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 44 

Abstract 45 

Increasing biodiversity loss due to climate change is one of the most vital challenges of the 46 

21st century. To anticipate and mitigate biodiversity loss, models are needed that reliably 47 

project species' range dynamics and extinction risks. Recently, several new approaches to 48 

model range dynamics have been developed to supplement correlative species distribution 49 

models (SDMs), but applications clearly lag behind model development. Indeed, no 50 

comparative analysis has been performed to evaluate their performance.  51 

Here, we build on process-based, simulated data for benchmarking five range (dynamic) 52 

models of varying complexity including classical SDMs, SDMs coupled with simple dispersal 53 

or more complex population dynamic models (SDM hybrids), and a hierarchical Bayesian 54 

process-based dynamic range model (DRM). We specifically test the effects of demographic 55 

and community processes on model predictive performance. Under current climate, DRMs 56 

performed best, although only marginally. Under climate change, predictive performance 57 

varied considerably, with no clear winners. Yet, all range dynamic models improved 58 

predictions under climate change substantially compared to purely correlative SDMs, and the 59 

population dynamic models also predicted reasonable extinction risks for most scenarios. 60 

When benchmarking data were simulated with more complex demographic and community 61 

processes, simple SDM hybrids including only dispersal often proved most reliable. Finally, 62 

we found that structural decisions during model building can have great impact on model 63 

accuracy, but prior system knowledge on important processes can reduce these uncertainties 64 

considerably.  65 

Our results reassure the clear merit in using dynamic approaches for modelling species’ 66 

response to climate change but also emphasise several needs for further model and data 67 

improvement. We propose and discuss perspectives for improving range projections through 68 
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combination of multiple models and for making these approaches operational for large 69 

numbers of species.70 
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 71 

Introduction 72 

As climate change advances in its threat to biodiversity worldwide, reliable predictions of 73 

range dynamics are needed to anticipate and mitigate potential impacts (Bellard et al., 2012, 74 

Pereira et al., 2010), and we have seen an upsurge of related methods and applications in 75 

recent years (Lurgi et al., 2015, Normand et al., 2014).  76 

Range shifts are complex ecological processes driven by population dynamics and dispersal. 77 

These processes are co-determined by a plethora of other factors including changes to the 78 

abiotic and biotic environment (Sexton et al., 2009). Adequately representing these 79 

interacting processes in an operational model and collecting data for reliably estimating the 80 

many parameters of such complex models is a formidable challenge even for a single species 81 

(Ehrlén &  Morris, 2015) let alone for complex ecosystems. Older models relied on highly 82 

simplified conceptualizations where the abiotic environment is the essential driver of climate-83 

induced range shifts ignoring any demographic processes involved in range shifts. These so-84 

called species distribution models (SDM; Guisan &  Thuiller, 2005, Guisan &  Zimmermann, 85 

2000) have reached high popularity for providing biodiversity scenarios under climate 86 

change, owing to the strong simplification of the represented processes and their relative ease 87 

to use. However, their use for climate change projections has been discussed controversially 88 

(Dormann et al., 2012, Thuiller et al., 2013) because SDMs assume that observed species’ 89 

distributions are not affected by dispersal limitations (Svenning et al., 2008) or source-sink 90 

dynamics (Holt et al., 2005), and ignore complex transient dynamics during range shifting 91 

(Lawler et al., 2013, Zurell et al., 2009).  92 

To address these issues, more mechanistic approaches of modelling range dynamics have 93 

been advocated (Gallien et al., 2010, Thuiller et al., 2008) and several frameworks have been 94 

developed (or revived) (Ehrlén &  Morris, 2015, Lurgi et al., 2015, Pereira et al., 2010). 95 
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While all of them attempt to overcome the limitations associated with SDMs, their ability to 96 

improve projections for species’ range dynamics has never been compared systematically. 97 

The lack of such evaluation is likely due to the difficulty to get appropriate benchmark data, 98 

consisting of information on distribution, abundance and demography. Such complex datasets 99 

are rare and benchmarking may be hampered if not all processes occurring in these 100 

ecosystems are fully understood (Cheaib et al., 2012). We propose to conduct benchmarking 101 

of new methods for modelling range dynamics using simulated community data, which allows 102 

controlling all relevant ecological processes driving species distribution and track transient 103 

dynamics in space and time ("virtual ecologist approach", Zurell et al., 2010).  104 

We compare five generic modelling frameworks for predicting range dynamics capable of 105 

(fast) calibration for any single species (Fig. 1). The choice of models was guided by our 106 

objectives to include frameworks that are representative of current approaches for predicting 107 

actual abundance (Ehrlén &  Morris, 2015), that differ in their underlying assumptions and in 108 

the complexity of data and process detail needed to parameterise them, and for which we 109 

could find proficient users to run the simulations for our study to assure a fair comparison. 110 

Due to a lack of common terminology, we refer to all five models (including SDMs) as range 111 

models and to those models that explicitly consider dynamic processes of range shifts 112 

(dispersal, population dynamics) as range dynamic models (Fig. 1). A subset of these models 113 

relies on SDMs to predict habitat suitability and infer demographic rates (‘SDM hybrids’). 114 

One approach infers demographic rates directly from the data and models habitat suitability as 115 

an outcome of demographic processes (Fig. 1).  116 

We explicitly focus our comparison of models on predicting range dynamics of single species. 117 

Virtual species, however, were simulated within a virtual community to imitate constraints on 118 

species distribution and abundance resulting from both abiotic factors and biotic interactions. 119 

We first simulated virtual communities using a dynamic, individual-based, multi-species 120 
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simulation model, and then tracked these communities under climate change. Range models 121 

were calibrated using data from the output of the virtual community model. We tested the 122 

effects of different demographic (dispersal, source-sink dynamics) and community processes 123 

(single species, species sorting, neutral dynamics) as well as of environmental stochasticity on 124 

model predictive performance. 125 

By comparing the performance of the different range models before and during climate 126 

change we aim at answering the following questions:  (1) Do SDMs and different range 127 

dynamic models predict current species’ distribution and abundance equally well? (2) Do 128 

more complex, demography-based approaches consistently outperform SDMs under climate 129 

change? (3) How is predictive model performance affected by prevailing demographic and 130 

community processes? (4) What are the effects of structural decisions during model building? 131 

We found that more complex range dynamic models improved current range projections 132 

considerably compared to purely correlative SDMs. Under climate change, simpler range 133 

dynamic models often outperformed more complex models, especially when benchmarking 134 

data were simulated with more complex demographic and community processes. We discuss 135 

guidelines and perspectives for increasing the reliability of climate change-induced range 136 

predictions and for applying range dynamic models more widely in climate impact 137 

assessments. 138 

Material and methods 139 

Overview of range dynamic models and hypotheses 140 

We compare a classical SDM and four different range dynamic models, three of which are 141 

SDM hybrids (Fig. 1, Appendix S1 in Supporting Information). The simplest SDM hybrid, 142 

MigClim, supplements SDM predictions with distance-dependent colonisation probabilities 143 

(Engler &  Guisan, 2009, Normand et al., 2013). However, local demographic processes 144 

including regeneration and mortality are not explicitly accounted for although these are 145 
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crucial for predicting population viability and spread rates. More complex SDM hybrids 146 

couple SDM-derived habitat suitability maps and population models (Dullinger et al., 2012, 147 

Keith et al., 2008, Zurell et al., 2012b). These models can be calibrated with simple 148 

demographic information as we demonstrate with DemoNiche (Nenzén et al., 2012) or can be 149 

inversely fitted to abundance data as demonstrated by the application of LoLiPop (Cabral &  150 

Schurr, 2010).  151 

The value of such SDM hybrids is debated, mainly because of potential circularity problems 152 

(Gallien et al., 2010) and because the relation of SDM-derived habitat suitability to species 153 

demographic parameters remains unclear (Thuiller et al., 2014). Dynamic range models 154 

(DRM) have been introduced to overcome these issues. They do not rely on SDM output and 155 

directly relate demographic rates to environmental factors and simultaneously estimate 156 

parameters of the population model and the demography-environment relationship from 157 

abundance and distribution data (Pagel &  Schurr, 2012). We hypothesise that predictive 158 

performance under climate change will increase from left to right in Fig. 1 because (i) range 159 

dynamic models explicitly model the dispersal process and should hence outperform simple 160 

SDMs, (ii) population dynamic models (DemoNiche, LoLiPop, DRM) additionally model 161 

abundance dynamics from differently resolved demographic processes and should thus 162 

outperform MigClim that only simulates potential colonisation, and (iii) DRMs jointly 163 

estimate the effects of dispersal and demography on distribution and abundance dynamics and 164 

should thus outperform SDM hybrids which may suffer from circularity problems.   165 

Virtual species/communities 166 

Simulation model 167 

An individual-based, spatially-explicit, stochastic model (IBM; Gravel et al., 2006, 168 

Münkemüller et al., 2012) was adapted to simulate the dynamics of a focal species and its co-169 

occurring competitors in heterogeneous environments. The IBM is a cellular automaton in 170 
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which each sub-cell is characterised by unique environmental conditions (temperature and 171 

soil moisture) and can support one sessile individual. In the following, we provide a simple 172 

overview over the main characteristics of the simulation model, while more details are given 173 

in Appendix S2. 174 

The IBM’s spatial resolution only allows individual counts, yet the range models work at the 175 

population level. We therefore implemented a hierarchy of two spatial scales so that the 176 

sessile individuals are interacting locally but that aggregations at larger scale (10×10 sub-177 

cells) provide information on community composition and species abundance, which serve as 178 

input for the range model comparison. One time step corresponds to one year and the four 179 

main processes within one time step are large-scale, contagious disturbances at the coarse 180 

resolution, and then the local (sub-cell) processes of adult mortality, propagule supply, and 181 

recruitment of propagules to adult size (Fig. S1).  182 

(1) Large-scale contagious disturbances like fire or windthrow act at the coarse scale with 183 

an overall probability of 0.05, resulting in stochastic population dynamics and 184 

incomplete range filling. Disturbances were omitted for some scenarios (see 185 

Simulations), and are initiated in randomly selected cells at the coarse scale and spread 186 

to the eight nearest neighbours. In response to disturbance, individuals are killed with 187 

a probability of 0.9. 188 

(2) Within each time step, adults die with a probability of 0.1 and can be replaced by 189 

recruits from the local community or by immigrants. 190 

(3) Propagule supply is determined by offspring production and by propagule dispersal. 191 

Only adults that are at least one time step old can produce propagules. Offspring 192 

production rate is determined by the local (temperature and moisture) environment, 193 

and is described by a two-dimensional Gaussian function for the reproductive niche, 194 
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with each species having a unique optimum. The Gaussian function is cut off at a 195 

threshold of 0.001 to obtain finite niche breadth. Dispersal is simulated using a 196 

negative exponential dispersal kernel where the rate parameter α determines the mean 197 

dispersal distance (1/α). 198 

(4) Recruitment into empty space or by competitive replacement follows a lottery function 199 

of dispersal-driven propagule supply and interspecific differences in competitive 200 

ability. Competitive performance depends on the species’ niche, in particular the 201 

probability λ of propagules to survive in the understory of adults prior to recruitment, 202 

thus mimicking simple resource competition. An individual’s competitive 203 

performance (the probability of a propagule to establish and replace the resident) is 204 

proportional to the ratio between its survival probability λ and that of the resident (or 205 

between λ and a threshold of 0.1 in empty cells). The survival probability λ is a 206 

function of the local environment, and we assumed a two-dimensional Gaussian 207 

function for the survival niche (driven by soil moisture and temperature, see section 208 

‘Simulations and sampling’ for more detail), which is equivalent to the reproductive 209 

niche, if not mentioned otherwise. The cells can stay empty, if the overall propagule 210 

rain is too small. 211 

The species’ fundamental niche is equivalent to the reproductive niche while the realised 212 

niche can be smaller due to interspecific competition (determined by the overlap of propagule 213 

survival niches of competing species), or can be larger due to source-sink dynamics, which 214 

occur in the IBM if the species’ survival niche is wider than its reproductive niche.  215 

Simulations and sampling 216 

The virtual communities were simulated in artificial landscapes of 20x125 (coarse-scale) 217 

cells. Spatially auto-correlated patterns of soil moisture in the coarse-scale landscape were 218 

generated from two-dimensional fractal Brownian motion. Spatial variation in temperature 219 

Page 10 of 38Global Change Biology



 11

was represented as a linear latitudinal gradient with added spatially auto-correlated noise. 220 

Sub-scale environmental heterogeneity at the scale of the 10×10 sub-cells was added as 221 

normally distributed noise to the coarse-scale cells’ mean temperature and moisture. We 222 

simulated temporal variability in temperature by adding for each time step a temporally auto-223 

correlated random deviate to temperature.  224 

Simulations were initiated by randomly distributing the virtual species in their respective 225 

suitable habitats. First, simulations were run for 900 spin-up years under current 226 

environmental conditions and variability to ensure that species/communities were in 227 

(dynamic) equilibrium with the environment. After the end of the spin-up period (hereafter 228 

referred to as year 0), climate change was initiated with a linear increase in temperature of 3° 229 

Celsius over a period of 100 years. Soil moisture patterns were assumed to remain constant 230 

over the simulation period. 231 

We ran scenarios for three different community types: (1) neutral dynamics, (2) species 232 

sorting, and (3) single species without any competitors. The first two community simulations 233 

consisted of nine interacting species. For the species-sorting scenarios, the niche optima of the 234 

eight co-occurring species in environmental space were symmetrically arranged around the 235 

focal species niche with a fixed radius (Table S1, Fig. S4). In the neutral scenarios, all species 236 

had equivalent niche optima and widths. All species within a community were assumed to 237 

have equal dispersal ability.  238 

We ran four scenarios for each type of community dynamics:  239 

(1) SR: short-range dispersal without large-scale disturbances (with α=1/mean dispersal 240 

distance=0.05). 241 

(2) LR: like SR but with long-range dispersal (LR; α=0.1). 242 
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(3) SR+sinks: source-sink dynamics where the reproductive niche was narrower (by 1/3) 243 

than the survival niche resulting in the realised niche being larger than the 244 

fundamental niche (Fig. S4). 245 

(4) SR+cont: with large-scale contagious disturbances. 246 

Overall, we ran 12 different scenarios as input for the subsequent range model 247 

intercomparison. To avoid increasing prevalence in the single species and in the source-sink 248 

scenarios, the fundamental niches for these scenarios were reduced (Table S1 and Fig. S4).  249 

Sampling data were gathered at the coarse spatial scale. We assumed no detection errors and 250 

thus species data always represented a ‘perfect’ sampling of the virtual world. Different kinds 251 

of data were sampled according to the input needs of the range models (Fig. 1), including 252 

presence-absence and abundance data (n=500, year 0), abundance time series (n=50, years -10 253 

to 10), and mean demographic rates (years -20 to 0; Appendix S1).  254 

Calibration of range models 255 

SDMs were fitted by relating the sampled presence/absence data from year 0 to the two 256 

environmental variables using the ensemble platform biomod2 in R (Thuiller et al. 2009) and 257 

simple averaging was used to derive consensus predictions. Predicted habitat suitability was 258 

transformed to presence/absence predictions by applying a TSS-maximising threshold (true 259 

skill statistic; Allouche et al. 2006). 260 

MigClim combines habitat suitability or presence/absence predictions from SDMs with a 261 

dispersal kernel to predict colonisation probabilities (Engler & Guisan 2009). Here, habitat 262 

suitability was rescaled to range between 0 and 1 and a sigmoidal relationship was used to 263 

relate habitat suitability to colonisation probability. Other structural relationships were tested 264 

and are discussed in Appendices S1 and S4. As dispersal kernel we took the known dispersal  265 

kernel from the IBM. 266 
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DemoNiche is a stage-structured matrix population model that constrains demographic rates 267 

or carrying capacity by habitat suitability (given by an SDM) and connects local populations 268 

by a dispersal kernel (Nenzén et al. 2012). Thereby, choices have to be made regarding the 269 

demographic property (vital rates or carrying capacity) that should be constrained and the 270 

relationship to habitat suitability (linear, sigmoidal, threshold). Here, we evaluated predictive 271 

performance of different model configuration for year 0, and averaged predictions of the 5 272 

best model configurations (see Appendix S1). Appendix S4 provides a more detailed 273 

discussion on effects of structural uncertainty. We used a box-constraint variable metric 274 

algorithm to calibrate the transition matrix by minimising differences between observed and 275 

predicted mean demographic rates (Appendix S1). Calibrating the transition matrix was 276 

necessary because the induced functional relationship between habitat suitability and 277 

demographic transition probabilities implicitly assumes that demography is known for 278 

optimal conditions (habitat suitability = 1) while demographic rates are usually averaged 279 

across the population. As dispersal kernel we took the known dispersal kernel from the IBM. 280 

LoLiPop simulates local population dynamics with different populations connected by two- 281 

dimensional dispersal kernels (Cabral & Schurr 2010). Population dynamics can only take 282 

place on suitable cells (given by SDM). Here, local population dynamics followed a 283 

Beverton-Holt model extended with Allee effects (Cabral & Schurr 2010). Demographic 284 

parameters were estimated from spatial abundance data from year 0 using maximum 285 

likelihood estimation. As dispersal kernel we took the known dispersal kernel from the IBM. 286 

The DRM is based on a simple stochastic model of local population dynamics (Ricker model) 287 

coupled by a negative exponential dispersal kernel. The demography-environment 288 

relationship is formulated as a regression of intrinsic population growth rate against the 289 

environmental variables and the carrying capacity is assumed to likewise vary proportional to 290 

the growth rate. This demography-environment relationship, the proportionality between 291 
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growth rates and carrying capacity as well as the mean dispersal distance are jointly estimated 292 

from presence/absence data from years -10 and 10 and from 50 randomly selected abundance 293 

time series (covering the same 20 years) using a hierarchical Bayesian modelling approach 294 

(Pagel & Schurr 2012). 295 

Assessing range model performance 296 

Models were calibrated under equilibrium conditions and were then used to project species 297 

distribution and abundance under climate change. Predictive performance was evaluated 298 

against full known truth for each time step within the 100 years of climate change. We 299 

assessed accuracy of spatial predictions by first converting all predictions to binary maps and 300 

then calculating TSS (Allouche et al., 2006). Correlations between observed and predicted 301 

abundance as well as predicted occurrence probabilities were assessed using Spearman’s rank 302 

correlation coefficient Rho. Further, we compared positions of range front, centre, and rear 303 

edge by calculating quantiles (95%, 50%, and 5%, respectively) of the observed and predicted 304 

latitudinal positions. Last, we calculated relative deviation in total abundance (summed over 305 

all cells) as difference between predicted and observed abundance divided by observed 306 

abundance (except for SDMs and MigClim), and differences in relative abundance estimates, 307 

which is the relative decrease in observed and predicted abundance since year 0. 308 

 309 

Results 310 

Stochastic community IBM 311 

The twelve different scenarios led to distinct spatial and temporal distribution of presence-312 

absence and abundance of the focal species (Appendix S2). Generally, short-range dispersal 313 

resulted in stronger spatial clustering of populations. Differences in spatial clustering for 314 

long- and short-range dispersal were particularly pronounced in neutral communities and 315 

Page 14 of 38Global Change Biology



 15

large-scale contagious disturbances resulted in even patchier spatial distributions. Under 316 

climate change, the focal species exhibited range shifts accompanied with distinct population 317 

decreases. Also, for all scenarios the focal species showed distinct time lags in range filling 318 

following climate change with dispersal limitations at the range front and persistence in 319 

unsuitable conditions at the rear range edge (Fig. 2, Fig. S6). Dispersal limitations were more 320 

pronounced in short-range dispersal scenarios and under biotic interactions. In the species-321 

sorting scenario, competing species were blocking the range front, whereas in neutral 322 

communities, dispersal success became more random due to strong spatial clustering. Overall, 323 

these diverse distributions provided a solid basis for comparing the predictive performance of 324 

SDMs and range dynamic models. 325 

Range model performance under current conditions  326 

For the observation period (year 0), DRMs best predicted the focal species’ mean and 327 

maximum abundances along the temperature gradient (Figs. 2, S7-S8). SDMs often slightly 328 

overestimated occurrence probability at range margins, which propagated differently to the 329 

SDM hybrids. For example, LoLiPop predicted local abundances near range margins quite 330 

successfully but underestimated abundances at range centres, whereas DemoNiche 331 

overpredicted local abundances across nearly the whole range. Correspondingly, DRMs 332 

obtained highest TSS and Rho in year 0 for most scenarios although differences between 333 

range models were minor except that DemoNiche achieved much lower TSS scores while 334 

Rho scores were consistently high (Fig. 3). By contrast, LoLiPop and SDMs predicted range 335 

positions under equilibrium conditions best while DemoNiche and DRMs predicted slightly 336 

too large ranges. DRMs and LoLiPop approximated total abundance best while DemoNiche 337 

generally overestimated abundances (Fig. 4). 338 
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Range model performance under a warming climate 339 

Under climate change, prediction accuracy of SDMs decreased significantly because the 340 

range shifting potential was greatly overestimated by the full-dispersal SDMs (Fig. 3), 341 

especially under short-range dispersal (Figs. 5-6). All range dynamic models were able to 342 

overcome these limitations to some extent, achieving higher TSS and Rho values than SDMs 343 

and generally showing less deviation between observed and predicted range margins (Figs. 3, 344 

5, Figs. S11-S27). Here, DRMs were outperformed by SDM hybrids though often only 345 

marginally, with MigClim and DemoNiche showing considerably higher TSS scores, slightly 346 

higher Rho scores and smallest average deviations from range centre and rear edge. LoLiPop 347 

predicted lowest average deviations from range front. Again, total abundance was best 348 

predicted by DRMs and LoLiPop, and overestimated by DemoNiche. However, in terms of 349 

relative change in abundance, all population models produced more similar projections with a 350 

tendency towards underestimating the relative abundance and, thus, overestimating extinction 351 

risks (Fig. 4, Figs. S28-S29). On average, DemoNiche best predicted relative change in 352 

abundance.  353 

Effects of demographic and community processes 354 

Prediction accuracy (TSS and Rho) of all range models decreased most under short-range 355 

dispersal and for scenarios including biotic interactions (Fig. 6). Under neutral dynamics, 356 

which produced the most complex range-shifting dynamics, the simple MigClim generally 357 

performed best. Overestimation of future total abundance by DemoNiche was particularly 358 

strong under neutral dynamics. Here, LoLiPop predicted total abundance best, while there 359 

were no clear winners among the population models for the other cases. However, in some 360 

scenarios, LoLiPop estimated quite extreme demographic rates that resulted in over-361 

compensatory local population dynamics, most severely for the long-range dispersal, species 362 

sorting scenario (Fig. S29). Generally, underestimation of relative abundance and, thus, 363 
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overestimation of extinction risks was more severe under long-range dispersal and, to a minor 364 

extent, under neutral dynamics.  365 

Effects of structural uncertainties 366 

Effects of structural uncertainty were very pronounced in all range dynamic models 367 

(Appendix S4). For example, assuming a linear relationship between SDM-derived habitat 368 

suitability and colonisation probability in MigClim led to misleading predictions of near-369 

complete colonisation of the entire grid in long-range dispersal scenarios (Figs. S30-S31). In 370 

DemoNiche, prior knowledge of the demography-environmental relationships helped 371 

reducing uncertainty considerably. Also, model configurations that achieved highest 372 

accuracies under equilibrium conditions usually remained among the best for climate change 373 

predictions. We found no clear differences between constraining demographic rates or 374 

carrying capacities by habitat suitability in DemoNiche, although the latter showed reduced 375 

accuracy in long-range dispersal scenarios (Figs. S32-S34). 376 

Discussion 377 

We took the challenge of benchmarking state-of-the-art range models of varying complexity 378 

using a comprehensive set of simulated data that account for demographic and community 379 

processes. Based on the comparison across these benchmark data and diverse model outputs, 380 

our initial questions can be answered as follows: (1) Under current climate, more complex 381 

range dynamic models like DRMs better fit the observed species distributions and 382 

abundances, although differences are small. (2) Under climate change, all dynamic 383 

approaches improved predictions over simple SDMs. We could not, however, identify a 384 

single, best approach for making predictions. Predictions of absolute abundance differed 385 

markedly between population models while predictions of relative abundance were similarly 386 

accurate. (3) Differences in dispersal ability and complex biotic interactions may introduce 387 

high uncertainty in range predictions, while the effects of source-sink dynamics and increased 388 
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disturbance were minor. (4) In all range dynamic models, structural decisions during model 389 

building can have great impact on model accuracy, but prior system knowledge on important 390 

processes can reduce these uncertainties considerably. Our results reassure the clear merit in 391 

using dynamic approaches for range predictions. But they also emphasise several needs, 392 

namely: (i) to compare and combine multiple model outcomes for better capturing the 393 

uncertainty associated with range predictions under climate change; (ii) to gather more and 394 

higher quality data on species’ demography; (iii) to run preliminary tests with each 395 

demographic model in order to optimise the structural decisions and settings; and (iv) to 396 

incorporate assembly processes for better capturing the within-community dynamic processes 397 

and their constraints on range dynamics. In summary, implementing these insights will greatly 398 

help advancing our ability of predicting future range dynamics and making these approaches 399 

operational for larger numbers of species.  400 

Range dynamic models on a par for current climates 401 

Under current climates, DRMs provided the best fit in most cases, although their advantages 402 

in prediction accuracies were generally small compared to other range dynamic models and 403 

also compared to SDMs, which were not consistently outperformed by the more dynamic 404 

approaches. DRMs jointly estimate the demography-environment relationship, dispersal and 405 

other demographic parameters and, thus, avoid possible circularities that might arise from the 406 

fitting steps for SDM hybrids (Gallien et al., 2010, Pagel &  Schurr, 2012). Yet, for the 407 

source-sink scenarios that could be assumed to be problematic for SDM hybrids while not for 408 

DRMs (Pagel &  Schurr, 2012, Schurr et al., 2012), we did not find evidence that DRMs 409 

generally outperform hybrids.  410 

Separate fitting steps in SDM hybrids of first fitting SDMs and then fitting the population 411 

model may lead to bias when species are not in equilibrium with their environment. However, 412 

if species are dispersal limited in some parts of their range but the entire niche in 413 
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environmental space is well-covered by data, as is the case for our source-sink and contagious 414 

disturbance scenarios, circularity in SDM hybrids appear not to be a limiting problem. If, on 415 

the other hand, observed species’ distributions are biased by dispersal limitations such that 416 

parts of the environmental niche are not filled, then DRMs may be the preferred choice, as 417 

this approach directly accounts for the (limited) dispersal in the estimation of the species' 418 

niche and can thereby reduce the bias that may otherwise arise from the disequilibrium (Pagel 419 

&  Schurr, 2012). Still, more research is needed to (i) develop robust approaches for assessing 420 

limitations in range filling a priori (Svenning &  Skov, 2004) as an important model 421 

assumption of SDM hybrids, (ii) to assess how prevalent the phenomenon of incomplete 422 

range filling is in extant species, and (iii) to evaluate DRM predictive performance and their 423 

ability to accurately distinguish between environmental filtering and dispersal limitations in 424 

such situations. 425 

Large variation in predictive performance under future climates 426 

All range dynamic models tested here considerably improved climate change projections 427 

compared to SDMs, although relative model performance differed from those under current 428 

climates. Surprisingly, advantages of DRMs in predicting current ranges did not result in 429 

better predictions of future ranges compared to SDM hybrids. This may result from different 430 

calibration approaches, calibration data and process detail covered by the models. For 431 

example, the relatively poor performance of DRMs might arise to some extent from 432 

uncertainty in estimated dispersal rates while dispersal kernels were known for SDM hybrids. 433 

Also, DRMs overestimated the position of future trailing range edges (Figs. 3,6). This likely 434 

originates from the fact that DRMs did not explicitly describe adult survival, which is 435 

independent from the environment in the IBM, but summarised all demographic processes in 436 

an environment-dependent population growth rate. Therefore, the transient persistence of 437 

populations when temperatures have become unfavourable at the rear edge (Fig. 2) was not 438 

accurately predicted. Consequently, the different SDM hybrids outperformed the DRM in 439 
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almost all scenarios. Notably, also MigClim, the simplest approach that only supplemented 440 

SDMs with a dispersal kernel, showed spatial predictions that were, on average, similarly 441 

accurate as the more complex approaches.  442 

The main advantage of the more complex approaches is that they also predict population 443 

dynamics and associated extinction risks. Both before and after climate change simulations, 444 

DemoNiche largely overestimated abundance, while LoLiPop and DRMs produced more 445 

reasonable estimates. Nevertheless, the relative decrease in abundance and associated 446 

extinction risks were often better approximated by DemoNiche than by the other two 447 

population dynamic models. This is likely due to the fact that DemoNiche uses demographic 448 

instead of abundance data for calibration, and that DemoNiche does not restrict abundance 449 

except when habitat suitability was related to carrying capacity. Calibrating demographic 450 

parameters directly allows DemoNiche to more accurately predict population trajectories in 451 

many cases. In fact, calibration on abundance data led to estimation of partially unrealistic 452 

demographic rates in LoLiPop resulting in over-compensatory local population dynamics 453 

(although this could be avoided by choosing an alternative underlying population model; 454 

Cabral & Schurr 2010). Although also calibrating on abundance data, this effect was not 455 

found in DRMs, as DRMs use abundance time series for calibration that inherently include 456 

information on demographic trajectories.  457 

We conclude that (i) predictions of relative change in abundance are often more reliable than 458 

predictions of absolute change in abundance, a feature already known for population viability 459 

models (Beissinger &  Westphal, 1998, Zurell et al., 2012b), and that (ii) data on demography 460 

either through direct measurements or through abundance time series are indispensible for 461 

reliably calibrating population dynamic models (Schurr et al., 2012). Our study confirms that 462 

all calibration approaches using demographic data and/or spatial or temporal abundance data 463 

can generate reasonably accurate predictions overall. However, models based solely on spatial 464 
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abundance data may exhibit high uncertainty in future predictions and require careful testing 465 

of model structure. A constraining point is that accurate data on demography and spatial 466 

distribution and abundance are not available for many species and in high quality. Also, 467 

density is not easy to measure in many plant communities, where biomass or relative cover is 468 

preferentially recorded. Time series of relative cover may show strong inter-annual 469 

variability, which is not necessarily related to population processes (Boulangeat et al., 2012). 470 

Thus, we do not only need to increase our efforts into data collection but also in defining 471 

(more) meaningful response variables for population dynamic studies. 472 

Effects of demographic and community processes 473 

Generally, spatial prediction accuracies of all range models decreased when the focal species 474 

was interacting with other competitor species, especially under short-range dispersal (Fig. 6). 475 

Contrary, the effects of large-scale disturbances and source-sink dynamics on model accuracy 476 

were comparably low. None of the tested range dynamics models account for biotic 477 

interactions and hence they all experienced difficulties in these particular cases. More work is 478 

thus needed to incorporate assembly processes in such dynamic models (Boulangeat et al., 479 

2012, Cabral &  Kreft, 2012, Mokany et al., 2012). Therefore, caution is advised with these 480 

models when biotic interactions are highly stochastic as was shown in the neutral scenarios. 481 

Although the assumption of neutral community dynamics is much debated for temperate 482 

ecosystems, observed spatial distributions are often astoundingly consistent with neutrality 483 

even if driven by different mechanisms (Bell, 2005). Our results indicate that whenever the 484 

ecosystem under study is strongly affected by biotic or environmental stochasticity, simpler 485 

range models such as MigClim may be preferred over more complex population models 486 

although prediction of population dynamics and abundances cannot be retrieved from such 487 

models.  488 
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We additionally stress that although predictive performances of all models decreased stronger 489 

in the short-range compared to long-range dispersal scenarios, this does not imply that 490 

predictions are generally more reliable for long-distance dispersers. Our results need to be 491 

judged with some caution and with respect to the virtual simulation model setup, in which all 492 

species of the community had the same dispersal ability and recruitment was proportional to 493 

the amount of propagule rain. This is, of course, a simplifying assumption and we will likely 494 

observe even more complex community dynamics if species vary in dispersal ability (Cabral 495 

&  Kreft, 2012). It is, thus, reasonable to assume that long-distance dispersers may also 496 

experience substantial migration limitation from competitors.  497 

Uncertainty through structural decisions in range dynamic models 498 

Most applications of range dynamic models ignore uncertainty in model structure and their 499 

effect on prediction uncertainty (but see Cabral &  Schurr, 2010). Our results clearly show 500 

that structural decisions in model building are crucial and may strongly affect prediction 501 

accuracies. Range dynamic models necessarily simplify the species-environment relationship 502 

as well as the colonization and extinction processes and these simplifying assumptions may 503 

lead to large uncertainties (Appendix S4). Important structural decisions in range dynamic 504 

models relate to differences in the relationship between habitat suitability and demographic 505 

rates, which has hitherto little empirical support (McGill, 2012, Thuiller et al., 2010, Thuiller 506 

et al., 2014) and should receive more attention in the future. The different range dynamic 507 

models may strongly differ in how variation in the environment-dependent demographic rate 508 

drives variation in (i) local abundance or carrying capacity, (ii) persistence, and (iii) propagule 509 

dispersal and associated colonisation success. This aspect becomes even more important, 510 

when such models are applied in a climate change context, where different sources of 511 

uncertainty need to be considered in order to make meaningful projections with sufficient 512 

attention given to the sources of uncertainties. 513 
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Such structural aspects are rarely considered in dynamic range predictions, but we strongly 514 

advise to do so and to assess to what degree prediction accuracies vary under different model 515 

structures. In DemoNiche, for example, using habitat suitability to constrain carrying capacity 516 

led to more realistic abundance estimates in some scenarios, but caused higher uncertainty 517 

and erroneous predictions of extinction in other scenarios. Constraining vital rates seemed 518 

more robust in that respect, but only if appropriate vital rates were selected according to prior 519 

knowledge of the species’ ecology. Overall, we found that the DemoNiche configurations that 520 

achieved highest accuracy under equilibrium conditions usually remained among the best 521 

during climate change as well. Accordingly, the best model configurations under current 522 

climate could be used for making consensus forecasts. Alternatively, approximate Bayesian 523 

computation might be employed to optimise the structural link between the habitat suitability 524 

and demography in SDM hybrids given the data (Hartig et al., 2011). This idea is similar to 525 

the information criterion based approach used by Cabral and  Schurr (2010) in LoLiPop in 526 

order to select among different underlying population models including or not Allee effects 527 

and overlapping generations. Notably, the environment-demography relationships in LoLiPop 528 

and DRMs, in particular more differentiated environmental responses of different 529 

demographic processes, should also be explored more thoroughly in the future, although such 530 

assessment will require larger computational efforts.  Nevertheless, we want to stress that the 531 

underlying idea of DRMs of jointly estimating the different constraints on the niche, namely 532 

environmental limitation, population dynamics and dispersal, is better integrated with 533 

ecological theory than hybrid approaches (for discussion see Schurr et al., 2012).  534 

Limitations and extensions 535 

Clearly, even a model intercomparison using simulated data can by no means be exhaustive 536 

(Zurell et al., 2010). Our choice of assembly processes, dispersal and other demographic 537 

processes, and landscape structure represents only one possible implementation and is still 538 

highly simplified in many aspects. Nevertheless, such approach allowed for generating 539 
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consistent benchmarking data, producing an array of important demographic and community 540 

processes that are known to affect species’ range limits. Therefore our results provide insight 541 

into comparative model performance in a wide subset of potential cases. Clearly, subsequent 542 

comparison on field data and evaluation of other complicating factors such as sampling effort 543 

or bias, unequal dispersal abilities and unequal competitive ability of heterospecifics among 544 

others will be additionally informative. Also, the robustness of range dynamic models under 545 

novel environments (Williams &  Jackson, 2007, Zurell et al., 2012a), changing collinearity 546 

structures in environmental predictors (Dormann et al., 2013) or arbitrary scale decisions 547 

(Thuiller et al., 2015) should be tested in the future.  548 

Moreover, although we aimed for a representative selection of current modelling frameworks 549 

for predicting range dynamics and actual abundance (Ehrlén &  Morris, 2015), our study 550 

could only include a subset of available software applications.  Lurgi et al. (2015) provide an 551 

extensive review on available computer platforms for predicting population- or individual-552 

based range dynamics, which vary in the accommodated detail of demographic processes and 553 

complexity in species’ lifecycles. In comparison to some other platforms, for example 554 

RAMAS (Akçakaya, 2000) that has been used rather widely in conservation context (cf. 555 

Fordham et al., 2013) and more recently also for predicting range dynamics (e.g., Anderson et 556 

al., 2009, Keith et al., 2008, Pearson et al., 2014, Swab et al., 2015), DemoNiche, as our 557 

example of a stage-structured matrix population model, allows only a relatively low level of 558 

complexity in the species’ modelled life history. As the life cycle of the simulated species was 559 

likewise simple, this is unlikely to have limited the performance in our model. However, for 560 

other applications that demand a higher level of detail in the species’ life cycle or in 561 

environmental drivers, other approaches, such as RAMAS, might be preferable (Lurgi et al., 562 

2015). 563 
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Summary 564 

Our range dynamic model intercomparison yielded no clear winners or losers. While all range 565 

dynamic models show clear benefits over simple SDMs, we cannot provide simple 566 

suggestions which model framework to choose for any single application. Currently, model 567 

choice will depend to a large extent on data availability and on prior knowledge on species’ 568 

ecology (Lurgi et al., 2015). For example, we currently lack spatiotemporal abundance data or 569 

solid demographic information for many taxa, which clearly limits model choice. As far as 570 

possible given data limitation, we generally advise a comparison of predictions from multiple 571 

models for improved understanding of model behaviour and prediction uncertainty (Cheaib et 572 

al., 2012). Thereby, great discrepancies between model predictions may indicate that we 573 

missed important ecological mechanisms. More efforts are needed to better understand the 574 

underlying mechanisms and its calibration in range dynamic models. This is specifically true 575 

for the interplay between demographic rates and biotic interactions in communities. Also, 576 

uncertainty through structural decisions should be assessed more routinely, and important 577 

model assumptions of range models should be verified a priori, for example the degree of 578 

range filling. Clearly, broader application of range dynamic models is limited by data and by 579 

computational efforts. Computation times are still quite high for DRMs compared to SDM 580 

hybrids. However, data availability is more crucial. We have shown that different kinds of 581 

calibration data (abundance, demographic rates) can be utilised, and that also SDM hybrids 582 

can be calibrated in a (semi-) automated way. Still, more efforts should be given to collecting 583 

longer-term and large-scale data on abundance and demography. Only such consistent data 584 

basis can ensure wide application of range dynamic models for climate impact assessment. 585 

Future studies should further focus on evaluating the effects of sampling effort and sampling 586 

bias, and of other complicating processes such as asymmetric competition or niche evolution 587 

on prediction accuracy of range dynamic models. 588 

 589 
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Figure 1. Main characteristics of implemented range models used for model inter-comparison. Habitat 
suitability maps (darker grey shades indicate higher suitability) or presence/absence maps (P/A, with black 
indicating presence) derived from SDMs serve as input to SDM hybrids. These are then linked with dispersal 

kernels and with a population model (except MigClim). DRMs infer the environment-demography relationship 
directly from the data and do not rely on SDMs, which is a major difference to DemoNiche and LoLiPop. 
Importantly, DemoNiche is calibrated on demographic data while the demographic models in LoLiPop and 
DRM are calibrated on spatial abundance data respective P/A maps and abundance time series. Different 
structural relationships may be assumed to link MigClim and DemoNiche to SDM derived habitat suitability 
or P/A predictions. MigClim outputs P/A maps as predictions while all other dynamic range models output 
abundance maps as predictions (darker blue shades indicate higher abundances). The prefix ‘R:’ indicates 

the available R package (R Development Core Team 2014).  
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Figure 2. Realised temperature range of focal species for the long- (LR) and short-range (SR) dispersal 
variants of the species-sorting scenario as approximated by mean observed abundances along the 

temperature gradient. Top row shows the niche filled by the virtual species before (year 0) and after climate 

change (year 100). For both scenarios, realised ranges in year 100 exhibit lower overall abundances and a 
shift to the warmer end of the temperature tolerance (i.e. dispersal limitation at the cold front, persistence 
at the warm rear edge). Bottom row shows the corresponding predictions by the different range models for 

year 0.  
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Figure 3. Boxplots depicting performance of different range models over all scenarios. We show TSS, 
Spearman’s rank correlation coefficient Rho, and deviations from range front, centre and rear for the years 0 

and 100. SDM: species distribution model, MC: MigClim, DN: DemoNiche, LLP: LoLiPop, DRM: dynamic 

range models.  
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Figure 4. Boxplots depicting abundance estimates of population models over all scenarios. Top row shows 
the factor of deviation in total abundance with positive and negative values referring to overestimation and 
underestimation of true abundance, respectively. Bottom row shows deviation in relative abundance with 

year 0 as reference. DN: DemoNiche, LLP: LoLiPop, DRM: dynamic range models.  
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Figure 5. Observed abundances of virtual species for years 0 and 100, and predictions of range models for 
year 100 after climate change for the species sorting scenario with long range dispersal (left) and short 

range dispersal (centre), and for the neutral dynamics scenario with short range dispersal (right). 
Abundances are presented in blue shading with darker colour indicating higher abundance. For SDMs, 
predicted habitat suitability is shown with sandy colours indicating suitability values that correspond to 

predicted absences, and grey shading indicating suitability values that correspond to predicted presences, 
with darker colours indicating higher habitat suitability. MigClim predicts colonised (in black) vs. uncolonised 

cells. Grey shading in MigClim indicates that these cells were not colonised in all replicate runs. SDM: 

species distribution model, MC: MigClim, DN: DemoNiche, LLP: LoLiPop, DRM: dynamic range model.  
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Figure 6. Prediction accuracies (grey) and error rates (orange/blue) obtained for range models under 
different scenarios, with circle sizes being proportional to accuracy or error rate. The table compares 

measures before (open circles) and after climate change (filled circles). The more similar filled circles are to 
open circles, the less decrease in prediction accuracy or the less increase in error rates were observed over 
time. Squares indicate the best model for year 0 (thin lines) and year 100 (thick lines). Accuracy measures: 
TSS (true skill statistic) and Rho (Spearman’s rank correlation coefficient). Error measures: M05, M50 and 

M95: absolute differences between observed and predicted range margins, (5%, 50% and 95% quantiles of 
latitudinal distribution). N: factor by which predicted absolute abundance overestimates/underestimates 

observed abundance. N/N0: absolute difference between observed and predicted relative abundance. Orange 
indicates overestimation and blue underestimation. Maximum circle sizes correspond to TSS=0.87, 

Rho=0.89, M=37 cells, N= 22, and N/N0=57%.  
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