrate models with data from the past 

and project them to current conditions has 

brought up interesting results. In a climate change 

context,  Araújo  et al.  ( 2005a )  published one of the 

fi rst direct validation test for HSMs applying 

them at two different time slices. Using observed 

distribution shifts of 116 British breeding bird 

species over the past 20 years, they provided an 

independent validation of four HSMs under cli-

mate change. Results showed good-to-fair predic-

tive performance on independent validation, 

although rules used to assess model performance 

were diffi cult to interpret in a decision-planning 

context. Artifi cial neural networks and  generalized 
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additive models provided generally more accu-

rate predictions of species’ range shifts than 

GLMs or classifi cation tree analysis. In a land use 

change context, a complementary paper tested 

the ability of HSMs to predict the effects of land-

cover changes on species’ distribution shifts at 

large spatial and temporal scales. The study was 

performed for open-habitat birds in Mediterra-

nean landscapes and early successional stages 

( Vallecillo  et al. ,  2009  ). Based on current presence–

absence data,  Vallecillo  et al.  ( 2009 )  applied six 

different HSMs for 10 bird species, using climate, 

topographic, and land-cover predictors, and 

back-projected them on land-cover conditions 

from 1980 (First Catalan Breeding Bird Atlas 

1975–1983). Finally, in addition to changes in hab-

itat suitability resulting from land-cover shifts, 

they analysed whether fi re frequency and inten-

sity contributed to explain species’ demography 

(colonization and local extinction). The tested 

models were able to predict current and past pat-

terns of species’ distribution, but their ability to 

predict species’ demography was rather low. 

Colonization dynamics were generally more 

strongly related to fi re occurrences than to 

changes in overall habitat suitability derived 

from land-cover changes. This study demon-

strated that processes behind species’ demogra-

phy (e.g. fi re) should be explicitly included when 

they are known, as they may help to explain bet-

ter species’ dynamics ( Vallecillo  et al. ,  2009  ). 

However, other studies show that simple HSMs 

are able to capture broad demographic dynamics 

quite well. Using data on long-term population 

trends of European birds,  Gregory  et al.  ( 2009 )  

found a signifi cant relationship between inter-

specifi c variation in population trend and the 

change in potential range extent between the late 

20th and late 21st centuries, forecasted by HSMs. 

 In many case studies, the unavailability of inde-

pendent test data hampers evaluating the predic-

tive power of statistical models, especially when 

they are used for projections to the future. One pos-

sible route to overcome this limitation is to use vir-

tual data generated by mechanistic models to 

investigate explicitly the effects of transient dynam-

ics and ecological properties and processes on the 

prediction accuracy of HSMs ( Hijmans and Graham, 

 2006  ;  Zurell  et al. ,  2009  ). Direct evaluation of predic-

tive accuracy is possible as the predictions of the 

HSMs can be compared with the ‘virtual reality’ of 

the mechanistic model.  

     8.5  Latest developments and 
perspectives in a global change context   

 A possible solution to make use of the advantages of 

the different modelling approaches for HSMs is to fi t 

ensembles of different models. This approach 

includes simulating across more than one set of ini-

tial conditions, model classes, and model parameters 

( Araújo and New,  2007  ). Fitting ensembles of mod-

els allows the analysis of the resulting range of 

uncertainties with bounding box, consensus, and 

probabilistic methodologies ( Coetzee  et al. ,  2009  ) 

and/or the use of model averaging to project spe-

cies’ distributions. The former depicts areas of high 

certainties (and uncertainties) and partition the 

uncertainty to reveal the most sensitive factors 

(Buisson  et al. , 2010). The latter balances extreme 

predictions of some modelling approaches. Natu-

rally, this approach can only identify uncertainties 

resulting from modelling choices that are varied 

across models. If, for example, uncertain predictions 

result from the use of presence-only data and these 

data are the input of different models, then uncer-

tainty due to the use of presence-only data cannot be 

assessed. 

 However, there exist some principal limits for 

HSMs that are due to their concept. Compared to 

process-based simulation models HSMs are quite 

intuitive but also simplistic. They offer a very good 

approximation of what could happen to biodiversity 

in the short to medium term. However, to be useful 

for long-term conservation planning, re-introduc-

tion and biodiversity management these models 

need to be further improved. A strong limitation so 

far is that they do not incorporate population 

dynamics determining species’ distribution, abun-

dance, population structure, and local extinction 

risk that might lead to misleading extinction rates 

( Thuiller  et al. ,  2008  ). The recent years have seen a 

surge in several hybrid frameworks combining, for 

instance, HSMs with meta-population models (e.g. 

 Anderson  et al. ,  2009  ), meta-population models with 

landscape models (e.g.  Wintle  et al. ,  2005  ), or HSMs 
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with individual-based movement models ( Graf 

 et al. ,  2007  ).  Anderson  et al.  ( 2009 )  modelled the 

dynamics of range margins of two lagomorphs of 

conservation interest under climate change scenar-

ios. They fi rst built an environmental suitability map 

based on habitat and climatic variables using HSMs 

from the years 2000 to 2100 (e.g.  Figure  8.1  ). Then, 

they used this suitability map as an input for suita-

ble patches for a spatially explicit pre-breeding 

stage-based matrix model that described population 

structure and dynamics over time. The model was 

female based and incorporated demographic and 

environmental stochasticity, dispersal, and density 

dependence. This hybrid of different model types 

improved the simple HSMs by regarding limits of 

the actual area that could be occupied by the meta-

population, caused by population dynamics and 

dispersal. There is a potential drawback of this ‘sim-

ple’ stage-wise approach to combining HSMs with 

dynamic models. If dynamic processes affect the 

distributional pattern of organisms, then an HSM 

that does not incorporate these processes will be 

biased. This bias is then carried over to a dynamic 

model that is built on top of the HSM. Instead of 

simple one-way interaction between models, a truly 

integrated approach is called for ( Thuiller  et al. , 
 2008  ). One possible approach would be to fi t the 

parameters of all sub-models of the hybrid model at 

the same time to fi nd the parameter values that are 

best, given the parameterized further sub-models. 

This could, for example, be based on a Bayesian 

hierarchical framework of parameter estimation. 

 It is a general rule that the choice of the modelling 

tool should be directed by the research question and 

a well-known limit that data availability is restricted. 

In this chapter, we have focused on HSMs as model-

ling approaches typically applied to presence/

absence data or abundances for predicting species’ 

distributions in time and space. Most HSMs have 

proved to predict powerfully under constant envi-

ronmental conditions. In changing environments, 

studies found that some modelling tools outperform 

others but that in general single-model approaches 

are prone to producing erroneous predictions. As a 

fi rst relatively simple measure we suggest using 

ensembles of models to at least estimate the uncer-

tainty of predictions. If possible, building hybrid 

models would be preferable. We believe that hybrid-

ization of models is a powerful and promising ave-

nue towards further improvements in predicting 

species’ range shifts and resulting biodiversity sce-

narios under environmental change. Use and utili-

zation of hybrid models could be enhanced by 

conceptual guidelines that outline the possibilities 

and give rules of thumb to decide on the important 

processes and usable model types. Demographic 

studies are the basis for implementing the rule-based 

sub-models. Furthermore, to enhance the parame-

terization of effi cient and reliable hybrid dynamic 

models we need to further develop and integrate 

trait, distribution, and GIS databases.   
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