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Whether species interactions influence species response to environment and species 
ranges has always been a central question in ecology. Joint species distribution mod-
els (JSDMs) simultaneously model the species–environment relationships of multiple 
species and the residual correlation between these species. These residual correlations 
are assumed to depict whether species co-occur less or more often than expected by the 
modelled species–environment relationships, which could ultimately be attributed to 
species interactions, or hidden environmental information. Here, we propose to spe-
cifically test the capacity of JSDMs to detect species interactions from co-occurrence 
data, at different scales of data aggregation. Using a recently published point-process 
model, we simulated equilibrium co-occurrence patterns of species pairs by varying the 
strength and type of interactions (e.g. competition, predator–prey, mutualism) as well 
as the prevalence of the interacting species in homogeneous environments (assuming 
the environment does not influence the species responses and co-occurrence). Then, 
we fitted JSDMs without environmental predictors, and compared the estimated 
residual correlations against the known interaction coefficients. JSDMs detected com-
petition and mutualism well, but failed with predator–prey interactions. For the latter, 
JSDMs predicted both negative and positive residual correlations for these kinds of 
interactions, depending on the prevalence of the interacting species. Interestingly, the 
estimated residual correlation was strongly influenced by species’ prevalence and can 
thus not be translated to interaction strength. At increasingly coarser data resolution, 
the signals of negative and positive interactions became indiscernible by JSDMs, but – 
reassuringly – were rarely confounded. The underlying point-process model simulates 
the consequences rather than the mechanisms of interspecific interactions, and thus 
is better at corroborating rather than discrediting JSDMs. Nevertheless, our simple 
theoretical exercise pinpoints important limitations of JSDMs. In conclusion, we 
caution against interpreting residual correlations from JSDMs as interaction strength 
and against comparing these across different species and communities.
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Introduction

Determining the factors that influence species’ ranges is 
a prerequisite for deriving reliable biodiversity scenarios 
(Urban et al. 2016). The importance of abiotic factors has 
long been recognized (Pulliam 2000, Chase and Leibold 
2003, Soberón and Nakamura 2009), and correlative species 
distribution models (SDMs) that relate species’ occurrence 
to prevailing environmental factors have become the most 
widely used tools in biogeography (Guisan and Zimmermann 
2000, Guisan and Thuiller 2005, Elith and Leathwick 2009). 
However, it is now generally accepted that interspecific inter-
actions likely influence species’ distributions at larger spatial 
and temporal scales than previously thought (Blois et al. 
2013, Svenning et al. 2014). Ignoring these interactions 
could thus hamper the ability of SDMs to predict current 
and future species ranges and communities (Leathwick and 
Austin 2001, Meier et al. 2010, Zurell et al. 2016a). Hence, 
over the last couple of years, several approaches have been 
discussed or proposed to incorporate interspecific interac-
tions between multiple species into distribution models 
(Kissling et al. 2012, Pellissier et al. 2013, Thuiller et al. 
2013, Wisz et al. 2013). 

Aided by computational advances, methods have been 
introduced that combine species distribution modelling with 
co-occurrence analyses that originate from community ecol-
ogy (Ovaskainen et al. 2017). These joint species distribution 
models (JSDMs) decompose species co-occurrence patterns 
into shared environmental responses and residual correla-
tion (Ovaskainen et al. 2010, Clark et al. 2014, Pollock et al. 
2014, Warton et al. 2015, Hui 2016, Ovaskainen et al. 
2016). The latter correlation relates to the patterns of co-
occurrence that are unexplained by the environmental 
information given to the model. The temptation is then 
to attribute this residual correlation to biotic interactions, 
such as competition and facilitation. Although this residual 
correlation can reflect intuitive ecological (Latimer et al. 
2009, Ovaskainen et al. 2010) or evolutionary processes 
(Pollock et al. 2015), there could also be many non-biolog-
ical explanations such as missing environmental variables or 
poor model fit. Theoretically, JSDMs should predict posi-
tive residual correlation between a pair of species if these co-
occur more often than expected given the environment (or by 
chance in a homogenous environment) and predict negative 
residual correlation when the species co-occur less often than 
expected given the environment (or by chance in a homog-
enous environment). 

To date, no study exists that explicitly tests JSDM’s ability 
to identify the signal and the strength of species interactions 
and the effects of complicating factors such as species’ preva-
lence and spatial scale. Also, the limits of JSDMs to detect 
asymmetric (positive-negative) interactions such as predator–
prey relationships have not been tested. As JSDMs basically 
evaluate whether (residual) co-occurrence deviates from the 
null expectation (given by environmental overlap), they can 
per definition only capture symmetric interactions. However, 

a recent study by Araújo and Rozenfeld (2014) showed that 
range overlaps of species pairs resulting from predator–prey 
relationships could resemble both co-occurrence patterns of 
competition (–/–) and mutualism (+/+). It is thus an impor-
tant question whether JSDMs could possibly distinguish 
asymmetric interactions such predator–prey relationships 
(+/–) from symmetric interactions (–/– and +/+). 

Here, we build on the point-process model of Araújo 
and Rozenfeld (2014) that simulates co-occurrence of spe-
cies pairs at steady state across all interspecific interaction 
types (–/–, +/–, +/+) and across all possible combinations 
of interspecific interaction strength (0  I  1). We use 
this point-process model to generate co-occurrence data of 
species pairs in homogeneous environments, and then use 
these data to fit JSDMs. Other models could be used to 
simulate the distribution of interacting species, for example 
spatially explicit population models such as Lotka–Volterra-
type models, coupled map-lattice models (Zurell et al. 2009) 
or individual-based models (Travis et al. 2005). However, 
by using data from the steady-state point-process model and 
from homogeneous environments, we ensure that species co-
occurrence patterns are not confounded by other factors such 
as history, missing environmental variables or demographic 
stochasticity. We thus provide a simple proof-of-concept and 
ask whether JSDMs can detect the signal of interspecific 
interactions from co-occurrence data under idealised con-
ditions, which we regard as prerequisite for applying these 
models in complex real-world applications. Specifically, we 
test whether JSDMs can detect different interspecific inter-
actions ranging from negative to positive, how JSDMs cope 
with positive-negative interactions such as predator–prey 
relationships, and how the ability to detect interactions is 
influenced by the resolution of the data used for modelling 
(i.e. scale-dependence). 

Methods

Simulating co-occurrence patterns

We used the point-process model developed by Araújo and 
Rozenfeld (2014) to simulate co-occurrence of species at 
steady state across all possible interaction types (+/+, +/–, 
–/–, +/0, –/0) and all possible combinations of interaction 
strengths (0  |Ix|  1). If there is no interaction between 
species, then the expected probability of co-occurrence P(A 
and B) of a species pair is simply given by the product of 
their prevalence P(A)  P(B). This corresponds to the null 
expectation of co-occurrence. With interspecific interaction 
present, the probability of co-occurrence is a function of spe-
cies’ prevalence and the strength of their interaction, which 
could be repulsive or attractive. Mutualistic interactions (+/+) 
will cause the species to co-occur more often than expected 
under the null model, whereas competitive interactions 
(–/–) will cause them to co-occur less often than expected. 
In case of predator–prey relationships (+/–), both positive 
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and negative interactions will cause deviation from the null 
model. Whether this results in higher or lower co-occurrence 
than expected by the null model, depends on both the rela-
tive strength of positive and negative interactions and on the 
prevalence of the species. Thus, the resulting co-occurrence 
(relative repulsion and attraction of species pairs) is determin-
istic while the spatial distribution of the species is stochastic. 
For a more detailed description of the model formulation, 
please see Araújo and Rozenfeld (2014). For simplicity, the 
environment is assumed homogenous and does not influence 
species’ ranges and prevalence. 

Here, we simulated co-occurrence patterns of two spe-
cies A and B in homogeneous environments of 100  100 
cells for all combinations of potential interactions. Species’ 
occurrence in space was random without any spatial auto-
correlation. Araújo and Rozenfeld (2014) showed that the 
co-occurrence patterns and their scale dependence were com-
parable between spatially correlated and spatially uncorre-
lated landscapes. We varied the interaction coefficients I from  
–1 to 1 in 0.1 increments. This resulted in 441 simulations per 
prevalence level. As an extension to previous results (Araújo 
and Rozenfeld 2014), we systematically varied prevalence 
levels. Specifically, in the first set of five scenarios, species A 
and B had equal prevalence of varying magnitude [0.1, 0.2, 
0.3, 0.4, 0.5]. In a second set of two scenarios, species A and 
B had unequal prevalence [A = 0.1 and B = 0.5; A = 0.2 and 
B = 0.4]. 

For all scenarios, we calculated the co-occurrence index 
and the null expectation of co-occurrence, to evaluate 
whether species co-occurred more or less often than expected 
by chance. The co-occurrence index was defined as the 
number of cells where both species occur together divided 
by the total number of occupied cells. As the null probabil-
ity of co-occurrence P(A and B) is given by the product of 
species’ prevalence P(A)  P(B), the co-occurrence value 

corresponding to the null expectation is given by (P(A)  
P(B))/((P(A) + P(B) – P(A)  P(B)) where the dividend is the 
proportion of cells occupied by both species together and the 
divisor is the overall proportion of occupied cells. Hence, the 
exact co-occurrence value corresponding to the null expecta-
tion, where both species co-occur simply by chance, varies 
with prevalence (Fig. 1A–F).

To test for scale dependence in co-occurrence patterns 
and in the estimation of JSDMs, we aggregated the origi-
nal landscape grid to two increasingly coarser resolutions by 
aggregating 2  2 cells and 4  4 cells, respectively. In these 
cases, species interactions (repulsion and attraction) are still 
modelled at the initial resolutions, but JSDMs are fitted at 
coarser resolution mimicking large scale and coarse resolu-
tion data such as atlas data (Gotelli et al. 2010, Zurell et al. 
2016b), or continental and global datasets (McGill 2010, 
Jetz et al. 2012). 

All simulations were carried out in R (R Core Team),  
and the code is provided in the Supplementary material 
Appendix 1. 

Estimating joint species distribution models

The spatial distributions of species A and B as simulated by 
the point-process model over the full biotic interaction space 
served as input for JSDMs. We thus assumed perfect detec-
tion of the species and ideal sample sizes, meaning that the 
entire space was sampled although we also tested for sample 
size effects (Supplementary material Appendix 1). We fitted 
JSDMs using the code provided by Pollock et al. (2014). 
These jointly estimate the occurrence probability of multiple 
species with a hierarchical multivariate probit regression, 
and the residual correlation between those species’ pres-
ences by means of an unstructured covariance matrix. As 
we were mainly interested in the ability of JSDMs to detect 

Figure 1. Expected co-occurrence (A–F) and residual correlation (estimated by JSDM; (G–K)) across the biotic interaction space of two 
species A and B and for different prevalence levels. (A) Species A and B can have negative to positive effects on each other. The co-occurrence 
index is defined as the number of cells where species A and B occur together divided by the total number of occupied cells. The null prob-
ability of co-occurrence P(A and B) is given by the product of species’ prevalence P(A)  P(B), and the corresponding co-occurrence value 
is given by (P(A)  P(B))/((P(A) + P(B) – P(A)  P(B)) (white line). (B–F) Show the co-occurrence values obtained at different prevalence 
levels (0.1, 0.2, 0.3, 0.4, 0.5) with equal prevalence for both species. Again the null expectation of co-occurrence is shown in white. (G–K) 
show the corresponding residual correlations estimated by JSDMs, with grey areas indicating non-significant residual correlations.
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underlying interactions, we assumed homogeneous environ-
ments and fitted the environmental response with an inter-
cept only model that controls for prevalence. The JSDMs 
were run with JAGS from within R (R Core Team) with  
3 chains. As the simulated data were very simple and without 
noise (meaning no sampling error was included), for most 
combinations of interaction strengths (–1  I  +1) a com-
parably low number of 10 000 iterations with a burn-in of 
5000 and a thinning rate of 20, were sufficient for reaching 
convergence with rhat values below 1.1 for all parameters. For 
extreme interactions strengths (with an interaction coefficient 
I of –1 or +1), convergence was not achieved under 10 000 
iterations and we subsequently tested stability of parameters 
values for increasing numbers of iterations. The residual cor-
relation between species’ presences was given by the mean of 
the posterior distribution and was judged as significant when 
the range between the 5 and 95% posterior quantiles did not 
include zero. 

Results

Different prevalence levels produced different co-occurrence 
patterns across the biotic interaction space (Fig. 1A–F).  
Co-occurrence was always lower than the null expectation 
for competitive interactions (–/–) and for amensalism (–/0) 
and always higher than the null expectation for mutualism 
(+/+) and commensalism (+/0). However, the exact asym-
metric interaction coefficients (+/–), at which co-occurrence  
was not different from the null expectation, strongly 
depended on prevalence (of the more common species of 
the species pair). When prevalence was low in both species, 
then co-occurrence was higher than the null expectation for  
most combinations of positive-negative (+/–) interactions 
(Fig. 1B), while co-occurrence was mostly lower than the 
null expectation if at least one species in the predator–prey 
relationship was more common (Fig. 1F; Supplementary 
material Appendix 1 Fig. A1). 

JSDMs correctly assigned negative residual correlations 
to competitive interactions, and correctly assigned posi-
tive residual correlations to mutualistic interactions. More 
broadly, the difference between observed co-occurrence and 
the null expectation determined the residual correlation 
estimated by JSDMs. Negative residual correlations were 
estimated when species co-occurred less often than the null 
expectation (meaning the co-occurrence value corresponding 
to the case when both species co-occur only by chance), and 
positive residual correlations when the species co-occurred 
more often than the null expectation. However, the mag-
nitude of residual correlations varied across scenarios with 
different prevalence of the interacting species (Fig. 1G–K). 
For example, for two species A and B with an intermedi-
ate and symmetric negative interaction (IA = IB = –0.5), 
JSDMs estimated a residual correlation of approx. –0.19 if 
both species had a prevalence of 0.1, and a residual corre-
lation of approx. –0.71 if both species had a prevalence of 

0.5. These results were robust, as we obtained convergence 
with rhat values below 1.1 for most combinations of interac-
tion strengths except for the extreme interaction coefficients 
of [I] = 1.0 (Supplementary material Appendix 1 Fig. A2). 
For these extreme cases, convergence was achieved for larger 
numbers of iterations, whereby the model parameters were 
stable across different numbers of iterations (Supplementary 
material Appendix 1 Fig. A3). Also, prevalence levels were 
correctly predicted in all cases. All these results correspond 
to ideal sampling without detection error and very large 
sample sizes. Reduced sample sizes will increase type II errors 
but the general patterns reported above remain unchanged 
(Supplementary material Appendix 1 Fig. A4).

JSDMs were not able to separate predator–prey rela-
tionships from competitive or mutualistic interactions, and 
assigned both negative and positive residual correlations to 
such asymmetric (+/–) interactions (Fig. 1). Here, residual 
correlations from JSDMs exhibited the same sensitivity to 
prevalence as co-occurrence patterns, meaning that the exact 
asymmetric interactions coefficients (+/–) that divided posi-
tive from negative residual correlations estimated by JSDMs 
depended on prevalence (Fig. 1G–K; Supplementary mate-
rial Appendix 1 Fig. A1). 

Last, JSDMs had difficulties at depicting the underlying 
co-variation between species at increasingly coarser resolution 
of the data (Fig. 2A–F). In line with Araújo and Rozenfeld 
(2014) co-occurrence patterns were highly scale dependent, 
which led to more insignificant residual correlation estimates 
in JSDMs (meaning that the parameters credible interval 
between the 5 and 95% quantiles of the posterior distribu-
tion included zero; Fig. 2G–J). Thereby, chains mixed well 
and parameter convergence was well achieved. Generally, for 
competitive interactions, increasingly coarser data resolu-
tion led to lower estimates of absolute residual correlation 
than at the original resolution (at which the interaction out-
come was being modelled). This scaling effect was much less 
pronounced for facilitative interactions (Fig. 2–3). Signals 
of interspecific interactions were lost most readily for more 
prevalent species (Fig. 3). The probability of confounding 
negative and positive residual correlations seemed to increase 
with decreasing prevalence and with increasingly coarser 
resolution of the data (Fig. 3). The insignificant residual cor-
relations were only partially explained by the reduced sample 
sizes when aggregating data. When repeating the data aggre-
gation for larger sample sizes, the type II errors were slightly 
smaller but the general patterns reported above remained 
unchanged (Supplementary material Appendix 1 Fig. A5). 

Discussion

In this paper, we propose to systematically test the capacity 
of JSDMs to retrieve species interactions from co-occurrence 
patterns in the case of simple bi-partite interactions within a 
homogenous environment, and test whether this capacity was 
influenced by the resolution at which species were modelled. 
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The key results are that 1) JSDMs reliably predict negative 
residual correlations for competitive interactions and posi-
tive residual correlations for mutualistic interactions. How-
ever, the magnitude of residual correlation does not directly 
relate to interaction strength because it is mostly driven by 
species prevalence. 2) Positive-negative interactions such as 
predator–prey relationships can be problematic for model 
interpretation because JSDMs cannot disentangle these from 
competitive and mutualistic interactions. 3) At increasingly 
coarser spatial resolution of the data, both the signals of 
negative and positive interactions become indiscernible by 
JSDMs, but reassuringly the signals rarely were confounded. 
Overall, our results have important implications for the 

interpretation of JSDMs, and pinpoint important aspects that 
will need further model development. At the same time, we 
want to stress that these results were obtained under idealised 
conditions, and real-world applications will be complicated 
by even more factors. If JSDMs fail to detect interspecific 
interactions in very simple cases such as the one used here, 
there is no reason why they should work better at detecting 
interactions (occurring within local communities) in more 
complex real world applications. 

First, we tested JSDMs’ ability to detect negative and 
positive interactions from co-occurrence data. And indeed, 
JSDMs reliably detected competitive and mutualistic inter-
actions in our simulated data, which is promising. However, 

Figure 2. Scale dependence of co-occurrence patterns and corresponding residual correlations estimated by JSDMs. Both species A and B 
have prevalence of 0.3. (A–C) Show the spatial distribution of species at increasingly coarser resolution resulting from intermediate compe-
tition and intermediate mutualism (species A in black, species B in grey, species A and B co-occurring in red). (D–F) Show the resulting 
co-occurrences across the biotic interaction space of species A and B, and (G–I) the corresponding residual correlations estimated by JSDMs 
(please refer to Fig. 1 for legend description). (J) Shows the relationship between (significant) residual correlations estimated at the original 
resolution and at coarser resolution.

(A) (B) (C) (D) (E)

Figure 3. Scale dependence of JSDMs for different prevalence levels. Shown is the significant residual correlation estimated by JSDMs at 
the original scale against significant residual correlation estimated at coarser resolution (block size 2  2 in black, block size 4  4 in red) 
across biotic interaction space. Scale dependence of JSDMs increases with prevalence from left to right such that no significant residual 
correlations were estimated for the 4  4 block size in (E).
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interpretation of model residuals as interaction coefficients 
proved non-trivial. Importantly, prevalence strongly affected 
the magnitude of residual correlations estimated by JSDMs. 
This implies that residual correlations from JSDMs do 
not directly relate to nor can be interpreted as interaction 
strength, and also they cannot be compared across differ-
ent species (with different prevalence levels). In real-world 
applications, this may be further confounded by the species’ 
environmental response, detection bias, and by (direct and 
indirect) interactions between multiple species, which should 
be further tested. 

Second, we asked how JSDMs deal with competitive 
and mutualistic interactions from asymmetric interactions 
such as predator–prey relationships. Per definition, JSDMs 
will model symmetric correlations and should not be able 
to detect asymmetric interactions. Nevertheless, it is impor-
tant to understand whether and how residual correlations 
estimated from JSDMs differ between symmetric and asym-
metric interactions especially when applying JSDMs to 
taxa from multiple trophic levels (such as birds and mam-
mals). As has been discussed earlier (Araújo and Rozenfeld 
2014, Cazelles et al. 2015), asymmetric positive-negative 
interactions can result in co-occurrence patterns that could 
be either higher or lower than expected by chance, mean-
ing in both positive and negative net associations between 
pairs of species. Here, we showed that this also depends 
on interaction strength between species A and B and their 
prevalence. Specifically, predator–prey relationships are more 
likely to produce positive residual correlations when preva-
lence of both species is low. By contrast, when prevalence 
of at least one species is high, then predator–prey relation-
ships are more likely to produce negative residual correla-
tions in JSDMs. As a consequence, the problem that JSDMs 
are not able to tease apart predator–prey relationships from 
competitive or mutualistic interactions using co-occurrence 
data is exacerbated by the fact that asymmetric interactions 
could show up both as positive and negative residual correla-
tions, which has been discussed previously but never been 
shown explicitly (Cazelles et al. 2015, Morales-Castilla et al. 
2015, Warton et al. 2015). These results suggest that a useful 
next step would be to incorporate directional conditional-
ity into future joint species distribution modelling, extend-
ing their capacity beyond pairwise symmetric correlations 
(Pollock et al. 2014, Warton et al. 2015, Hui 2016). Recent 
examples are beginning to consider more complex (direct 
and indirect) interactions for small datasets (Harris 2016, 
with up to 20 species). Schliep et al. (2017) recently intro-
duced a method for incorporating temporal processes into 
JSDMs that allows inferring directionality from temporal co-
abundance data. These advances would be extremely useful 
not only for distinguishing predator–prey relationships but 
also for detecting asymmetric interaction strengths between 
competing and facilitating species (Kissling et al. 2012, 
Harris 2016). Still, it remains to be tested in how far co-
occurrence data will allow estimation of asymmetric residual 
correlation or under which circumstances co-abundance data 

will be needed (Cazelles et al. 2015, Gallien et al. 2018). 
Also additional information could be used to distinguish 
competitive and mutualistic interactions from predator–
prey relationships, for example trait information may aid 
simple plausibility checks (Morales-Castilla et al. 2015), 
and behavioural observations and manipulative experiments 
could help informing prior distributions (Harris 2016, 
Staniczenko et al. 2017). 

Last, we tested for scale dependence of JSDM estimates by 
analysing the co-occurrence data at increasingly coarse reso-
lution while the interactions took place at the original, fine 
spatial resolution. We found that with increasingly coarser 
resolution, both the signals of positive and negative interac-
tions became indiscernible by JSDMs, whereby the signal of 
negative interactions was more sensitive to scale. This is in 
line with previous findings that co-occurrence patterns are 
highly scale-dependent (Araújo and Rozenfeld 2014) and 
also that the effects of local interspecific interactions vanish 
at coarser spatial scales (Thuiller et al. 2015). Thus, JSDMs 
are unlikely to give any insight on the potential interactions 
between species if the scale of the data does not match the 
process scale. At best, they might give better and more reli-
able models and the residual correlation might shed light on 
missing environmental variables and historical factors. Also, 
the species lists from monitoring schemes or atlas data are 
often at comparably coarse resolution, for example for many 
animals, such that the signal of interspecific interactions and 
sub-scale environmental heterogeneity can get easily con-
founded (Zurell et al. 2016b). When we apply JSDMs to veg-
etation plots, the analysis of the residual correlation in respect 
to interspecific interactions might thus be more meaningful 
since the interactions between species, for instance for light 
competition, might here be at the right scale (e.g. a 10  
10 m plot). Empirical analyses testing whether the residual 
correlations from JSDMs are related to known interactions 
between species might thus be of particular interest. Further-
more, our results showed that less prevalent species are less 
sensitive to mismatches between process scale and data scale. 
At the same time, at increasingly coarse resolution negative 
and positive interactions were confounded easier. Thus, we 
recommend interpreting JSDMs cautiously when modelling 
rare species. 

We deliberately chose to use the steady-state point process 
model from Araújo and Rozenfeld (2014) to simulate spa-
tial co-occurrence patterns. In contrast to spatially explicit 
population models (Kot 2001, Travis et al. 2005), this model 
does not explicitly simulate the spatial dynamics of interact-
ing species, but directly generates non-random co-occurrence 
patterns that represent the spatial effects of interspecific inter-
actions at equilibrium. The point-process model characterises 
the consequences rather than the mechanisms of interspecific 
interactions. Similarly, JSDMs are phenomenological and 
thus model the consequences of interspecific interactions 
on species co-occurrence (while accounting for environ-
ment). Therefore, we expect this set-up to corroborate rather 
than discredit JSDMs. This was mostly the case, except for 
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some important limitations of JSDMs when trained on co-
occurrence data. Although this is a basic test, such proof-of-
concept is still worthwhile because if a model fails in simple 
virtual examples, chances are that it will also fail in the real 
world (Zurell et al. 2010). In the future, JSDMs and their 
extensions (e.g. to incorporate directional conditionality) 
should be tested using more complex and spatially explicit 
population models. 

In summary, our simulation study indicates that JSDMs 
might be reliable in inferring simple symmetric species inter-
actions if the species are modelled at the resolution of the 
interactions. However, even in our idealised and error-free 
data, JSDMs could easily confound predator–prey relation-
ships with either competitive or mutualistic interactions, 
they do not give an estimate of interactions strengths, they 
are not easily comparable across species, they are affected by 
prevalence and by scale. Thus, we should be very cautious 
when interpreting JSDM results as interactions (Clark et al. 
2014, Pollock et al. 2014). Nevertheless, they have the ability 
of enhancing our analyses and allow us to form hypotheses 
about potential interspecific interactions when used cau-
tiously (Ovaskainen et al. 2010). Our results provide a first 
test of potentially important or confounding factors in JSDM 
analyses. In the future, more efforts are needed to test JSDMs 
in more complicated settings, for example to test their ability 
to disentangle environmental response and residual correla-
tion for multiple interacting species, for cases when species 
interact directly and indirectly, and for other confounding 
factors such as detection bias and missing environmental 
covariates. Thereby, further theoretical tests under controlled 
conditions could be useful, but we also emphasise the need 
for more empirical tests, for example comparing JSDM esti-
mates against known interactions (e.g. from experiments). 
Hence, JSDMs constitute an important step forward for test-
ing hypotheses of how interspecific interactions affect species 
distributions. Nevertheless, there are important limits to their 
capability of detecting interspecific interactions, for example 
for trophic and indirect interactions, highlighting the need 
for further model improvements in this respect. 
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