ŏф1

Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence

de Bello, Francesco^{1,2*}; Thuiller, Wilfried¹; Lepš, Jan^{3,4}; Choler, Philippe¹, Clément, Jean-Christophe¹; Macek, Petr^{3,5}; Sebastià, Maria Teresa² & Lavorel, Sandra¹

¹Laboratoire d'Ecologie Alpine, UMR CNRS 5553, Université Joseph Fourier, 38041 Grenoble, France;

²Laboratory of Plant Ecology and Forest Botany, Forestry and Technology Centre of Catalonia, E-28240 Solsona, and

Agronomical Engineering School, University of Lleida, E-25198 Lleida, Spain;

³Department of Botany, Faculty of Sciences, University of South Bohemia;

⁴Institute of Entomology, Czech Academy of Sciences, CZ-37005 České Budějovice, Czech Republic;

⁵Institute of Botany, Czech Academy of Sciences, CZ-37982 Tøebon, Czech Republic;

**Corresponding author; E-mail fradebello@ctfc.es*

Abstract

Questions: Trait differentiation among species occurs at different spatial scales within a region. How does the partitioning of functional diversity help to identify different community assembly mechanisms?

Location: Northeastern Spain.

Methods: Functional diversity can be partitioned into within-community (α) and among-communities (β) components, in analogy to Whittaker's classical α and β species diversity concept. In light of ecological null models, we test and discuss two algorithms as a framework to measure α and β functional diversity (the Rao quadratic entropy index and the variance of trait values). Species and trait (specific leaf area) data from pastures under different climatic conditions in NE Spain are used as a case study.

Results: The proposed indices show different mathematical properties but similarly account for the spatial components of functional diversity. For all vegetation types along the climatic gradient, the observed α functional diversity was lower than expected at random, an observation consistent with the hypothesis of trait convergence resulting from habitat filtering. On the other hand, our data exhibited a remarkably higher functional diversity within communities compared to among communities ($\alpha \gg \beta$). In contrast to the high species turnover, there was a limited functional diversity turnover among communities, and a large part of the trait divergence occurred among coexisting species.

Conclusions: Partitioning functional diversity within and among communities revealed that both trait convergence and divergence occur in the formation of assemblages from the local species pool. A considerable trait convergence exists at the regional scale in spite of changes in species composition, suggesting the existence of ecological redundancy among communities.

Keywords: Alpha and beta diversity; Assembly rules; Biotic and abiotic filtering; Limiting similarity; Niche complementarity; Redundancy.

Introduction

Functional trait diversity (FD, the extent of trait differences in a unit of study; Tilman 2001; Petchey & Gaston 2002; Wilson 2007) is one of the most relevant components of biodiversity affecting ecosystem functioning (Díaz & Cabido 2001; Hooper et al. 2005; Mason et al. 2005; Díaz et al. 2007). Community assembly theory suggests that several forces influence FD, particularly species interactions and habitat filtering (Cornwell et al. 2006; Grime 2006). The relative effects of these processes on trait diversity have traditionally been assessed within communities (Stubbs & Wilson 2004; Fukami et al. 2005; Cornwell et al. 2006; de Bello et al. 2006; Grime 2006; Wilson 2007; Pillar et al. in press), whereas these effects also vary across spatial scales and communities. Community assembly results from forces operating at different spatial scales (Díaz et al. 1998; Pierce et al. 2007) so that trait diversity among species occurs in a given region at different levels, e.g. within community and among communities (MacArthur & Levins 1967; Thompson et al. 1996; Westoby et al. 2002).

The within-community FD describes trait diversity among species coexisting within a given community. Species interactions are supposed to

1042		JVS	1042	R	Dispatch: 16.2.09	Journal: JVS	CE: Mamatha/Sukar
		Journal Name	Manuscript No.	D	Author Received:	No. of pages: 12	PE: Pavithran/Gk

3

4

5

6

Q2

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

increase the within-community FD, i.e. by limiting the similarity among coexisting species traits (trait divergence; Chesson et al. 2004; Stubbs & Wilson 2004; Hooper et al. 2005). On the other hand, habitat filtering reduces within-community trait differentiation, i.e. by selecting species with shared ecological tolerances from the regional species pool (trait convergence; Weiher & Keddy 1995; Díaz et al. 1998; Garnier et al. 2004; Fukami et al. 2005; Bertiller et al. 2006; Cornwell et al. 2006; Grime 2006). These assembly forces, however, also exert pressure over the among-communities FD, i.e. the trait diversity among species from different communities. Although there have been attempts to calculate among-community components of FD (Westoby et al. 2002), we still need formal frameworks to estimate and assess the relative effects of both within- and among-community trait differentiation.

Understanding spatial patterns of FD is important because it reveals the operation of nonneutral community assembly rules (Weiher & Keddy 1995; Stubbs & Wilson 2004; Cornwell et al. 2006; Mason et al. 2007; Mouillot et al. 2007; Petchey et al. 2007). If local assemblages are composed of random sets of species, their FD values will tend to be distributed according to null models. Nonrandom distributions of species traits indicate that processes such as limiting similarity or environmental filtering structure local assemblages (Mason et al. 2007; Mouillot et al. 2007; Petchey et al. 2007). Therefore, by comparing observed patterns in FD to null expectations, it is possible to test different hypotheses about community assembly that determine trait convergence and divergence among species. Nevertheless, the spatial partitioning of FD is normally not taken into account by such null model approaches. The assessment of within community FD alone only allows for the existence of either trait convergence or trait divergence (see e.g. Fig. 1 in Petchey et al. 2007).

In this paper, we first recall Whittaker's (1975) classical concepts of within- and among-community species diversity and express them in terms of trait diversity. Then, using field data from pastures in NE Spain, we partition both species diversity and FD into different spatial components. We apply two FD algorithms and use null models to compare expected and observed FD partitioning. We conclude that the assessment of trait diversity at different spatial scales, combined with ecological null models, provides a robust framework giving new insights into processes of species assembly and coexistence. In particular, the extent of α and β FD will clarify the relative strength and spatial scale of governing forces for trait convergence and divergence (Grime 2006; Wilson 2007).

The Spatial Components of Species Diversity sensu Whittaker

Diversity has been traditionally defined as the variety and abundance of species in a defined unit of space (Magurran 2004). It is measured at various levels of resolution and decomposed into different spatial components highlighting the mechanisms that underlie ecological differentiation and species coexistence (Loreau 2000; Pavoine et al. 2004; de Bello et al. 2007b). The total species diversity in a region (γ diversity) can be partitioned into the within-community diversity (α diversity) and the amongcommunities diversity (β diversity; Whittaker 1975). This partitioning could be additive (e.g. $\gamma = \alpha + \beta$) or multiplicative ($\gamma = \alpha \times \beta$), depending on models and mathematical indices used (Lande 1996; Loreau 2000; Veech et al. 2002; Ricotta 2005; Jost 2007).

Alpha species diversity has been conventionally expressed as the number of coexisting species within a given community (i.e. species richness), or by composite indices that incorporate the proportion of each species (e.g. Simpson index; Magurran 2004 and references therein). Beta species diversity has been defined as the extent of turnover (or dissimilarity) among communities, i.e. how much diversity is added when pooling different communities together. Several methods for β species diversity measurements have been developed (Magurran 2004). One simple and intuitive formula is based on partitioning the different spatial components of species richness: $\beta = \gamma - \bar{\alpha}$ (Lande 1996; Loreau 2000; Veech et al. 2002; Ricotta 2005), where β is defined as the difference between the total richness in a region (γ) and the average richness within all communities present in that area ($\bar{\alpha}$; see example in Fig. 1). The disadvantage of this approach is that the total regional richness (γ) is often estimated only using a subset of representative communities within the region (Magurran 2004). As a consequence, β and γ increase with the number of sampled units.

Methods to Assess α and β Functional Diversities

Recently, the partitioning of FD into within and among communities (α and β trait diversity) has been proposed in analogy to Whittaker's α and β species diversity (Pavoine et al. 2004; Ricotta 2005). This analogy suggests that α and β FD are calcu-

lated for a set of communities in the same way as species diversity. Yet evidence from real commu-nities is scarce, probably because questions on how to define, measure and assess FD variability remain open (Lepš et al. 2006; Petchey & Gaston 2006). Here we discuss two techniques to assess α and β trait diversities for a set of communities: (1) the Rao quadratic entropy index, FD Rao, and (2) an index based on functional trait variance, modified from Mason et al. (2005), FD Mason. These indices, used as an example for a framework of FD partitioning, are among those taking species abundance into ac-count and having larger applicability in FD calculation (Mason et al. 2003, 2005; Lepš et al. 2006; Petchey & Gaston 2006; Lavorel et al. 2008). The framework discussed may be extrapolated and adapted to other indices of functional diversity, in-cluding those not considering species abundance (Mason et al. 2007; Petchey et al. 2007). Here, the framework is illustrated using vascular plant data sampled in pastures along a climatic gradient in northeastern Spain (Table 1).

The Rao index

Alpha functional trait diversity

The within-community functional trait diversity $(\alpha \text{ FD})$ can be defined as the extent of trait dissim-

ilarity among species in a community (Petchev & Gaston 2002; de Bello et al. 2006). Several indices of within-community FD have been proposed and analysed (Petchey & Gaston 2006 for a review). In particular, the quadratic entropy index of diversity proposed by Rao (1982) has recently been applied to calculate α functional diversity (Pavoine et al. 2004; Ricotta 2005; de Bello et al. 2006). The FD index calculated with Rao's formula is of particular interest because it generalizes the common and intuitive index of the Simpson species diversity (if all the species have different traits, the Rao FD equates to Simpson diversity; see Pavoine et al. 2004; Ricotta 2005; Lepš et al. 2006). Consequently, species and functional diversity could be compared via the Rao index (Pavoine & Dolédec 2005; de Bello et al. 2006).

The Rao index for species diversity represents the probability that two randomly chosen individuals within a community (i.e. α) are from different taxa (Ricotta 2005; Lepš et al. 2006). This means that the Rao index is equal to 1 minus the Simpson dominance index, D (for demonstrations see Botta-Dukat 2005):

$$D = \sum_{i=1}^{S} p_i^2(1)$$

Table 1. Partitioning of species diversity (using species richness and the Simpson index of species diversity, SD) and functional diversity (using the Rao index, "FD Rao", and the variance approach, "FD Mason") into different spatial components (α , β and γ ; % = percentage accounted by α and β over γ). The moisture index for each vegetation belt reflects mean annual precipitation over potential evapotranspiration (P/PET; i.e. higher values indicate more humid conditions).

Regions (5 vegetation belts)	Species diversity				Functional diversity			
	no. sp.	%	SD	%	Rao	%	Mason	%
γ total all regions	134	100	0.98	100	0.76	100	37.21	100
$\bar{\alpha}$ within sites	25.9	19.3	0.92	93.5	0.68	90.0	31.35	84.3
β among sites	108.1	80.7	0.06	6.5	0.08	10.0	5.86	15.7
Veg. belt 1 (moist. index = 0.39)								
γ total region	46	100	0.94	100	0.72	100	29.32	100
$\bar{\alpha}$ within sites	15.9	34.5	0.89	94.5	0.68	94.7	27.62	94.2
β among sites	30.1	65.5	0.05	5.5	0.04	5.3	1.70	5.8
Veg. belt 2 (moist. index = 0.50)								
γ total region	65	100	0.96	100	0.72	100	63.34	100
$\bar{\alpha}$ within sites	21	32.3	0.89	93.1	0.64	89.3	56.04	88.5
β among sites	44	67.7	0.07	6.9	0.08	10.7	7.30	11.5
Veg. belt 3 (moist. index $= 0.72$)								
γ total region	74	100	0.96	100	0.71	100	19.79	100
$\bar{\alpha}$ within sites	28.8	39.0	0.93	96.1	0.68	95.3	19.15	96.8
β among sites	45.1	61.0	0.04	3.9	0.03	4.7	0.64	3.2
Veg. belt 4 (moist. index $= 1.34$)								
γ total region	78	100	0.97	100	0.73	100	24.74	100
$\bar{\alpha}$ within sites	30.3	38.8	0.94	96.4	0.69	94.0	23.29	94.1
β among sites	47.7	61.2	0.03	3.6	0.04	6.0	1.45	5.9
Veg. belt 5 (moist. index $= 2.05$)								
γ total region	53	100	0.97	100	0.74	100	31.92	100
$\bar{\alpha}$ within sites	30.3	57.2	0.94	97.7	0.72	97.6	30.67	96.1
β among sites	22.7	42.7	0.02	2.3	0.02	2.4	1.25	3.9

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

where p_i is the proportion of the *i*th species in a community (i.e. sample) and s is the number of species in the community (species richness).

If we calculate FD, the Rao index indicates the expectation of trait dissimilarity between two randomly chosen individuals in a community (Ricotta 2005; Lepš et al. 2006). If d_{ii} is the dissimilarity between each pair of species *i* and *j*, the FD calculated with the Rao index gives:

$$\alpha FD = \sum_{i=1}^{s} \sum_{j=1}^{s} d_{ij} p_i p_j(2)$$

Therefore, FD is the sum of the trait dissimilarity among all possible pairs of species, weighted by the product of the species relative abundance. By considering species abundance, the index gives highest importance to the dissimilarity between dominant species (de Bello et al. 2007a). There are several possible ways to calculate d_{ii} depending on the type of data and traits available (Mouillot et al. 2005; Ricotta 2005; Lepš et al. 2006); d_{ii} usually varies from 0 (species *i* and *j* totally overlap in their traits) to 1 (species *i* and *j* differ totally in their traits). For example, for a single categorical trait (e.g. legumes versus no legumes), $d_{ij} = 1$ indicates pairs of species from different categories, while for species sharing the same category $d_{ii} = 0$.

For quantitative traits, various dissimilarity measures have been suggested (Mouillot et al. 2005; Ricotta 2005; Lepš et al. 2006). Here we use $d_{ii} =$ 1 - O, where O is the overlap of the trait value distribution between species (which takes into account the within-species trait variability). To calculate the trait value distribution, we used the average and standard deviation of the trait values measured for each species in the field, and calculated the overlap assuming normal distribution of trait values (see e.g. Fig. 3 in Lepš et al. 2006). The dissimilarity (and consequently the FD index) can be applied for single and multiple traits (de Bello et al. 2006; Lepš et al. 2006). The way in which dissimilarity is calculated is one of the most important methodological decisions affecting the behaviour of FD.

Beta functional trait diversity

Recently, Pavoine et al. (2004), Pavoine & Dolédec (2005) and Ricotta (2005) have proposed partitioning of FD into different spatial components with the Rao index. With different mathematical approaches, they proposed calculation of the β (among-communities) and γ (regional) components of trait diversity, similar to Whittaker's additive approach ($\gamma = \alpha + \beta$; Veech et al. 2002). This allows the partitioning of the total functional diversity in a way analogous to the decomposition of the sum of squares in ANOVA (Pavoine et al. 2004; Ricotta & Marignani 2007). Such partitioning of diversity can also be used to compare various diversity components simultaneously (e.g. genetic, phylogenetic, taxonomic and functional, depending on the information used to define d_{ij} ; Pavoine et al. 2004; Hardy & Senterre 2007). Similar to the decomposition of sum of squares in ANOVA, the method can be applied at multiple scales (e.g. to hierarchical structured data or, possibly, to factorial designs; Pavoine & Dolédec 2005). With the Rao approach, β FD reflects how much new functional diversity is gained when pooling different communities together (Fig. 1). In particular, β Rao FD is the difference between γ (the expectation of dissimilarity of two random individuals in the whole region) and $\bar{\alpha}$ (the expected dissimilarity of two individuals within communities).

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Fig.1. Comparison of FD values in two hypothetical communities with four species and with different trait value overlaps among species (curves = trait value distribution for each species; bigger curve intersection = greater overlap). Two indices are presented: the FD Rao index (which calculates the dissimilarity between all pairs of species), and the FD Mason (sums the species trait deviation with respect to the community trait mean). Community 1 has a more even trait value distribution, i.e. with smaller trait overlap. Community 2 has a higher trait overlap among species (e.g. two herbs, species e and f, and two trees, species g and h, with height as a trait; i.e. theoretical lower niche complementarity). The two FD indices can lead to different results: the FD Mason is higher in community 2 (the sum of deviation of species mean trait is higher than in community 1), but the FD Rao is lower (increased overlap, for example between species e and f). Note that this difference is valid when the trait dissimilarity in the Rao index is based on the overlap of trait value distribution.

Rao index application

The approach of calculating different spatial components of FD with the Rao index is appealing and relatively easy to use. To calculate different spatial components of FD it is necessary to follow three steps: (1) calculate the α FD for every community; (2) calculate the γ (regional) FD; and then (3) the β FD is defined by $\beta = \gamma - \overline{\alpha}$. To calculate the γ FD (i.e. step 2), it is necessary to treat the study region as a single sample (being the proportion of species occurring in the region equal to the average over all sampling points; Fig. 1):

$$\gamma FD = \sum_{i=1}^{s} \sum_{j=1}^{s} d_{ij} P_i P_j(3)$$

where

$$P_i = \sum_{c=1}^n p_{ic}/n(4)$$

c is the number of sampling points (1 to n) in the region, and S is the number of species in the region. In order to calculate FD for a given sample, it is essential to have two matrices of data: one containing species abundances (or presence/absence) in different communities (i.e. the sampling points) and another containing the traits of each species. Algorithms and examples to calculate FD are available, e.g. at http://botanika.bf.jcu.cz/suspa/Funct-Div.php. The calculation of α , β and γ species diversity could be similarly considered using the Simpson index, i.e. following the above-mentioned steps (1-3), where only the species by samples matrix is necessary.

The Mason index

Another well-known index of FD is the index of functional divergence that was originally proposed by Mason et al. (2003, 2005) for α FD. This intuitive approach considers the α FD as the variance of species traits within a community (i.e. their deviation from the community mean). Two communities might have a similar mean trait value but a different deviation from this mean (practically, this can be seen as the error bars shown around the community mean trait value). In particular, the α functional trait diversity could be defined as:

$$\alpha FD = \sum_{i=1}^{S} p_i (x_i - \bar{x})^2, (5)$$

where p_i is the proportion of the *i*th species, *s* is the number of species in the community (species rich-

ness), x_i is the mean trait value of the *i*th species, and \bar{x} is the community mean (or aggregated mean value, see also Fig. 1) calculated as:

$$\bar{x} = \sum_{i=1}^{s} p_i x_i(6)$$

This α functional diversity represents the overall variance of a given trait in a community. Note that the index in formula (3) is modified with respect to Mason et al. (2003, 2005), i.e. without the original transformation proposed by the authors (Lepš et al. 2006). Following the same approach, β functional diversity is defined as:

$$\beta FD = \sum_{c=1}^{n} \frac{1}{n} (\bar{x}_c - \bar{x}_{region})^2 (7)$$

where *n* is the number of communities (samples) in the region, x_c is the average of the *c*th community (c = 1, 2, ..., n) and x_{region} is the overall mean across all communities in a region. With this formula, the β functional diversity represents the increase in variance resulting from pooling different communities together.

Similar to Rao's index, this approach can also be used to decompose diversity as for the sum of squares in ANOVAs. A disadvantage of using Mason's FD approach is that the trait diversity is calculated only using the species trait mean values. Consequently, the within-species variability for a trait is not accounted for (Mouillot et al. 2005; Lepš et al. 2006) and, therefore, it cannot consider the possible overlap between pairs of species (as with dcalculated using species overlap in the Rao index; Fig. 1). This latter characteristic could lead to different results and information between FD Rao and FD Mason (note that if trait overlap is not taken into account in the calculation of trait dissimilarity. the two indices give similar results because of similar mathematical formulations: not shown). For example, the FD Mason has high values when species have very different traits from the community mean, even if some species have overlapping traits between them (Fig. 1, community 2; e.g. a community with two tree species and two herbaceous species, with height as a trait). The latter is a case in which FD Rao will have low values because some pairs of species overlap in their traits (resulting in a more realistic estimate of niche space occupied).

Case study

We sampled 60 plant communities from pastures along an altitudinal and climatic gradient in

NE Spain. The samples $(100 \text{ m}^2 \text{ each})$ were distributed across five vegetation belts along the gradient (12 samples per region in a factorial design, see de Bello et al. 2006, 2007b for details). Species frequency was recorded as presence/absence in $100 \times 1 \text{ m}^2$ guadrats for each sample. Data was used to calculate: (1) species diversity using the Whittaker additive approach, (2) Simpson species diversity and FD with the Rao index and (3) following Mason's approach (Table 1).

The species included in the case study were the most frequent (and consequently the most dominant) vascular plant species found along the gradient (134 species of the total 404 found in the study, representing on average >74% of the total vegetation composition for each sample). The turnover of these species among communities thus reflects replacement of the most abundant species. For this example, we considered specific leaf area (SLA) as a single trait to calculate FD. This trait is of particular relevance because it mirrors a fundamental axis of differentiation among species (Díaz et al. 2004), from more "acquisitive" (higher SLA, rapid acquisition of resources) to more "conservative" (lower SLA, conservation of resources within protected tissues) strategies. SLA was measured for all the 134 most abundant species (with a minimum of five individuals×two leaves per species). The mean and standard deviation for the SLA values for each species were used to calculate species overlap for the Rao index (details in Lepš et al. 2006).

Null models

Randomization tests were applied to calculate "null" distributions of species composition (i.e. on the species × plot matrix) and both indices of functional diversity. This was done by applying the trial swap method of Miklos & Podani (2004), which satisfies requirements for equi-distribution in the randomization. For this method, we used the commsimulator function implemented in the vegan library (http://cc.oulu.fi/~jarioksa/softhelp/vegan.html) in the R software (R Development Core Team 2007). Reshuffling the species × plot matrices was done with three constraints, i.e. while keeping (1) the same number of species (species richness) per plot in the permuted and observed data, (2) the same number of total species occurrences per region (i.e. number of plots where the species occur in a region), and (3) the total abundance of species in a region constant (i.e. the sum of the number of quadrats occupied in all plots).

The first two constraints are usually applied in the case of swap methods (Miklos & Podani 2004); however, we considered it equally important to also keep the total abundance of each species constant (constraint no. 3), since species abundances in a region are likely to be related to species functional traits. As the trial swap was initially proposed for species occurrence data only (i.e. presence/absence), randomizations were first done on presence/absence (while respecting the first two constraints). Then, the total abundance of a given species within a region was shuffled among all plots where the species was present in the randomized matrices (R script available on request).

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

For each region (12 plots each), we re-sampled species composition 999 times and calculated FD indices (FD Rao and FD Mason) for each new matrix. The test of significance of observed versus expected values provides a test of the hypothesis that observed functional diversity partitioning differs from that expected at random. This, in turn, provides evidence for the effect of different assembly mechanisms in the biological communities under study.

Results

Species diversity

Our data show a substantial mismatch between partitioning (i) the species richness and (ii) the Simpson index (left section in Table 1). The β Simpson index is much lower than the β species richness (over γ). The β Simpson diversity index (or SD) accounted for 6.5% of the diversity in whole region and ranged from 2.3% and 6.9% within each vegetation belt, while the β species richness accounted for around 80% diversity over the whole region and ranged between 42.7% and 67.7% within each belt (Table 1). This result (and similarly Pavoine & Dolédec 2005) indicates that the β species richness and the ß Simpson diversity indices measure noticeably different properties in species turnover among communities.

The β Simpson index shows increases in the probability that two species will be from different taxa when communities are pooled. Hence, when α Simpson species diversity is high, β diversity is low whatever the extent of the turnover of species (Jost 2007). High α Simpson species diversity implies a strong probability that individuals in a community are different. Therefore, it is likely that this probability cannot increase more by increasing the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

1 number of samples and pooling communities with 2 very different compositions. As a result, the β 3 Simpson will be low even if there is high turnover of 4 species. Our data, with communities having high 5 values of α Simpson diversity, represent an example 6 of such a situation (Table 1); since the least abun-7 dant species along the gradient were not considered, 8 high β species richness reflects a high turnover of the 9 most abundant species. This indicates that the β 10 Simpson index does not specifically focus on the 11 turnover in species composition and that caution is 12 needed in its comparison with other indices of di-13 versity, e.g. species richness and FD. The limitation 14 of comparing the β Simpson diversity with the β 15 richness can be resolved by applying the correction 16 proposed by Jost (2007) to the Simpson index (i.e. 17 $\beta = (\gamma - \alpha)/(1 - \alpha)$). After correction, β Simpson va-18 lues from our data approached β richness values 19 (after correction β Simpson = 75% of the diversity 20 in the whole region, instead of 6.5% obtained with-21 out correction). 22

Functional diversity

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Comparing FD Rao with FD Mason produced very similar results in partitioning the spatial components of functional diversity (right section in Table 1). In the whole region and within each vegetation belt, the proportions of α and β FD accounted for were similar with both methods (Table 1). β FD Rao accounted for 10% diversity over the whole region and ranged between 2.4% and 10.7% within each vegetation belt, while β FD Mason accounted for 15.7% diversity over the whole region and ranged between 3.9% and 11.5% within each belt (Table 1). In our data set, the absolute values of γ FD showed the most notable difference between the two methods: it was rather stable across vegetation belts with Rao's index while it showed marked differences with FD Mason, probably because one index was scaled between 0 and 1 while the other was not. In all vegetation belts considered, and irrespective of the FD index, the observed α FD was lower than expected at random, while, as a result, the observed β FD was higher than expected at random (Fig. 3). These trends were more pronounced at the regional scale, i.e. taking into account species turnover along the climatic gradient (Fig. 3). Finally, β FD Rao was remarkably higher than α FD Rao even when applying a correction similar to that proposed by Jost (2007) for Simpson diversity (after correction β FD Rao = 25% for the whole region; potentially, the same correction could also be applied to the Rao index, l. Jost et al. pers. comm.).

Discussion

Irrespective of the FD index used, we observed strong patterns highlighting different community assembly mechanisms. First, the observed α functional diversity was lower than expected by chance (i.e. α FD observed $<\alpha$ FD expected), an observation consistent with the hypothesis of trait convergence resulting from habitat filtering (Cornwell et al. 2006; Mason et al. 2007; Mouillot et al. 2007; Petchey et al. 2007). A lower observed versus expected FD should indicate that environmental filters constrain coexisting species to share some similar traits, i.e. by selecting species with similar ecological tolerances from the regional species pool (Díaz et al. 1998; Grime 2006; Garnier et al. 2007). Although other explanations exist (Petchey et al. 2007), environmental filtering produces communities with higher similarity than expected at random, thus resulting in a functional redundancy of species traits within communities (see also Cornwell et al. 2006). As a consequence of such filtering, the among-community trait differentiation was higher than expected at random (i.e. β FD observed $>\beta$ FD expected), indicating that the environment selects for species with different traits better adapted to different habitats (Weiher & Keddy 1995).

82 Second, we observed a remarkably higher FD 83 for within communities compared to among com-84 munities (α FD $\gg \beta$ FD; Table 1 and Fig. 3). This 85 suggests that differences in traits among species 86 within a habitat can be as great as trait differences 87 across the full range of an environmental gradient 88 (Fonseca et al. 2000), probably resulting in a modest 89 shift in single plant trait values along environmental 90 gradients (Wright et al. 2004). Previous studies 91 (Westoby et al. 2002; Pavoine & Dolédec 2005) 92 support our observations and suggest that among-93 communities differentiation for particular traits can 94 be relatively small compared with processes acting 95 at local scales (within community). Consistent with 96 our data, results from very large data sets indicate 97 that much of the total leaf economy variation occurs 98 among coexisting species (Wright et al. 2004). This is 99 an important biological pattern, which suggests that 100 the functional differentiation among species is asso-101 ciated with species coexistence, a result consistent 102 with the hypothesis of limiting similarity mechan-103 isms (MacArthur & Levins 1967; Stubbs & Wilson 104 2004; Hooper et al. 2005; Wilson 2007). In our data 105 set, in particular, the coexistence of species of dif-106 ferent growth forms in the same habitats (de Bello 107 et al. 2006) likely underlies the coexistence of species 108 with different SLA (Wright et al. 2004; Bertiller

et al. 2006) because trait convergence within a given growth form is expected (McIntyre et al. 1999).

However, larger α FD values relative to β FD in observed and expected data (Fig. 2) could also result from a mathematical artifact rather than from a reflection of community assembly processes linked to trait divergence. Yet, the null algorithm applied does not assume α and β FD vary independently (i.e.

they are complementary). Indeed, if α FD is larger in the null model than in the observed data, β FD is necessarily smaller. Consequently, larger α than β FD values in both observed and expected data should result from the null model formulation, in which species richness per plot, species frequencies and total abundance of species in a region are similar in the permuted and observed data. Under these

Fig. 2. Different partitioning of functional diversity in observed (black arrows) versus expected data resulting from null species distribution with 999 randomizations (grey bars). The comparison is shown for each of the different vegetation belts considered, from drier (above) to more humid (below) conditions, and for two functional diversity indices (left FD Mason, right FD Rao). Values of functional diversity for within communities (α) and among communities (β) reflect the percentage accounted for over the regional functional diversity (γ). A test of significance of observed versus expected values is shown for each panel.

circumstances, the observed α is smaller than that expected under the null model, and we ascribe this to environmental filtering.

1

2

3

4 Our data, as in other studies (Fonseca et al. 5 2000; Westoby et al. 2002; Wright et al. 2004), de-6 monstrate the biological importance of trait 7 differentiation among coexisting species. Since spe-8 cies adapt to a given habitat through a combination 9 of traits resulting in a number of viable arrange-10 ments, the within-habitat differentiation for 11 particular traits is accompanied by allometric chan-12 ges and/or trade-offs with other traits (Westoby et 13 al. 2002). Therefore, new mathematical tools are 14 needed specifically to test how such within-habitat 15 differentiation occurs compared to that among 16 habitats. In particular, the inherent dependence of 17 FD β on FD α could be avoided by developing a si-18 milar correction to that proposed by Jost (2007) for 19 the Simpson index (L. Jost et al. pers. comm.). In 20 this direction, also, different null models could be 21 applicable: randomizations of only species traits 22 (Cornwell et al. 2006), less constrained species ran-23 domizations (Petchey et al. 2007), or assessments of 24 trait allometric relationships in random versus ob-25 served data. Each approach might be tested with 26 both simulated and real data, to evaluate whether 27 null models can be applied to the partitioning of 28 functional diversity at different spatial scales. Yet, 29 assembly rules often assume lower interspecific than 30 intraspecific competition. As a result, the null mod-31 els might also require information on numbers of 32 individuals and their randomization. 33

Third, the modest turnover of FD among communities contrasts with the high turnover of species among habitats (Whittaker 1975; Fig. 3). Our data, and those in Pavoine & Dolédec (2005), show a much more marked turnover in species (as β species richness) than in functional trait diversity among communities (β FD). Here, with SLA as an example, little functional differentiation occurred among communities over the whole gradient (B FD around 10-15%), although most of the differentiation in species richness occurred at that level (β species richness around 80%). The steep change in species turnover in this case (Table 1, de Bello et al. 2007b) was not caused by the replacement of rare or minor species, since we considered only the most abundant species along the gradient. Therefore, our data represent an indication of the contrasting turnover of species versus FD among communities. This result implies that a high replacement in species composition (taxonomical turnover) might result in a rather stable functional assemblage for certain traits (low functional turnover; e.g. Fukami et al. 2005), sug-

Fig. 3. Contrasting partitioning of diversity of species richness (i.e. first column in Table 1) versus functional diversity (based on the FD Mason, i.e. last column of Table 1) into α ("within-community") and β ("among-communities") components over all locations considered.

gesting the existence of ecological redundancy among communities (Petchey et al. 2007). Certainly, more research is needed to assess whether this pattern is maintained for different traits and for indices of FD based on multiple traits.

Ideally, to compare species and functional diversity partitioning, Rao's index should be applied to both, because the FD Rao is a generalization of the Simpson index of species diversity. Unfortunately, we showed that, due to its formulation, the Rao index for species diversity (i.e. the Simpson index) does not point specifically towards the turnover of species among communities. Therefore, for this purpose, FD could only be compared with other indices of diversity (e.g. species richness; Fig. 3), while remaining aware that different indices give different mathematical and conceptual information. Such comparisons leave open questions as to how much a different turnover in species and functional diversity depends on different methods of calculation or on different biological patterns.

To conclude, we believe that partitioning of functional diversity at different spatial scales can offer new insights into the mechanisms driving trait convergence and divergence and, therefore, the assembly and coexistence of species in biological communities. Partitioning functional diversity within and among communities reveals that both trait convergence and divergence might occur in the formation of assemblages from the local species pool. In particular, while several proofs of trait convergence resulting from habitat filtering have been provided previously (Cornwell et al. 2006; Mason et al. 2007; Mouillot et al. 2007; Petchey et al. 2007), similar proofs of the importance of 55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Q6

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

limiting similarity mechanisms mostly remain overlooked (Wilson 2007; Pillar et al. in press). The assessment of the spatial components of functional diversity, and particularly along environmental gradients, can certainly offer valuable tools to address these questions and evaluate trait convergence and divergence for different traits, organisms and community types.

Acknowledgements. This work was stimulated by journal club sessions in the Laboratoire d'Ecologie Alpine. We are grateful for key inputs from Norman Mason, for the comments of Sandra Díaz on an early draft of the manuscript, for invaluable help of Jari Oksanen with the commsimulator function, and for suggestions from Lou Jost and Carlo Ricotta. Two anonymous referees contributed significantly to the clarity of the manuscript. We thank Matt Robson for language revision. FdB, WT and SL were partially supported by the IFB-ANR DIVERSI-TALP project. The research was funded by the project DIVHERBE from the French ACI-ECOGER programme, the Czech projects LC 06073, GACR(206/06/ 0098) and MSMT6007665801, the EU projects RUBI-CODE (FP6, No. 036890), PASTUS-INTERREG (I3A-4-147-E, INTERREG III-A programme, EU) and Eco-Change (Challenges in assessing and forecasting biodiversity and ecosystem changes in Europe, No: GOCE-CT-2003-506675).

References

- Bertiller, M.B., Mazzarino, M.J., Carrera, A.L., Diehl, P., Satti, P., Gobbi, M. & Sain, C.L. 2006. Leaf strategies and soil N across a regional humidity gradient in Patagonia. Oecologia 148: 612-624.
- Botta-Dukat, Z. 2005. Rao's quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science 16: 533-540.
- Chesson, P., Gebauer, R.L.E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M.S.K., Sher, A., Novoplansky, A. & Weltzin, J.F. 2004. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141: 236-253.
- Cornwell, W.K., Schwilk, D.W. & Ackerly, D.D. 2006. A trait-based test for habitat filtering: convex hull volume. Ecology 87: 1465-1471.
- de Bello, F., Lepš, J. & Sebastià, M.T. 2006. Variations in species and functional plant diversity along climatic and grazing gradients. Ecography 29: 801-810.
- de Bello, F., Lepš, J., Lavorel, S. & Moretti, M. 2007a. Importance of species abundance for assessment of trait composition: an example based on pollinator communities. Community Ecology 8: 163-170.

de Bello, F., Lepš, J. & Sebastià, M.T. 2007b. Grazing effects on the species-area relationship: variation along a climatic gradient in NE Spain. Journal of Vegetation Science 18: 25–34.

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

Q3

- Díaz, S. & Cabido, M. 2001. Vive la difference: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655.
- Díaz, S., Cabido, M. & Casanoves, F. 1998. Plant functional traits and environmental filters at a regional scale. Journal of Vegetation Science 9: 113-122
- Díaz, S., Hodgson, J.G., Thompson, K., Cabido, M., Cornelissen, J.H.C., Jalili, A., Montserrat-Marti, G., Grime, J.P., Zarrinkamar, F., Asri, Y., Band, S.R., Basconcelo, S., Castro-Diez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Perez-Harguindeguy, N., Perez-Rontome, M.C., Shirvany, F.A., Vendramini, F., Yazdani, S., Abbas-Azimi, R., Bogaard, A., Boustani, S., Charles, M., Dehghan, M., de Torres-Espuny, L., Falczuk, V., Guerrero-Campo, J., Hynd, A., Jones, G., Kowsary, E., Kazemi-Saeed, F., Maestro-Martinez, M., Romo-Diez, A., Shaw, S., Siavash, B., Villar-Salvador, P. & Zak, M.R. 2004. The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Science 15: 295-304.
- Díaz, S., Lavorel, S., de Bello, F., Quetier, F., Grigulis, K. & Robson, T.M. 2007. Incorporating plant functional diversity effects in ecosystem service assessments. Proceedings of the National Academy of Sciences of the United States of America 104: 20684-20689.
- Fonseca, C.R., Overton, J.M., Collins, B. & Westoby, M. 2000. Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88: 964-977.
- Fukami, T., Bezemer, T.M., Mortimer, S.R. & van der Putten, W.H. 2005. Species divergence and trait convergence in experimental plant community assembly. Ecology Letters 8: 1283-1290.
- Garnier, E., Cortez, J., Billes, G., Navas, M.L., Roumet, C., Debussche, M., Laurent, G., Blanchard, A., Aubry, D., Bellmann, A., Neill, C. & Toussaint, J.P. 2004. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85: 2630-2637.
- Garnier, E., Lavorel, S., Ansquer, P., Castro, H., Cruz, P., Dolezal, J., Eriksson, O., Fortunel, C., Freitas, H., Golodets, C., Grigulis, K., Jouany, C., Kazakou, E., Kigel, J., Kleyer, M., Lehsten, V., Lepš, J., Meier, T., Pakeman, R., Papadimitriou, , Papanastasis, V.P., Quested, H.M., Quetier, F., Robson, T.M., Roumet, C., Rusch, G.M., Skarpe, C., Sternberg, M., Theau, J.P., Thebault, A., Vile, D. & Zarovali, M.P. 2007. Assessing the effects of land-use change on plant traits, community and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Annals of Botany 99: 967-985.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

Grime, J.P. 2006. Trait convergence and trait divergence in herbaceous plant communities: mechanisms and consequences. *Journal of Vegetation Science* 17: 255– 260.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

WUK JVS 1042.PDF 16-Feb-09 23:49 256697 Bytes 12 PAGES n operator=mk.gokula)

- Hardy, O.J. & Senterre, B. 2007. Characterizing the phylogenetic structure of communities by an additive partitioning of phylogenetic diversity. *Journal of Ecology* 95: 493–506.
- Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., Setala, H., Symstad, A.J., Vandermeer, J. & Wardle, D.A. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. *Ecological Monographs* 75: 3–35.
- Jost, L. 2007. Partitioning diversity into independent alpha and beta components. *Ecology* 88: 2427–2439.
- Lande, R. 1996. Statistics and partitioning of species diversity, and similarity among multiple communities. *Oikos* 76: 5–13.
- Lavorel, S., Grigulis, K., McIntyre, S., Garden, D., Williams, N., Dorrough, J., Berman, S., Quétier, F., Thébault, A. & Bonis, A. 2008. Assessing functional diversity in the field – methodology matters!. *Functional Ecology* 22: 134–147.
- Lepš, J., de Bello, F., Lavorel, S. & Berman, S. 2006. Quantifying and interpreting functional diversity of natural communities: practical considerations matter. *Preslia* 78: 481–501.
- Loreau, M. 2000. Are communities saturated? On the relationship between alpha, beta and gamma diversity. *Ecology Letters* 3: 73–76.
- MacArthur, R. & Levins, R. 1967. The limiting similarity, convergence, and divergence of coexisting species. *The American Naturalist* 101: 377–385.
- Magurran, A.E. 2004. *Measuring biological diversity*. Blackwell, Oxford.
- Mason, N.W.H., MacGillivray, K., Steel, J.B. & Wilson, J.B. 2003. An index of functional diversity. *Journal of Vegetation Science* 14: 571–578.
- Mason, N.W.H., Mouillot, D., Lee, W.G. & Wilson, J.B. 2005. Functional richness, functional evenness and functional divergence: the primary components of functional diversity. *Oikos* 111: 112–118.
- Mason, N.W.H., Lanoiselee, C., Mouillot, D., Irz, P. & Argillier, C. 2007. Functional characters combined with null models reveal inconsistency in mechanisms of species turnover in lacustrine fish communities. *Oecologia* 153: 451–452.
- McIntyre, S., Lavorel, S., Landsberg, J. & Forbes, T.D.A. 1999. Disturbance response in vegetation: towards a global perspective on functional traits. *Journal of Vegetation Science* 10: 621–630.
- Miklos, I. & Podani, J. 2004. Randomization of presenceabsence matrices: comments and new algorithms. *Ecology* 85: 86–92.
- Mouillot, D., Stubbs, W.J., Faure, M., Dumay, O., Tomasini, J.A., Wilson, J.B. & Do Chi, T. 2005.

Niche overlap estimates based on quantitative functional traits: a new family of non-parametric indices. *Oecologia* 145: 345–353.

- Mouillot, D., Dumay, O. & Tomasini, J.A. 2007. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. *Estuarine Coastal and Shelf Science* 71: 443–456.
- Pavoine, S. & Dolédec, S. 2005. The apportionment of quadratic entropy: a useful alternative for partitioning diversity in ecological data. *Environmental and Ecological Statistics* 12: 125–138.
- Pavoine, S., Ollier, S. & Pontier, D. 2004. Measuring, diversity from dissimilarities with Rao's quadratic entropy: are any dissimilarities suitable? *Theoretical Population Biology* 67: 231–239.
- Petchey, O.L. & Gaston, K.J. 2002. Functional diversity (FD), species richness and community composition. *Ecology Letters* 5: 402–411.
- Petchey, O.L. & Gaston, K.J. 2006. Functional diversity: back to basics and looking forward. *Ecology Letters* 9: 741–758.
- Petchey, O.L., Evans, K.L., Fishburn, I.S. & Gaston, K.J. 2007. Low functional diversity and no redundancy in British avian assemblages. *Journal of Animal Ecology* 76: 977–985.
- Pierce, G.J., Luzzaro, A., Caccianiga, M., Ceriani, R.M. & Cerabolini, B. 2007. Disturbance is the principal alpha-scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. *Journal of Ecology* 95: 698–706.
- Pillar, V.D., Duarte, L.S., Sosinski, E.E. & Fernando, J. Sorting out trait convergence and trait divergence assembly patterns in ecological community gradients. *Journal of Vegetation Science* in press.
- Rao, C.R. 1982. Diversity and dissimilarity coefficients a unified approach. *Theoretical Population Biology* 21: 24–43.
- R Development Core Team 2007. R: A language and environment for statistical computing. ISBN 3-900051-07-0. Available from http://www.R-project.org.
- Ricotta, C. 2005. A note on functional diversity measures. *Basic and Applied Ecology* 6: 479–486.
- Ricotta, C. & Marignani, M. 2007. Computing betadiversity with Rao's quadratic entropy: a change of perspective. *Diversity and Distributions* 13: 237–241.
- Stubbs, W.J. & Wilson, J.B. 2004. Evidence for limiting similarity in a sand dune community. *Journal of Ecology* 92: 557–567.
- Thompson, K., Hillier, S.H., Grime, J.P., Bossard, C.C. & Band, S.R. 1996. A functional analysis of a limestone grassland community. *Journal of Vegetation Science* 7: 371–380.
- Tilman, D. 2001. Functional diversity. In: Levin, S.A. (ed.) *Encyclopedia of biodiversity*. Academic Press, San Diego.
- Veech, J.A., Summerville, K.S., Crist, T.O. & Gering, J.C. 2002. The additive partitioning of species diversity: recent revival of an old idea. *Oikos* 99: 3–9.

106

107

NCORPECTED

- Weiher, E. & Keddy, P. 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159-164.
- Westoby, M., Falster, D.S., Moles, A.T., Vesk, P.A. & Wright, I.J. 2002. Plant ecological strategies: some leading dimensions of variation between species. Annual Review of Ecology and Systematics 33: 125-159.
- Whittaker, R.J. (1975). Communities and ecosystems. Macmillan, New York.
- Wilson, J.B. 2007. Trait-divergence assembly rules have been demonstrated: limiting similarity lives! A reply to Grime. Journal of Vegetation Science 18: 451-452.
- Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H.C., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J. & Villar, R. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.

Received 15 October 2007; Accepted 22 October 2008 Coordinating editor: N. Mason.

Author Query Form

Journal	JVS
Article	1042

Dear Author,

During the copy-editing of your paper, the following queries arose. Please respond to these by marking up your proofs with the necessary changes/additions. Please write your answers clearly on the query sheet if there is insufficient space on the page proofs. If returning the proof by fax do not write too close to the paper's edge. Please remember that illegible mark-ups may delay publication.

Query No.	Description	Author Response
Q1	Author: please provide a nomenclature reference for species names in this paper.	
Q2	Author: Please confirm the change of spelling of Wehier to Weiher to match with the reference list is ok	
Q3	Author: Please provide the first name for Papadimitriou in reference Garnier et al (2007)	
Q4	Author: Please provide the year, volume and page range for reference Pillar et al (in press).	
Q5	Author: Please provide the page range for reference Tilman (2001).	
Q6	Author: Please confirm the change of Table 2 to Table 1 in figure caption 3 is ok.	