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Functional trait composition is increasingly recognized as key to better understand and predict community responses 
to environmental gradients. Predictive approaches traditionally model the weighted mean trait values of communities 
(CWMs) as a function of environmental gradients. However, most approaches treat traits as independent regardless of 
known tradeoffs between them, which could lead to spurious predictions. To address this issue, we suggest jointly modeling 
a suit of functional traits along environmental gradients while accounting for relationships between traits. We use general-
ized additive mixed effect models to predict the functional composition of alpine grasslands in the Guisane Valley (France). 
We demonstrate that, compared to traditional approaches, joint trait models explain considerable amounts of variation in 
CWMs, yield less uncertainty in trait CWM predictions and provide more realistic spatial projections when extrapolating 
to novel environmental conditions. Modeling traits and their co-variation jointly is an alternative and superior approach 
to predicting traits independently. Additionally, compared to a ‘predict first, assemble later’ approach that estimates trait 
CWMs post hoc based on stacked species distribution models, our ‘assemble first, predict later’ approach directly models 
trait-responses along environmental gradients, and does not require data and models on species’ distributions, but only 
mean functional trait values per community plot. This highlights the great potential of joint trait modeling approaches in 
large-scale mapping applications, such as spatial projections of the functional composition of vegetation and associated 
ecosystem services as a response to contemporary global change.

For decades, community ecology has sought general prin-
ciples that govern how species vary in space and time and 
in response to environmental gradients. The failure to arrive 
at such principles has led to considerable concern, and is 
caused in part by the inherently complex nature of commu-
nities (Lawton 1999, Simberloff 2004). However, this com-
plexity can be tackled by using functional traits of organisms 
(McGill  et  al. 2006). Functional traits constitute quantifi-
able properties that influence individual’s performance and 
as such can help to understand and predict community 
structure along environmental gradients, an approach which 
can conveniently be applied to the increasingly large func-
tional datasets as they become available (McGill et al. 2006, 
Violle et al. 2007). Beyond the link to community assembly 
and composition, functional traits can also be used to infer 
ecosystem functions (Garnier et al. 2004) and associated ser-
vices (Lavorel and Garnier 2002, Lavorel and Grigulis 2012), 
which makes studying functional traits and/or their distribu-
tion along environmental gradients informative and impor-
tant for environmental change research (Lamarque  et  al. 
2014, Lavorel et al. 2015).

How to analyze and map the functional structure and 
composition of communities along environmental gra-
dients and how they potentially change across space and 

time due to global change has been an important area of 
research. Two alternative approaches have been used so far. 
One approach consists of first predicting species distribu-
tions as a function of environmental variables to produce a 
stack of species distribution maps that are subsequently used 
to reconstruct spatially explicit trait compositions (“predict 
first, assemble later”; Ferrier and Guisan 2006). In a second 
approach, community-level or grid-based trait composition 
is directly modeled in relation to environmental predictors, 
and the model is then used to provide predictions over space 
and time (“assemble first, predict later”; Ferrier and Guisan 
2006). In the former approach, the use of species distribution 
models (SDMs) in trait-based ecology enables one to proj-
ect species distributions across space and time (Buisson et al. 
2013, Thuiller  et  al. 2015), but the quantification of trait 
composition is done post hoc. In other words, structure and 
composition of functional traits in communities is treated as 
an emergent property of assembled species and is not mod-
eled per se. An important drawback of this SDM-stacking 
approach is that it requires a minimal number of observa-
tions per species, which can drastically restrict the number of 
species retained in the analysis and hence bias ad hoc calcula-
tion of community weighted mean traits. Another limitation 
of the ‘predict first, assemble later’ approach is that species 
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are modeled independently assuming that biotic interactions 
between species do not feed back on the functional trait 
structure of communities. Recent approaches such as mod-
eling species simultaneously (Clark et al. 2014, Pollock et al. 
2014, Harris 2015) and accounting for multiple interact-
ing traits and environmental gradients (Pollock et al. 2012, 
Jamil et al. 2013, Brown et al. 2014) have the potential to 
improve the predictions of community composition beyond 
independent species models, and in doing so, improve esti-
mates of trait composition across space. However, this new 
generation of approaches to model species distributions are 
computationally demanding when large numbers of species 
are involved and focus on how species, rather than traits, 
respond to environmental change.

By focusing on traits rather than species, the latter 
approach (‘assemble first, predict later’) is more explicit on 
directly modeling community-level trait characteristics in 
relation to environmental variables (Kühn et al. 2006). The 
average trait value of a community, weighted by the rela-
tive abundance of the species (community weighted mean, 
CWM) has been extensively used to study the functional 
trait structure of communities (Díaz et al. 2007) and how 
this structure affects ecosystem functioning (Garnier  et  al. 
2004). The ever-increasing availability of trait data (e.g. TRY; 
 www.try-db.org , BIEN;  http://bien.nceas.ucsb.edu/
bien ) allows us to now study how multiple traits respond 
to environmental gradients and how they influence ecosys-
tem functioning. However, current approaches are so far 
limited to estimating statistical relationships of such CWMs 
along environmental gradients independently for multiple 
traits (Bernard-Verdier et al. 2012, Widenfalk et al. 2015). 
While appealing, this practice can be problematic given that 
traits are not independent of each other but rather exhibit 
functional relationships (e.g. tradeoffs) within and between 
species (Díaz et al. 2004, Boucher et al. 2013). One of the 
most prominent examples is the leaf economic spectrum 
of plants, which is defined along a gradient of short-lived 
leaves with low dry mass per area that exhibit a high photo-
synthetic capacity on one end to long-lived heavy and small 
leaves that are photosynthetically inefficient on the other end 
(Wright et al. 2004). Another example is plant height, which 
is positively correlated with tissue density, as taller plants 
need mechanical stability of denser tissue to avoid breakage 
(Niklas 1993). Without this constraint, trees could at the 
same time get taller and become less dense with increasing 
temperature because they suffer less from freezing-induced 
cavitation. Naturally, this is not the case because of the trade-
off between height and tissue density. In case tradeoffs scale 
up, an ‘assemble first, predict later’ approach that models the 
CWM of traits independently will not consider trait trad-
eoffs and could yield erroneous models and predictions. This 
is analogous to the problem in species distribution model-
ing, in which independent species models ignore potential 
interactions between species.

In this paper, we argue that the ‘assemble first, predict 
later’ approach could be substantially improved by model-
ing traits jointly and considering the correlation structure 
between traits. In comparison to ‘predict first, assemble later’, 
it offers the possibility of predicting multiple traits at the 
same time without computational constraints (modeling ten 
traits is less computationally intensive than modeling 1000 

species) and directly links traits to ecosystem functioning. To 
do so, we suggest the use of multivariate mixed effect models 
as a powerful approach to model joint responses of traits (or 
their community weighted means) along environmental gra-
dients. Specifically, we do this by adapting recent approaches 
of jointly modeling species distributions to jointly model 
traits along environmental gradients, and compare the per-
formance of models that model traits independently to those 
that model multiple traits simultaneously, and a joint trait 
model that explicitly accounts for correlations between traits. 
We hypothesized that joint trait models should provide more 
robust and more ecologically meaningful predictions than 
independent trait models. Further, we investigate the useful-
ness and advantages of the joint modeling approaches when 
projecting functional composition of communities in space. 
We here hypothesized that joint trait modeling would reduce 
projection uncertainty, especially when accounting for trait 
correlations, as this should prevent predicting communities 
with ecologically unrealistic trait combinations. 

Material and methods

Community plots and trait data

We used extensive vegetation survey data from the French 
National Botanical Alpine Conservatory (Conservatoire 
Botanique National Alpin; CBNA) that spans the entire 
French Alps. CBNA plots were surveyed between 1980 and 
2015 in homogeneous patches of vegetation with an aver-
age area of 100 m2. Species nomenclature was standardized 
according to the ‘Index synonymique de la flore de France’ 
(Kerguélen 1993). Relative abundance within a survey plot 
was recorded on an ordinal scale of percentages with cut-
offs at 1%, 5%, 25%, 50%, 75% (with cutoff-values being 
assigned to the lower class), resulting in six abundance classes. 
We used the mean of each abundance-class to represent the 
relative abundance of each species in a local plot survey.

Our study area to model trait responses along environ-
mental gradients was the grasslands of the Guisane Valley 
(Fig. 1), which are situated along steep climatic gradients. 
The valley is 25 km long and characterized by mean annual 
temperatures ranging from –8.2°C to 7.8°C. We chose to 
restrict our study case to the grassland survey-plots of this 
Valley because a relatively small number of plots ameliorates 
interpretation of results and cuts computational effort, and 
because modeling non-linear changes across ecotones, e.g. 
from grasslands to forest, would not be informative for the 
aims of our study. Therefore, we included only survey plots 
characterized as grasslands according to the CORINE land-
cover data (European Environment Agency 2013). Conse-
quently, our analyses included only observations from the 
herbaceous layers of the plots (i.e. shrub and tree saplings 
were excluded before analysis). For each plot in the Guisane 
Valley, we extracted relative abundance of all occurring  
species from the CBNA database.

For each of the species, we extracted individual-level mea-
surements for four traits: plant height (Height, mm), seed 
mass (Seedm, mg), leaf dry matter content (LDMC, mg g–1), 
and specific leaf area (SLA, m2 kg–1). Height, Seedm and 
SLA were chosen to represent the leaf-height-seed (LHS) 
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plant strategy scheme, which depicts general plant life strate-
gies (Westoby 1998). LHS traits are especially well-suited 
for our study because the LHS encompasses trait tradeoffs 
both within and between traits (Westoby 1998), leading to 
well-documented correlations among LHS traits (Díaz et al. 
2015). We included LDMC in our study because LDMC is 
likely negatively correlated with SLA. Traits were extracted 
mostly from our own database of trait measurements in the 
Alps (Thuiller et al. unpubl.), complemented with data from 
LEDA (Knevel et al. 2003), BioFlor (Kühn et al. 2004), Eco-
flora (Fitter and Peat 1994) and CATMINAT (Julve 1998). 
The individual-level trait measurements with a mean of 4.1 
( 1.5) observations per species were averaged to obtain a 
mean trait value for each species.

Some species were missing trait data, so we restricted the 
dataset used in our analyses to only those plots where at least 
80% of the plot was covered by species with complete trait 
information. This is justified by the biomass ratio hypothesis 
postulating that community level traits and functions are 
determined by species that dominate the biomass of a com-
munity (Grime 1998). Based on this selection, we used 108 
plots and 432 species overall. For each plot, we calculated the 
community weighted mean (CWM) trait value for each of 
the four traits. CWM averages species level traits weighted 
by abundance. We first log-transformed CWMs in order to 
approximate a normal distribution of the data and then stan-
dardized the CWMs (each trait separately) by subtracting 
the arithmetic mean and dividing by the standard deviation 
in order to facilitate convergence of the models.

Modeling traits along environmental gradients

We selected ecologically meaningful topo-climatic variables 
at a spatial resolution of 100  100 m that have previously 
been shown to be important to explaining the functional 
structure of the Guisane Valley vegetation (de Bello  et  al. 
2013, Chalmandrier  et  al. 2015). The set of variables 
included mean annual precipitation (MAP, mm), coldest 
temperature (TMIN, °C), relative humidity (RELH, %), 
and topographic position (TOPO). The climatic variables 
were derived from downscaling the gridded 1km climate 
data from MeteoFrance (Benichou and Breton 1987) in 

the case of MAP and TMIN, and from global CRU data 
(New et al. 2002) in the case of RELH. Topographic posi-
tion assesses concavity vs. convexity of a given location with 
respect to the surrounding landscape, with positive values 
indicating that the focal pixel is higher than the surround-
ing (vice versa for negative values). We chose these predic-
tors from a larger set of environmental variables to minimize 
collinearity (all Pearson’s correlations 0.55) and maximize 
ecological interpretation. We scaled the predictor variables 
by subtracting the mean and dividing by the standard devia-
tion prior to model-fitting. 

We investigate whether joint modeling, and accounting 
for correlation structure improves the estimation of trait–
environment relationships by comparing independent trait 
models (ITMs) with a multiple trait model (MTM) and a 
joint trait model (JTM) that explicitly accounts for correla-
tions between traits. While large-scale analyses inform on the 
general direction of some traits along some of the selected 
environmental gradients (Wright et al. 2004, Poorter et al. 
2009), there are no well-defined theoretical expectations 
about the exact shape (e.g. linear, curvilinear, exponential) of 
the response of the four traits to our local environmental gra-
dients. We thus used generalized additive models (GAMs) 
that do not require predefined response curve shapes along 
predictor variables (Hastie and Tibshirani 1990). They use a 
class of equations called ‘smoothers’ that attempt to general-
ize data into smooth curves by local fitting to subsections of 
the data. More technically, we used thin plate regression to 
estimate the smoothers for the four predictor variables and 
a tensor product to generate a smoother for an interaction 
term between MAP and TOPO to account for the fact that 
effects of precipitation may change with topography due to 
differential water retention on ridges versus in depressions. 
The thin plate and tensor product smoothers were estimated 
using the mgcv package (Wood 2011) in the R statistical 
environment (ver. 3.3.2;  www.r-project.org ). A poten-
tial downside of GAMs is that they sometimes overfit, i.e. 
the estimated response could get very close to the data and 
potentially ignores biological realism. We minimized overfit-
ting by allowing for a maximum of five degrees of freedom 
in the smoothers to avoid overly complex responses. In addi-
tion, we also fitted GLMs with linear and quadratic terms 

Figure 1.  Study regions and plot data used in this study. The French Alps in (a) with an inset map showing where the study region is located 
within France. The white area in (a) depicts the location of the Guisane valley as shown in (b), with the locations of the 108 grassland plots 
included our study.
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for all predictors (and including the interaction between 
MAP and TOPO) to test whether ITM performance was 
influenced by the flexibility of response curves in GAMs.

In the ITM approach, we modeled traits independently 
of each other, as traditionally done in functional ecology 
(Bernard-Verdier et al. 2012, Widenfalk et al. 2015). In the 
simplest case of one predictor variable, the model equation 
for one trait would be as follows:

y b f xi i i= + ( ) + ε   (1)

where each element of the response yi is the CWM of a trait 
in plot i, b is an intercept and f represents the smooth term 
of a predictor variable x. εi represents the Gaussian residuals. 
In the case of several predictors Eq. 1 extends to:

y b f xi p ip i= + ( ) + ε   (2)

where fp indicates the predictor-specific smooth terms. The 
model equation for the MTM and JTM further extends Eq. 
2 to:

y b f xij j pj ipj ij= + ( ) + ε   (3)

where bj indicates a specific intercept for each trait, fpj indi-
cates that for each predictor p a distinct smooth is fitted for 
each trait j. Technically, trait-specific responses are achieved 
by trait-specific random effects on the smooth-term param-
eters, leading to:

y b f x uij j i pj ij= + ( ) + + ε   (4)

where upj represents the random effects that enable the model 
to fit specific smoothers for each trait j along each predictor 
p. Random effects for each smoother in the MTM are con-
strained to stem from a normal distribution with expected 
value zero. The JTM additionally accounts for between-trait 
correlation by fitting an unstructured correlation structure 
on upj with a different parameter for every possible pair of 
traits.

The ‘mgcv’ package allows one to fit ITMs, MTMs and 
JTMs and we include the code to fit these models in the 
Supplementary material Appendix 2. Note that the correla-
tion structure needs to refer to plotID, a factor with a unique 
ID for each of the i plots and its form has to be symmetric 
(corSymm) in order to obtain a pair-wise between-trait cor-
relation structure.

We assessed goodness of fit in both approaches using root 
mean square error (RMSE) of predicted versus observed trait 
CWM-values, and R2 of the regression between predicted 
and observed values (R2

CORR). For both measures, we calcu-
lated a pooled value where the pooled predicted values of all 
four traits were compared to the pooled observations of all 
traits and a trait-specific value where we compared predicted 
versus observed values separately for each trait. Further, as 
commonly done for SDMs, we applied a repeated split-sam-
pling procedure to assess performance of the models. The 
split-sampling procedure consisted of a random splitting of 

original data into two thirds training and one third testing 
data, with 20 repetitions. Thus, in each repetition the mod-
els were fitted on training data, and evaluated against the 
testing data. Analogous to the full-model comparison, we 
evaluated model performance in the split-sampling proce-
dure by assessing RMSE and R2

CORR on the hold-out testing 
data pooled across the four traits and the 20 repetitions. In 
addition, we compared the correlation structure as estimated 
in the JTM with the observed correlation between trait 
CWMs in the Guisane Valley plots in terms of RMSE and 
bias (mean of predicted minus observed).

Trait–environment relationships

We produced partial response curves along the environmen-
tal gradients for all traits in order to facilitate identification 
and interpretation of differences between the modeling 
approaches. The partial response curve of a trait along a 
predictor variable describes how a trait changes along that 
variable and is produced by calculating the trait’s predicted 
values along the focal variable, while keeping all other vari-
ables fixed at their mean.

Spatial projections

We used the fitted ITMs and JTMs built from the sampled 
communities to project the spatial distribution of each  
trait over the whole Guisane valley at a spatial resolution of 
100  100 m. We assess the plausibility of predictions by 
comparing the range of observed trait CWMs with predic-
tions from both the ITM and JTM approaches.

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.v475g  (Wüest et al. 2017).

Results

Trait–environment relationships – model comparison

All models (ITMs, the MTM and the JTM) explained con-
siderable amounts of variation in CWMs (R2

CORR 0.31). 
ITMs performed best when assessing performance by com-
paring predicted and observed data across all traits. RMSE 
across ITMs (0.73) was lower than RMSE of the MTM 
(0.80) and the JTM (0.83), indicating that ITM predictions 
best approximated the observed trait values, corroborated 
by a higher R2

CORR (0.47 across all ITMs versus 0.35 for 
the MTM and 0.31 for the JTM; Table 1). Differences in 
trait-specific RMSE of the independent models of the ITM 
approach indicate that vegetation height (0.63) and seed 
mass (0.57) are potentially more strongly driven by our 
selected environmental variables than LDMC (0.82) and 
SLA (0.86). A complete comparison of trait-specific RMSE 
and R2

CORR values is provided in Supplementary material 
Appendix 1 Table A1.

Assessing the predictive performance using repeated split-
sampling revealed that ITM’s performance collapsed mark-
edly, where RMSE increased to 1.20 and R2

CORR decreased 
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to virtually zero. In contrast, predictive performance of 
the joint models did not decrease analogously in the split-
sampling validation. The increase in RMSE was at highest 
24% (for MTM; 19% for JTM; Table 1) and much lower 
compared to the ITM (where RMSE increased by 64%). 
R2

CORR of the JTM approach was reduced by 68% (for 
JTM; 69% for JTM; Table 1) in the split-sampling proce-
dure but was far from approaching zero, as observed in the 
ITM approach. Improved predictive performance of a JTM 
based on GLMMs was comparable to the presented results 
based on GAMMs and are reported in Supplementary mate-
rial Appendix 1 Table A2.

We compared the pair-wise correlation between traits as 
estimated by the JTM approach with the observed correla-
tions of CWMs in the plots of the Guisane valley (Table 2)  
in order to assess how much of the observed correlation 
structure is not explained by the predictors and thus mir-
rors in the residual structure. The low RMSE (0.10) and 
a bias close to zero (–0.03) indicated that the correlation 
structure as estimated in the JTM approach was close to 
the observed among-trait correlations. Directional trends 
for all trait-correlations were congruent between estimated 
and observed correlations and a regression between observed 
and estimated correlations revealed that the intercept and 
slope do not differ from zero and one, respectively (details in 
Supplementary material Appendix 1 Fig. A1). 

Response curves of the ITM and the MTM/JTM 
approaches differed in two aspects. First, ITM response 
curves were in general more complex than MTM and 
JTM response curves. For example, the response curves of 
SEEDM along all environmental variables took complex, 
data-driven shapes in the ITM approach, while except for 
relative humidity, both the MTM and the JTM approach 

yielded more linear responses along all gradients. Second, 
compared to the ITMs, prediction uncertainty was reduced 
when traits were modeled simultaneously using the JTM 
approaches. This manifested as reduced confidence inter-
vals around the response curves. For example, confidence 
intervals in the case of SLA along minimum temperature 
were larger for the ITM compared to MTM and JTM. Even 
though less pronounced, the same tendencies also held for 
the comparison between MTM and JTM, where accounting 
for correlations between traits in JTM often led to simpler 
responses with less uncertainty associated to the predictions. 
Figure 2 illustrates the general findings, while partial response 
curves for all traits along the four environmental gradi-
ents are presented in Supplementary material Appendix 1  
Fig. A2–A4.

Spatial projections

Spatial projections of the three modeling approaches showed 
that the JTM best approximates the range of observed 
CWMs. While ITMs tended to predict trait values outside 
the range of observed values that are sometimes unrealistic, 
the MTM and JTM approaches did not suffer from this 
problem to the same extent. The example of height (Fig. 3) 
demonstrates that the over- and under-prediction of ITMs 
and the MTM appeared mostly but not exclusively in areas 
of extrapolation, thus in areas with environmental charac-
teristics that were not covered by the data used to train the 
models (black polygons in Fig. 3a–c). Spatial projections for 
all traits are presented in Supplementary material Appendix 1 
Fig. A5.

Discussion

We show that it is possible to predict the functional compo-
sition of alpine grassland communities, and that models that 
model multiple traits simultaneously outperform indepen-
dent modeling of traits in several aspects. We further show 
that accounting for between-trait correlation in joint models 
further improves predictions, especially when extrapolating 
to novel environmental conditions. These findings suggest 
that traits should be modeled jointly rather than in isolation, 
and that between-trait correlation should be accounted for 
when modeling functional attributes of communities.

Trait–environment relationships – model comparison

We find that the joint trait model JTM outperforms the 
multiple trait model MTM and the independent trait mod-
els ITMs when predicting functional attributes of plant 
communities across the Guisane valley. ITMs clearly per-
form worst and while both approaches that model multiple 
traits simultaneously increased predictive performance, the 
difference between the MTM and the JTM that additionally 
accounts for between-trait correlations is rather marginal. 
The comparison of partial response curves (Fig. 2) helps to 
identify reasons for the superior performance of the MTM 
and JTM approaches over the ITM approach in predicting 
CWM trait values. ITMs generally yielded complex response 
curves along all environmental predictors (red curves in 

Table 1.  Model performance metrics for the ITMs, the MTM, and 
the JTM that accounts for the correlation structure among traits. 
RMSE and R2

CORR are calculated across all four traits in all 
approaches. Percentages in parentheses indicate how much perfor-
mance drops (i.e. how much RMSE increases and how much R2

CORR 
decreases) in the split-sample validation. Metrics for the best per-
forming approach in bold.

 Predicted versus observed Split-sample validation

 RMSE R2
CORR RMSE R2

CORR

ITM 0.73 0.47 1.20 (64%) 0.01 (99%)
MTM 0.80 0.35 0.98 (24%) 0.11 (69%)
JTM 0.83 0.31 0.98 (19%) 0.10 (68%)

Table 2.  Pearson’s correlation coefficients among traits as observed 
in plots of the Guisane valley (based on CWMs) and as estimated by 
the JTM.

 Seed mass LDMC SLA RMSE1

Observed  
height 0.53 –0.13 0.28
seed mass  –0.21 0.32
LDMC   –0.31

Estimated (JTM) 0.10
height 0.45 –0.18 0.10
seed mass  –0.20 0.23
LDMC   –0.32

1compared to observed correlations.



EV-6

Fig. 2), which lead to a break down in ITM cross-validation 
performance (Table 1). Simultaneous modeling of traits in 
the MTM and JTM approaches restricts the complexity 
of response curves and yields more constrained and linear 
responses (orange and blue curves in Fig. 2), which yield 
more realistic predictions when extrapolating (Merow et al. 
2014). Trait-models based on GLMs showed the same 
pattern as those based on GAMs: the JTM yielded better 
predictions in cross-validation than ITMs (Supplementary 
material Appendix 1 Table A2). Therefore, the complexity of 
the response is not the only explanation for improved predic-
tions, because GLMs have simpler response curves and are 
less prone to over-fitting. 

Joint modeling may be superior to independent model-
ing because the modeled trait responses potentially profit 

from each other, an argument that is put forward in the 
field of SDMS: rare species are better predicted in JSDMs 
compared to species-specific SDMs (Ovaskainen and 
Soininen 2011). Adopted to the case of modeling traits, 
this could mean that the observed data may not sufficiently 
well sample the environmental space to effectively approx-
imate the biological reality of a specific trait-response in 
ITMs, but the response fitted by a joint model may get 
closer to biological reality in joint models because it is cor-
related with the responses of other traits. The fact that the 
JTM that explicitly accounts for correlations between traits 
performs better than the MTM supports this interpreta-
tion. More generally, modeling multiple traits simultane-
ously likely is superior to ITMs because it accounts for 
the fact that species’ presence and abundance in a given 

Figure 2.  Response curves of ITMs (red), the MTM (orange), and the JTM (blue) along the four environmental predictors for vegetation 
height. Solid lines represent predictions based on estimates, colored areas include the 95% confidence intervals. The grey background 
shading indicates environmental conditions that exceed the range spanned by the sample-locations used to fit the models (black dots).
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location is not determined by single traits, but rather 
results from the interplay of multiple trait axes (Muscarella 
and Uriarte 2016). Indeed, while accounting for trait–
environment relationships the JTM estimates a correlation 
structure that is very similar to the observed between-trait 
correlations (Supplementary material Appendix 1 Fig. A1). 
Taken together, this suggests that inherent trait tradeoffs 
are indeed affecting assembly and functional composition 
of communities and should by no means be ignored in 
‘assemble-first, predict later’ approaches.

Improved validation-performance of the JTM approach 
parallels findings from species distribution modeling, 
where JSDM approaches exceed performance of inde-
pendent SDMs across a number of multi-species data 
sets (Clark  et  al. 2014, Harris 2015). In addition to the 
reduction in complexity, the JTM approach also yields less 
uncertainty in parameter-estimates. While reduced confi-
dence intervals (CIs) are visible across the entire range of 
the environmental variables, differences are greatest when 
extrapolating beyond the observed data-range (e.g. height 
along annual precipitation, Fig. 2). In summary, the lim-
ited complexity in response curves that are associated with 
less uncertainty suggests that the modeling approaches 
that model multiple traits simultaneously, and the JTM 
in particular, hold much promise for predicting functional 
attributes of communities and should be favored in any 
predictive modeling endeavor that involves projecting in 
space or time.

Spatial projections and extrapolation

Spatial projections of the ITMs, the MTM, and the JTM 
across the Guisane valley (Fig. 3) illustrate the differences 
between the three approaches. ITMs often predict extreme 
trait values that exceed observed values by orders of magni-
tude in both directions for both height and seed mass. For 
example, independent trait modeling predicts grasslands 
grow taller than 100 m (Fig. 2). Seed masses in the same area 
are predicted to be heavier than 100 g (Supplementary mate-
rial Appendix 1 Fig. A5); more than 1000 times the maximal 
seed mass observed for grassland species in the Guisane val-
ley. Spatial projections derived from the MTM and JTM do 
not suffer from this problem. The predicted ranges of trait 
values more closely approximate the observed ranges and the 
models rarely predict unrealistic values (Fig. 3b–d, Supple-
mentary material Appendix 1 Fig. A5). The JTM also pre-
dicts more realistic trait CWMs than the MTM approach. 
For example, MTM predicts grasslands at the bottom of the 
Guisane Valley to grow as tall as 5 m, while JTM predicts 
a maximal height of 1 m. Nevertheless, neither of the two 
approaches that model multiple traits simultaneously avoids 
all potential issues regarding extrapolation and we urge the 
need to carefully assess the plausibility of predictions when 
extrapolating.

It is evident that the extreme predictions are largely 
restricted to areas where environmental conditions exceed 
conditions covered by data used to fit the models (black 

Figure 3.  Spatial projection of plant height across the Guisane valley. Projection of ITMs are shown in (a), the MTM projection in (b), and 
the JTM projection in (c) with colors indicating plant height on a log-scale according to the legend. Grey crosses represent locations of plots 
used for fitting the models. Black polygons depict areas where at least one of the environmental predictors reaches outside the observed 
(data-fitting) range. The boxplots in (d) describe the range of observed and predicted CWM values.
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polygons in Fig. 3a–c, Supplementary material Appendix 
1 Fig. A5). Responses along most gradients are curvilinear 
in ITMs (Fig. 2, Supplementary material Appendix 1 Fig. 
A2–A4), and these flexible responses offer a possible explana-
tion for the extreme predictions. Depending on the shape, 
extrapolation beyond the observed data range can quickly 
lead to extreme values outside the observed range (see the 
partial response of LDMC along minimal temperature in 
Supplementary material Appendix 1 Fig. A3 for an extreme 
example). Extrapolation is well known to involve various 
potential pitfalls and should be avoided whenever possible. 
However, on-going global change likely causes the appear-
ance of novel climates (Williams et al. 2007). Consequently, 
the joint modeling of traits along environmental gradients 
that yields more conservative predictions when extrapolating 
is, therefore, the preferred approach.

Limitations and further development

Our results indicate that joint modeling should be preferred 
over independent modeling of traits along environmen-
tal gradients. Nevertheless, our approach is not free from 
limitations. We argued that the reduction of data dimen-
sionality in a ‘assemble first, predict later’ approach leads 
to higher efficiency because of the reduced number of 
required model-parameters. While this is certainly true for 
species-rich and trait-poor datasets, the number of model-
parameters rapidly increases with the number of traits to 
be modeled. The increase in parameters will be especially 
drastic in the case of JTM, where the number of pair-wise 
trait combinations increases quadratically with the num-
ber of traits. We suggest considering the MTM approach 
instead of JTM for datasets with many traits, or using hier-
archical latent variable models to reduce trait dimension-
ality (Hui 2015, Warton  et  al. 2015). While we compare 
our findings with recent developments in the field of (joint) 
SDMs, our analysis did not aim to compare our ‘assemble 
first, predict later’ approach with the various flavors of ‘pre-
dict first, assemble later’ approaches. Potential future studies 
comparing both performance and computational efficiency 
of the various approaches for a range of conditions (i.e. 
varying numbers of species, traits, and sites) could help to  
determine the optimal approach.

Our MTM and JTM approaches as currently imple-
mented use GAMMs and are therefore restricted to continu-
ous traits. However, many functional traits, such as growth 
form of plants or diet of animals are categorical in nature. 
Categorical (or mixed) traits could potentially be jointly 
modeled using mixed modeling software that allows for cat-
egorical (or mixed) responses, such as MCMCglmm in R 
(Hadfield 2010) or using the various implementations of 
BUGS-like languages. While this is outside the scope of our 
study, we encourage further research to enable inclusion of 
categorical traits in joint models that follow the ‘assemble 
first, predict later’ approach. Another potential avenue of 
investigations not covered in our initial assessment of the 
approach is how phylogenetic signal in traits interacts with 
independent and joint estimation of trait responses, because 
we know that phylogenetic signal affects the estimation of 
how functional traits interact with the environment (Li and 
Ives 2017).

Implications

Traditional approaches to the so-called fourth corner prob-
lem (understanding how functional traits mediate species-
specific environmental responses) like RLQ analyses do 
not provide the possibility for spatial projections. While 
joint species distribution models overcome this limitation 
(Pollock et al. 2012, Jamil et al. 2013, Brown et al. 2014), 
they are generally computationally intensive for large data-
sets (hundreds or thousands of species). While latent vari-
able models improve the capacity to model many species 
(Warton et al. 2015), these models still require spatial or 
environmental data for all species, which is not always 
available. Direct modeling of traits along environmental 
gradients in a ‘assemble first, predict later’ manner may 
be debatable (Clark 2016), but it represents the basis of 
JTM’s efficiency, which has great potential in large-scale 
applications like mapping ecosystem services in space. 
Lavorel  et  al. (2011), for example, relate a set of traits 
including height and LDMC to the environment to quan-
tify ecosystem services. Such an approach is sensitive to 
spurious combinations of height-LDMC predictions and 
would obstruct correct predictions of ecosystem services. 
Simultaneous modeling of multiple traits, and especially 
the JTM approach, avoids predicting spurious trait com-
binations, thus is better suited to inform approaches that 
predict ecosystem services – an important tool in analyz-
ing and mitigating effects of global change on human well-
being (Díaz  et  al. 2015). Additionally, spatial projections 
of trait CWMs like vegetation height or leaf traits such as 
silica content could provide proximal predictors for SDMs 
of herbivores, ranging from large ungulates to insects.  
Furthermore, fitted trait–environment relationships could 
be used to drive trait responses to changing environments 
in earth system models (Pavlick et al. 2013, Verheijen et al. 
2013).
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